Sample Exam 8: Fractions Worksheet - Solutions

1. Three mixed numbers from the set below will produce a WHOLE number when added.

$3 \frac{1}{4}$	$2 \frac{2}{3}$	$1 \frac{1}{6}$	$2 \frac{1}{12}$

What are the three numbers?

Looking at the fraction part of the numbers:
$\frac{1}{4}, \frac{2}{3}, \frac{1}{6}, \frac{1}{12}$

These fractions are equivalent to:
$\frac{3}{12}, \frac{8}{12}, \frac{2}{12}, \frac{1}{12}$ respectively.

Looking at the numerators, the three numbers that add to give 12 are 3,8 and 1 .
Therefore,
$3 \frac{1}{4}+2 \frac{2}{3}+2 \frac{1}{12}=3+2+2+\frac{1}{4}+\frac{2}{3}+\frac{1}{12}$

$$
\begin{aligned}
& =3+2+2+\frac{3}{12}+\frac{8}{12}+\frac{1}{12} \\
& =3+2+2+\frac{12}{12} \\
& =3+2+2+1 \\
& =8
\end{aligned}
$$

Answer \qquad $3 \frac{1}{4}, 2 \frac{2}{3}, 2 \frac{1}{12}$
2. A small barrel holds $24 \frac{5}{6}$ litres of water. Maria uses $13 \frac{1}{4}$ litres to wash clothes and $5 \frac{1}{2}$ litres to prepare food. How much water is left in the small barrel?

Amount of water used $=13 \frac{1}{4}+5 \frac{1}{2}$

$$
\begin{aligned}
& =13+5+\frac{1}{4}+\frac{1}{2} \\
& =18+\frac{1}{4}+\frac{2}{4} \\
& =18+\frac{3}{4} \\
& =18 \frac{3}{4} \text { litres }
\end{aligned}
$$

Amount of water left in small barrel $=24 \frac{5}{6}-18 \frac{3}{4}$
Now, $24-18=6$
And $\frac{5}{6}-\frac{3}{4}=\frac{10}{12}-\frac{9}{12}$

$$
=\frac{1}{12}
$$

So, the amount of water left in small barrel $=6+\frac{1}{12}$

$$
=6 \frac{1}{12} \text { litres }
$$

Answer \qquad $6 \frac{1}{12}$ litres
3. (a) Write in the box below the sign, $>$ or $<$, that CORRECTLY completes the number sentence.

$$
\begin{aligned}
& \frac{2}{3} \quad \frac{5}{7} \\
& \frac{2}{3}=\frac{14}{21} \\
& \frac{5}{7}=\frac{15}{21}
\end{aligned}
$$

Since $15>14$, then $\frac{5}{7}>\frac{2}{3}$.
(b) Find the difference between $\frac{2}{3}$ and $\frac{5}{7}$.

Difference $=\frac{5}{7}-\frac{2}{3}$

$$
=\frac{15}{21}-\frac{14}{21}
$$

$$
=\frac{1}{21}
$$

Answer \qquad
$\frac{3}{5}$ of a number is 48 .
Whole number $=\frac{5}{3} \times \frac{48}{1}$

$$
=80
$$

Now,
$\frac{3}{8} \times 80=\frac{3}{8} \times \frac{80}{1}$
$\frac{3}{8} \times 80=30$

Answer \qquad 30 \qquad
5. Anthony had a piece of wire that was $12 \frac{1}{3} \mathrm{~m}$ long. He used $7 \frac{5}{6} \mathrm{~m}$ of it to fence the rose garden. What is the length of the remaining piece of wire?

Length of remaining piece of wire $=12 \frac{1}{3}-7 \frac{5}{6}$

$$
\begin{array}{ll}
\text { Whole Numbers } & \\
=12-7 & \\
=5 \times \frac{1}{3}-\frac{5}{6} \\
=5 \longrightarrow & =\frac{2-5}{6} \\
=4 & =\frac{2}{6}-\frac{5}{6} \\
& =\frac{6+2}{6}-\frac{5}{6} \\
& =\frac{8}{6}-\frac{5}{6} \\
& =\frac{3}{6} \\
& \\
& \\
&
\end{array}
$$

Length of remaining piece of wire $=4+\frac{1}{2}$

$$
=4 \frac{1}{2} \mathrm{~m}
$$

Answer \qquad $4 \frac{1}{2}$ m
6. The product of two numbers is 8 . One of them is $3 \frac{5}{9}$.

What is the other number?

