Sample Exam 10 - Solutions

SECTION I

1. Write in figures:

Ninety-three thousand and seven.

93000

93007

Answer \qquad 93007 \qquad
2. The number 146.45 is doubled. What is the new number?
146.45
$\begin{array}{r}\times \quad 2 \\ \hline 292.90\end{array}$
-

Answer \qquad 292.90 \qquad
3. Divide 1064 by 8 .
$8 \lcm{1064}$
0133

Answer \qquad 133 \qquad
4. $\frac{6}{7}$ of $\square=90$

$$
\square=\frac{7}{6} \times \frac{90}{1}
$$

$$
=105
$$

Answer \qquad 105 \qquad
5. Circle the number that is NOT a prime number.

19 is only divisible by 1 and itself without leaving a remainder so it is a prime number.
73 is only divisible by 1 and itself without leaving a remainder so it is a prime number.
13 is only divisible by 1 and itself without leaving a remainder so it is a prime number.
However, 91 is divisible by $1,7,13$ and itself without leaving a remainder so it is not a prime number.
6. Calculate $\frac{5}{6}-\frac{3}{4}$

$$
\begin{aligned}
\frac{5}{6}-\frac{3}{4} & =\frac{(5 \times 4)-(3 \times 6)}{24} \\
& =\frac{20-18}{24} \\
& =\frac{2}{24} \\
& =\frac{1}{12}
\end{aligned}
$$

Answer__ $\frac{1}{12}$
7. Find $\frac{3}{8}$ of 176
\qquad

22
$\frac{3}{8} \times \frac{176}{1}=66$
1

Answer \qquad 66
Answer
8. Convert $\frac{32}{7}$ to a mixed number.
$32 \div 7=4$ remainder 4 (how many groups of 7 can you get from 32?)
The answer (excluding the remainder) represents the whole number in the mixed number.
Whole number $=4$

The remainder becomes the numerator in the mixed number and is placed over the denominator of the proper fraction: $\frac{4}{7}$

Answer \qquad $4 \frac{4}{7}$ \qquad
9. Chelsea's percentage in her mock exam was 96%. If the mock exam's maximum score was 75 marks, how many marks did Chelsea lose?

Percentage of marks lost by Chelsea $=100 \%-96 \%$

$$
=4 \%
$$

Number of marks lost by Chelsea $=4 \%$ of 75 marks

$$
\begin{aligned}
& =\frac{4}{100} \times \frac{75}{1} \\
& =\frac{1}{25} \times \frac{75}{1} \\
& =3 \text { marks }
\end{aligned}
$$

Answer \qquad 3 \qquad marks
10. Judah purchased four bottles of the apple juice shown below. How much change did he receive from \$20.00?

\$3.75

Cost of 1 bottle of apple juice $=\$ 3.75$

Cost of 4 bottles of apple juice $=4 \times \$ 3.75$

$$
=\$ 15.00
$$

Change received by Judah $=\$ 20.00-\$ 15.00$

$$
=\$ 5.00
$$

Answer \$ \qquad 5.00
11. What is the length of the screwdriver, in centimetres?

Length of screwdriver $=10-4.5$

$$
=5.5 \mathrm{~cm}
$$

Answer \qquad 5.5 \qquad centimetres
12. Write the time shown on the clock.

\qquad Forty-three minutes past one OR 1:43 \qquad

13. The scale below has 3 tomatoes being weighed.

What is the mass of ONE tomato in grams?

Mass of 3 tomatoes $=1.5 \mathrm{~kg}$
Mass of 1 tomato $=\frac{1.5}{3}$

$$
=0.5 \mathrm{~kg}
$$

Converting to grams: $0.5 \times 1000=500$ grams

Answer \qquad 500 \qquad grams
14. The area of a square is $196 \mathrm{~cm}^{2}$. Calculate the perimeter of the square.

$$
\begin{aligned}
& \text { Area of a square }=196 \mathrm{~cm}^{2} \\
& \qquad \begin{aligned}
\mathrm{S} \times \mathrm{S} & =196 \mathrm{~cm}^{2} \\
\mathrm{~S}^{2} & =196 \mathrm{~cm}^{2} \\
\mathrm{~S} & =\sqrt{196} \\
& =14 \mathrm{~cm}
\end{aligned}
\end{aligned}
$$

Perimeter of square $=S \times 4$

$$
\begin{aligned}
& =14 \times 4 \\
& =56 \mathrm{~cm}
\end{aligned}
$$

Answer \qquad 56 \qquad centimetres

15. The solid below is made up of cubes of the same size. What is the total volume of the solid?

One Cube

Volume $=8 \mathrm{~cm}^{3}$

Number of cubes in solid $=24$
Volume of one cube $=8 \mathrm{~cm}^{3}$

$$
\begin{aligned}
\text { Volume of solid } & =24 \times 8 \mathrm{~cm}^{3} \\
& =192 \mathrm{~cm}^{3}
\end{aligned}
$$

Answer \qquad 192 \qquad cm^{3}
16. I am a quadrilateral with four equal sides. My opposite sides are parallel, my opposite angles are equal and diagonals bisect each other at right angles

What is my name?

Answer \qquad rhombus \qquad
17. Matthew was standing facing South. He turned in an anticlockwise direction and is now facing West.

S

Through how many degrees did Matthew turn?

Matthew made three $\frac{1}{4}$ turns.
Number of degrees Matthew turned $=3 \times 90^{\circ}$

$$
=270^{\circ}
$$

Answer \qquad 270 \qquad degrees
18. The tally chart below shows the horoscopes of the students in a class.

The Horoscopes of Students

Horoscope	Tally	Frequency
Capricorn	HH I	6
Gemini	HH IIII	9
Libra	HH	10
Aquarius	5	

Which horoscope represents the mode?

Mode means the one which occurs most frequently.
Based on the table above, Libra represents the mode since it as the highest frequency (10).

Answer \qquad 10 \qquad

19. The table below shows Johnathan's marks in four sample exams.

Johnathan's Marks

Sample Exam	1	2	3	4
Marks obtained	72	68	70	74

What was Johnathan's mean mark?

Mean mark $=\frac{\text { Sum of marks }}{\text { Frequency }}$

$$
=\frac{72+68+70+74}{4}
$$

$$
=\frac{284}{4}
$$

$$
=71 \text { marks }
$$

Answer \qquad 71 \qquad marks

20. The incomplete bar graph below shows the types of plants in a garden.

If there are 33 plants in the garden, how many peony plants are present?

Total number of plants $=33$ plants

Number of Tulips, Hibiscus and Orchid plants $=11+6+8$

$$
=25 \text { plants }
$$

Number of Peony plants $=33-25$

$$
=8 \text { plants }
$$

Answer \qquad 8 \qquad peony plants

SECTION II

21. 32% of a number is 112 . What is $\frac{3}{7}$ of the number?
32% of number $=112$

$$
\begin{aligned}
\text { Whole number } & =\frac{100}{32} \times \frac{112}{1} \\
& =350
\end{aligned}
$$

$\frac{3}{7}$ of the number $=\frac{3}{7} \times \frac{350}{1}$

$$
=150
$$

Answer \qquad 150 \qquad
22. After a 15% discount, a lunch bag was sold for $\$ 119$. Calculate the price of the lunch bag before the discount.

Discount $=15 \%$

Percentage paid for lunch bag $=100 \%-15 \%$

$$
=85 \%
$$

Therefore, 85% of lunch bag price $=\$ 119$

Price of lunch bag before discount $=\frac{100}{85} \times \frac{119}{1}$

$$
=\$ 140
$$

\qquad 140 \qquad

23. Every sixth customer entering the amusement park was given a discount. The 129th person entered the amusement park. How many more persons must enter the amusement park for the next discount to be given?

Discount given to every $6^{\text {th }}$ customer.

Number of persons who entered the amusement park $=129$ persons

Number of discounts given $=\frac{129}{6}$

$$
=21.5
$$

$$
=21 \text { discounts }
$$

Number of persons needed for $22^{\text {nd }}$ discount to be given $=129-(21 \times 6)$

$$
\begin{aligned}
& =129-126 \\
& =3 \text { persons }
\end{aligned}
$$

Answer \qquad 3 \qquad persons
24. Zoe spent $\frac{1}{5}$ of her money on snacks and $\frac{2}{3}$ on travelling to and from school. Zoe saved the remainder. If she had $\$ 165$, how much money did she save?

$$
\begin{aligned}
\text { Fraction spent on snacks and travelling } & =\frac{1}{5}+\frac{2}{3} \\
& =\frac{3+10}{15} \\
& =\frac{13}{15}
\end{aligned}
$$