The product of two numbers $=8$
One number $=3 \frac{5}{9}$

$$
=\frac{32}{9}
$$

The other number $=8 \div \frac{32}{9}$

$$
\begin{aligned}
& =8 \times \frac{9}{32} \\
& =\frac{9}{4} \\
& =2 \frac{1}{4}
\end{aligned}
$$

Answer \qquad $2 \frac{1}{4}$
7. Duliana's weekly allowance is $\$ 96$. She spent $\frac{1}{3}$ of it on snacks, $\frac{1}{4}$ of it on hair ribbons and saved the remainder.
(a) What fraction did she spend on snacks and hair ribbons together?

Fraction of money spent $=\frac{1}{3}+\frac{1}{4}$

$$
\begin{aligned}
& =\frac{4}{12}+\frac{3}{12} \\
& =\frac{7}{12}
\end{aligned}
$$

Answer

$\frac{7}{12}$
(b) How much money did she save?

Fraction of money saved $=1-\frac{7}{12}$

$$
\begin{aligned}
& =\frac{12}{12}-\frac{7}{12} \\
& =\frac{5}{12}
\end{aligned}
$$

Amount of money saved $=\frac{5}{12} \times 96$

$$
=\$ 40
$$

\qquad 40 \qquad
8. A café cuts 12 cakes into NINTHS. Kiemora gets $\frac{1}{3}$ of ONE cake.
(a) How many NINTHS of cake does she get?

$$
\frac{1}{3}=\frac{3}{9}
$$

Answer \qquad 3 \qquad ninths of cake
(b) How many NINTHS of cake does the café have remaining?

```
12 cakes = 12 }\times
    = 108 ninths
```

Kiemora received 3 ninths of cake.

Number of ninths of cake remaining $=108-3$

$$
=105
$$

Answer \qquad 105 \qquad ninths of cake
9. At a juice bar, $\frac{1}{4}$ of the customers drank orange juice, $\frac{3}{5}$ of the remainder drank apple juice and the others drank pineapple juice.
(a) What fraction of the customers drank apple juice?
$\frac{1}{4}$ of the customers drank orange juice.
Remainder $=1-\frac{1}{4}$

$$
\begin{aligned}
& =\frac{4}{4}-\frac{1}{4} \\
& =\frac{3}{4}
\end{aligned}
$$

$\frac{3}{5}$ of the remainder drank apple juice.
Fraction of customers who drank apple juice $=\frac{3}{5} \times \frac{3}{4}$

$$
=\frac{9}{20}
$$

Answer \qquad
(b) If there are 40 customers at the juice bar, how many customers drank pineapple juice?

Fraction of customers that drank pineapple juice $=1-\left(\frac{1}{4}+\frac{9}{20}\right)$

$$
\begin{aligned}
& =1-\left(\frac{5}{20}+\frac{9}{20}\right) \\
& =1-\frac{14}{20} \\
& =\frac{20}{20}-\frac{14}{20} \\
& =\frac{6}{20}
\end{aligned}
$$

Number of customers that drank pineapple juice $=\frac{6}{20} \times 40$

$$
=12
$$

Answer \qquad 12 \qquad customers
10. If $\frac{6}{7}$ of a number is 54 . What is $\frac{4}{21}$ of the same number?
$\frac{6}{7}$ of a number is 54 .
The number is $=54 \div \frac{6}{7}$

$$
\begin{aligned}
& =54 \times \frac{7}{6} \\
& =63
\end{aligned}
$$

$\frac{4}{21}$ of the number $=\frac{4}{21} \times 63$

$$
=12
$$

Answer \qquad 12 \qquad
11. Josiah shared a bag of candy with his two friends. He gave $\frac{1}{6}$ to Jivan and $\frac{3}{4}$ of the remainder to Judah.
(a) What fraction of the candy did Judah get?

Jivan got $\frac{1}{6}$ of the candy.
The fraction of candy remaining $=1-\frac{1}{6}$

$$
\begin{aligned}
& =\frac{6}{6}-\frac{1}{6} \\
& =\frac{5}{6}
\end{aligned}
$$

Judah got $\frac{3}{4}$ of the remainder.
The fraction of the candy Judah got $=\frac{3}{4} \times \frac{5}{6}$

$$
\begin{aligned}
& =\frac{15}{24} \\
& =\frac{5}{8}
\end{aligned}
$$

Answer \qquad $-\frac{5}{8}$

(b) What fraction of the candy did Josiah give his friends?