Remainder $($ fraction saved $)=\frac{15}{15}-\frac{13}{15}$

$$
=\frac{2}{15}
$$

Amount of money Zoe saved $=\frac{2}{15} \times 165$

$$
=\$ 22
$$

Answer \$ \qquad 22
25. Write the missing terms in the sequence below.
$\sqrt{121}+4, \sqrt{100}+8$, \qquad $\sqrt{81}+12$ \qquad , $\sqrt{64}+16$, \qquad $\sqrt{49}+20$ \qquad
$\sqrt{121}+4=11+4$
$\sqrt{100}+8=10+8$

We can see that the pattern is the square root of a number being decreased by 1 and then added to a multiple of 4 .
26. The prices of three different clothing items are shown below.

Mrs. Andrews bought the clothing items shown in the table below. Complete the table.

Clothing Item	Quantity	Total Cost
Pants	2	$\$ 180.00$
T-Shirt	7	$\$ 434.00$
Dress	3	$\$ 345.00$
		$\$ 959.00$

Unit cost of T-Shirt $=\$ 62.00$
Cost of T-Shirts bought by Mrs. Andrews $=\$ 434.00$
Number of T-Shirts purchased by Mrs. Andrews $=\frac{\$ 434}{\$ 62}$

$$
=7 \text { T-Shirts }
$$

$$
\begin{aligned}
\text { TOTAL } & =\$ 180.00+\$ 434.00+\$ 345.00 \\
& =\$ 959.00
\end{aligned}
$$

27. Malachi went to sleep at 9:15 p.m. He awoke at 7:25 a.m. to get ready to go to school. How long was Malachi asleep?

We need to subtract 9:15 p.m. from 7:25 a.m.

Since 7:25 a.m. is in the am period we can give it a
+12 hour boost (since the pm period is 12 hours)
and rewrite it as 19:25.

19:25

9:15
$10: 10$

Answer \qquad 10 \qquad hours \qquad 10 \qquad minutes
28. Complete the shape shown below on the grid below using $P Q$ as the line of symmetry.

29. The square root of a number multiplied by 15 gives the same result as $\frac{5}{8}$ of 168 . What is the number?

$$
\begin{aligned}
\frac{5}{8} \text { of } 168 & =\frac{5}{8} \times \frac{168}{1} \\
& =105
\end{aligned}
$$

Square root of number $\times 15=\frac{5}{8}$ of 168

$$
\times 15=105
$$

Square root of number $=105 \div 15$

$$
=7
$$

Number $=$ Square root of number ${ }^{2}$

$$
\begin{aligned}
& =72 \\
& =7 \times 7 \\
& =49
\end{aligned}
$$

Answer \qquad 49
30. Write the numbers $1,2,3$ and 6 in the circles on the sides of the triangle below. The sum of the numbers on each side of the triangle must total to 9 .

We cannot place 6 at the top because when adding the numbers on the diagonal sides, it will exceed 9.i.e. $(5+6>9)$

So, we place 6 on the bottom in the $2^{\text {nd }}$ circle.

Next, we look at the remaining numbers 1,2 and 3 and figure out what added to 6 would result in the base of the triangle being equivalent to 9 .
$6+1+2=9$

Hence, we are using 1 and 2 in the circles at the base at the remaining number, 3, goes on the top.
The final arrangement is shown below.
$3+5+1=9$
$6+1+2=9$
$3+4+2=9$
31.

(a) State as a decimal the portion of the figure above that is shaded.

Total number of parts in the figure $=32$ parts
Number of shaded parts = 12 parts

Fraction of figure that is shaded $=\frac{12}{32}$

$$
=\frac{3}{8}
$$

As a decimal; $\frac{3}{8}=0.375$

Answer \qquad 0.375 \qquad

Fraction of the figure that is unshaded $=\frac{8}{8}-\frac{3}{8}$

$$
=\frac{5}{8}
$$

Percentage of the figure that is unshaded $=\frac{5}{8} \times \frac{100}{1}$

$$
=62.5 \%
$$

Answer 62.5 \qquad \%

32. The minute hand of the clock below is on 5 .

If it moves to 1 in a clockwise direction. Through what angle does the minute hand turn?

A circle has 360°.
The circle is divided equally into twelve angles at the centre.
Angle between any 2 numbers next to each other $=\frac{360^{\circ}}{12}$

$$
=30^{\circ}
$$

The number of 30° angles between 5 and 1 on the clock above is 8 .
Therefore, angle the minute hand turned $=30^{\circ} \times 8$

$$
=240^{\circ}
$$

Answer \qquad 240 \qquad degrees

33. A calculator and a geometry set cost $\$ 250$. The cost of the geometry set is 18% of the total cost.

What is the cost of four calculators and three geometry sets?

Cost of geometry set $=18 \%$ of the total cost

$$
\begin{aligned}
& =\frac{18}{100} \times \frac{250}{1} \\
& =\$ 45
\end{aligned}
$$

Cost of calculator $=\$ 250-\$ 45$

$$
=\$ 205
$$

Cost of 4 calculators and 3 geometry sets $=(4 \times \$ 205)+(3 \times \$ 45)$

$$
\begin{aligned}
& =\$ 820+\$ 135 \\
& =\$ 955
\end{aligned}
$$

Answer \$ \qquad 955 \qquad
34. The mass of a bag of Oreos containing 28 packets is 672 grams. There are four cookies in each packet. What is the mass of one cookie?

Mass of bag of Oreos $=672$ grams
Number of packets in the bag of Oreos $=28$ packets

$$
\begin{aligned}
\text { Mass of one packet of Oreos } & =\frac{\text { Mass of bag of Oreos }}{\text { Number of packets in one bag of Oreos }} \\
& =\frac{672}{28} \\
& =24 \text { grams }
\end{aligned}
$$

Number of cookies in one packet of Oreos $=4$ cookies

Mass of one cookie $=\frac{\text { Mass of one packet of Oreos }}{\text { Number of cookies in 1 packet }}$

$$
\begin{aligned}
& =\frac{24}{4} \\
& =6 \text { grams }
\end{aligned}
$$

Answer \qquad 6 \qquad grams
35. Janiah decided to make the pitcher of lemonade shown below to sell.

Pitcher

Cup

The lemonade was poured into cups, each holding 225 ml and sold for $\$ 5.50$ each.
(a) How many full cups of lemonade were obtained from the pitcher?

Volume of lemonade in pitcher $=2.75 \times 1000$

$$
=2750 \mathrm{~mL}
$$

Number of full cups of lemonade $=\frac{\text { Volume of lemonade in pitcher }}{\text { Volume of lemonade in one cup }}$

$$
\begin{aligned}
& =\frac{2750}{225} \\
& =12.222^{\prime} \\
& =12 \mathrm{cups}
\end{aligned}
$$

\qquad 12 \qquad cups
(b) How much money did Janiah make if all full cups of lemonade were sold?

Number of full cups of lemonade $=12$ cups
Selling Price of 1 cup $=\$ 5.50$

Amount of money made by Janiah $=12 \times \$ 5.50$

$$
=\$ 66.00
$$

Answer \$ \qquad 66 \qquad
36. Small identical cubes are placed inside a box as shown below.

(a) How many cubes can the box hold when filled completely?

Number of cubes the box can hold when filled completely $=9 \times 4 \times 5$

$$
=180 \text { cubes }
$$

Answer \qquad 180 \qquad cubes
(b) How many more of these cubes are needed to fill the box completely?

Number of cubes the box can hold when filled completely $=180$ cubes
Number of cubes presently in the box $=18$ cubes

Number of cubes needed to fill the box $=180-18$

$$
=162 \text { cubes }
$$

Answer \qquad 162 \qquad cubes

SECTION III

37. 2 apples and 4 paw-paws cost $\$ 110.6$ apples and 8 paw-paws cost $\$ 230$.

Calculate the total cost of 3 apples and 3 paw-paws.

2 apples +4 paw-paws $=\$ 110$
The difference is 4 .
6 apples +8 paw-paws $=\$ 230$

$$
=\$ 120
$$

1 apple $+\quad 1$ paw-paw $=\frac{120}{4}$

$$
=\$ 30
$$

Therefore,

Cost of 3 apples and 3 paw-paws $=3 \times \$ 30$
Cost of 3 apples and 3 paw-paws $=\$ 90$

Answer \$ \qquad 90 \qquad
38. The table below shows rates per minute for two phone networks.