Jivan got $\frac{1}{6}$ of the candy.
Judah got $\frac{5}{8}$ of the candy.

The fraction of the candy Josiah gave to his friends $=\frac{1}{6}+\frac{5}{8}$

$$
\begin{aligned}
& =\frac{4}{24}+\frac{15}{24} \\
& =\frac{19}{24}
\end{aligned}
$$

Answer \qquad $\frac{19}{24}$
12. Khyla has 288 muffins of two different types: blueberry and poppyseed. There are three times as many blueberry muffins as there are poppyseed muffins.
(a) How many poppyseed muffins are there?

There are three times as many blueberry muffins as there are poppyseed.
So, $\frac{1}{4}$ of the muffins are poppyseed.

Number of poppyseed muffins $=\frac{1}{4} \times$ Total number of muffins

$$
\begin{aligned}
& =\frac{1}{4} \times 288 \\
& =72 \mathrm{muffins}
\end{aligned}
$$

Answer \qquad 72 \qquad poppyseed muffins
(b) $\frac{5}{6}$ of the poppyseed muffins have peanuts and the others have raisins. How many poppyseed muffins have raisins?

Fraction of poppyseed muffins that have peanuts $=\frac{5}{6}$

Fraction of poppyseed muffins that have raisins $=1-\frac{5}{6}$

$$
\begin{aligned}
& =\frac{6}{6}-\frac{5}{6} \\
& =\frac{1}{6}
\end{aligned}
$$

Number of poppyseed muffins that have raisins $=\frac{1}{6} \times 72$

$$
=12 \mathrm{muffins}
$$

Answer \qquad 12 \qquad poppyseed muffins
(c) A box can hold 16 muffins. How many boxes are needed to pack ALL the blueberry muffins?

$$
\begin{aligned}
\text { Number of blueberry muffins } & =288-72 \\
& =216 \text { muffins }
\end{aligned}
$$

Number of boxes needed $=216 \div 16$

$$
=13.5 \text { boxes }
$$

Answer \qquad 13.5 \qquad boxes
$\frac{7}{8}$ of a number $=91$
The number is $=91 \div \frac{7}{8}$

$$
\begin{aligned}
& =91 \times \frac{8}{7} \\
& =104
\end{aligned}
$$

Quarter of the same number $=\frac{1}{4} \times 104$

$$
=26
$$

Answer
26 \qquad
14. Consider the fractions $\frac{3}{4}$ and $\frac{3}{5}$. The numerators are the same but the denominators are different. Using words or diagrams to explain your answer, are the two fractions equal to each other? [3]

Numerator	\rightarrow tells us how many of the parts we are considering
Denominator	\rightarrow tells us how many parts the whole is divided into

So, $\frac{3}{4}$ means we are looking at three parts of a whole divided into 4 parts.
$\frac{3}{5}$ means we are looking at three parts of a whole divided into 5 parts.

$\frac{3}{5}$

The diagrams show that $\frac{3}{4}$ is not equal to $\frac{3}{5}$.

In general, if we have the same numerators but different denominators, then the fractions will not be the same.

Answer \qquad The two fractions are not equal to each other \qquad
15. A teacher discovered $\frac{2}{5}$ of the pens she recently bought were defective.

She also noticed that $\frac{2}{3}$ of the working pens were black.
If 16 of the working pens were black, how many pens did the teacher buy?

Fraction of pens that are not working $=\frac{2}{5}$

Fraction of pens that are working $=1-\frac{2}{5}$

$$
\begin{aligned}
& =\frac{5}{5}-\frac{2}{5} \\
& =\frac{3}{5}
\end{aligned}
$$

Now, $\frac{2}{3}$ of the working pens were black.
Fraction of black working pens $=\frac{2}{3} \times \frac{3}{5}$

$$
\begin{aligned}
& =\frac{6}{15} \\
& =\frac{2}{5}
\end{aligned}
$$

Since 16 of the working pens were black, then
$\frac{2}{5}$ of the pens $=16$
Total number of pens the teacher bought $=16 \div \frac{2}{5}$

$$
\begin{aligned}
& =16 \times \frac{5}{2} \\
& =40 \mathrm{pens}
\end{aligned}
$$

\qquad 40 \qquad pens
16. A roll of ribbon was used to make bows. Onella used $\frac{4}{9} \mathrm{~m}$, Faith used $\frac{1}{3} \mathrm{~m}$ and Kareena used $\frac{1}{6} \mathrm{~m}$ of the roll of ribbon.
Calculate the difference in length between the shortest and longest pieces of ribbon used.
$\frac{4}{9}=\frac{8}{18} \quad, \quad \frac{1}{3}=\frac{6}{18} \quad \frac{1}{6}=\frac{3}{18}$