	The Red Network	The Green Network
DAY		
6:00 a.m. to 6:00 p.m.	$\$ 1.35$	$\$ 1.40$
NIGHT		
6:00 p.m. to 6:00 a.m.	$\$ 0.90$	$\$ 0.98$

(a) Josiah's phone on The Red Network has $\$ 29.70$ credit. He wants to call his friend on Sunday at noon. How long will the call last if he uses all his credit?

Day Rate on The Red Network $=\$ 1.35$
Credit on Josiah's phone $=\$ 29.70$

Duration the call will last $=\frac{\text { Credit on phone }}{\text { Day Rate on The Red Network }}$

$$
\begin{aligned}
& =\frac{\$ 29.70}{\$ 1.35} \\
& =22 \text { minutes }
\end{aligned}
$$

Answer \qquad 22 \qquad minutes

(b) Zuri called her grandmother on Tuesday using The Green Network. The call began at 5:45 p.m. and lasted 34 minutes. How much did the call cost?

Time call began $=5: 45 \mathrm{p} . \mathrm{m}$.
Time call ended $=5: 45$ p.m. $+0: 34$

$$
=6: 19 \mathrm{p} . \mathrm{m} .
$$

Since the night rate goes into effect at 6:00 p.m., Zuri's call will be calculated using both the day and night rates.

Day Rate on The Green Network $=\$ 1.40$
Night Rate on The Green Network $=\$ 0.98$

Number of minutes billed using the Day Rate $=6: 00$ p.m. $-5: 45$ p.m.

$$
=15 \text { minutes }
$$

Cost of 15 minutes $=15 \times \$ 1.40$

$$
=\$ 21.00
$$

Number of minutes billed using the Night Rate $=6: 19$ p.m. $-6: 19$ p.m.

$$
=19 \text { minutes }
$$

Cost of 19 minutes $=19 \times \$ 0.98$

$$
=\$ 18.62
$$

Total cost of Zuri's call $=\$ 21.00+\$ 18.62$

$$
=\$ 39.62
$$

\qquad
\qquad
39. Rectangle PQRS below is made with three large identical squares and 5 small identical squares as shown in the diagram below.

(a) Find the length of each side of the small squares.

Length of each side of the small squares $=\frac{15}{5}$

$$
=3 \mathrm{~cm}
$$

Answer \qquad 3 \qquad cm
(b) What is the width, W , of the rectangle PQRS ?

Width, W , of the rectangle $\mathrm{PQRS}=$ Length of one side of the large squares + Length of one side of the small squares

$$
\begin{aligned}
& =5+3 \\
& =8 \mathrm{~cm}
\end{aligned}
$$

\qquad 8 \qquad cm

(c) Calculate the area of rectangle PQRS.

$$
\begin{aligned}
\text { Area of rectangle PQRS } & =\text { Length } \times \text { Width } \\
& =15 \times 8 \\
& =120 \mathrm{~cm}^{2}
\end{aligned}
$$

\qquad
40. The points system for hits in a darts game is illustrated below.

(a) Isaiah threw the darts and hit orange twice and red once. What was his total score?

$$
\begin{aligned}
\text { Hit orange twice } & =2 \times 10 \\
& =20 \text { points }
\end{aligned}
$$

Hit red once $=25$ points
Isaiah's total score $=20+25$

$$
=45 \text { points }
$$

Answer \qquad 45 \qquad points
(b) Atiya scored a total of 95 points where she hit each colour at least once.

Complete the results sheet below to show how she scored the 95 points.

Colour	Number of Hits	Points Gained		
Orange	3	30		
Green	1	-		
Red	2	15		
TOTAL				95

Atiya's total score $=95$ points

Number of points based on red hits $=50$ points
Number of times she hit red $=\frac{50}{25}$

$$
=2 \text { times }
$$

1 orange hit $=10$ points
1 green hit $=15$ points

Number of points Atiya earned by hitting red twice and orange and green once $=50+10+15$
Artillo. $=75$ points

Number of points unaccounted for $=95-75$

$$
=20 \text { points }
$$

Now this means that Atiya did not hit green again as 1 green hit is equal to 15 points.
This would leave a remainder of 5 points and none of the colours are equal to 5 points.

Therefore, Atiya's remaining hits were orange.

Number of orange hits $=\frac{20}{10}$

$$
=2 \text { hits }
$$

Total number of orange hits $=1+2$
$=3$ hits