The longest piece of ribbon is $=\frac{4}{9}$
The shortest piece of ribbon is $=\frac{1}{6}$

Difference $=\frac{4}{9}-\frac{1}{6}$

$$
\begin{aligned}
& =\frac{8}{18}-\frac{3}{18} \\
& =\frac{5}{18}
\end{aligned}
$$

17. Yannick used $\frac{1}{5}$ of his sticky notes and gave $\frac{4}{7}$ of the remaining sticky notes to his sister. He now has 36 sticky notes remaining. How many sticky notes did Yannick have at first?

Fraction of sticky notes used $=\frac{1}{5}$
Fraction of remaining sticky notes $=1-\frac{1}{5}$

$$
\begin{aligned}
& =\frac{5}{5}-\frac{1}{5} \\
& =\frac{4}{5}
\end{aligned}
$$

He gave $\frac{4}{7}$ of the remaining sticky notes to his sister.
Fraction of sticky notes given to his sister $=\frac{4}{7} \times \frac{4}{5}$

$$
10=\frac{16}{35}
$$

Fraction of sticky notes he remains with $=1-\left(\frac{1}{5}+\frac{16}{35}\right)$

$$
\begin{aligned}
& =1-\left(\frac{7}{35}+\frac{16}{35}\right) \\
& =1-\frac{23}{35} \\
& =\frac{35}{35}-\frac{23}{35} \\
& =\frac{12}{35}
\end{aligned}
$$

$\frac{12}{35}$ of the sticky notes $=36$
Number of sticky notes he had at first $=36 \div \frac{12}{35}$

$$
\begin{aligned}
& =36 \times \frac{35}{12} \\
& =105
\end{aligned}
$$

\qquad
18. There are green, blue and red marbles in a jar. $\frac{3}{4}$ of the marbles are green. $\frac{2}{7}$ of the remainder are red. What fraction of the marbles are blue?
$\frac{3}{4}$ of the marbles are green.
Remainder $=1-\frac{3}{4}$

$$
\begin{aligned}
& =\frac{4}{4}-\frac{3}{4} \\
& =\frac{1}{4}
\end{aligned}
$$

$\frac{2}{7}$ of the remainder are red.
Fraction of red marbles $=\frac{2}{7} \times \frac{1}{4}$

$$
=\frac{2}{28}
$$

Fraction of blue marbles $=1-\left(\frac{3}{4}+\frac{2}{28}\right)$

$$
=1-\left(\frac{21}{28}+\frac{2}{28}\right)
$$

$$
N=1-\frac{23}{28}
$$

$$
=\frac{28}{28}-\frac{23}{28}
$$

$$
=\frac{5}{28}
$$

Answer___ $\frac{5}{28}$
19. A recipe for 4 pancake servings uses $2 \frac{1}{3}$ cups of pancake mix.

How much cups of pancake mix will be used for 15 pancake servings?

4 servings use $2 \frac{1}{3}$ cups of pancake mix.
1 serving will use $=2 \frac{1}{3} \div 4$

$$
\begin{aligned}
& =\frac{7}{3} \div 4 \\
& =\frac{7}{3} \times \frac{1}{4} \\
& =\frac{7}{12} \text { cups of pancake mix }
\end{aligned}
$$

Now,
15 servings will use $=15 \times \frac{7}{12}$

$$
\begin{aligned}
& =\frac{105}{12} \\
& =8 \frac{9}{12} \\
& =8 \frac{3}{4} \text { cups of pancake mix }
\end{aligned}
$$

Answer
 $8 \frac{3}{4}$ cups of pancake mix
20. Aries was instructed to use $\frac{5}{8}$ cup of sugar to make each pitcher of mauby. She made 7 pitchers of mauby.
(a) What is the total amount of sugar used?

1 pitcher of mauby requires $\frac{5}{8}$ cup of sugar.
Amount of sugar required for 7 pitchers of mauby $=7 \times \frac{5}{8}$

$$
\begin{aligned}
& =\frac{35}{8} \\
& =4 \frac{3}{8} \mathrm{cups}
\end{aligned}
$$

Answer \qquad $4 \frac{3}{8}$ \qquad cups of sugar
(b) Between which two whole numbers does your answer lie?
\qquad 4 and 5 \qquad

