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Metabolic associated fatty liver disease (MAFLD) is a multifactorial systemic disorder that occurs in the absence of excessive
alcohol consumption. 3e disease is characterized by fatty degeneration and fat accumulation in liver parenchymal cells, the
incidence of which is increasing annually, particularly in younger adults. MAFLD is caused by genetic and metabolism related
disorders, of which mitochondrial dysfunction is the major contributor. Natural products can relieve MAFLD through restoring
mitochondrial function. In this article, we describe the relationship between mitochondria andMAFLD and discuss the beneficial
effects of natural products as a future anti-MAFLD strategy. Significance Statement. We herein propose that the development of
mitochondrial regulators/nutrients from natural products can remedy mitochondrial dysfunction which represents an attractive
strategy for the treatment of MAFLD. Furthermore, the mitochondrial regulation of natural products can provide new insight into
the underlying mechanisms of action of natural products used for future MAFLD therapeutics.

1. Introduction

Metabolic associated fatty liver disease (MAFLD) is a
metabolic stress-related liver injury that is closely associated
with insulin resistance and genetic susceptibility.3e spectra
of the disease include nonalcoholic liver steatosis, nonal-
coholic steatohepatitis, cirrhosis, and hepatocellular carci-
noma. MAFLD can lead to disability and mortality and is
closely related to the metabolic syndrome, type 2 diabetes,
arteriosclerotic cardiovascular disease, and colorectal tu-
mors [1]. With changes in lifestyle and the control of viral
liver disease, the incidence of MAFLD is increasing, with a
prevalence of ∼25% in adults worldwide. To date, MAFLD
has emerged as the most common chronic liver disease
(49.3%) in China [2, 3]. Despite this, anti-MAFLD thera-
peutics are lacking and new and more effective therapies
through an increased understanding of disease pathogenesis
are urgently required.

Mitochondria are the major sites of oxidative meta-
bolism in which carbohydrates, fats, and amino acids are
oxidized to release energy. Fatty acid β-oxidation occurs
primarily in the mitochondria, which, when impaired, leads
to fat accumulation in the liver, ROS production, and he-
patocyte apoptosis [4]. As changes in mitochondrial func-
tion often precede the occurrence of clinical symptoms, the
timely detection of its functional changes and the imple-
mentation of appropriate therapeutics can prevent or delay
the occurrence and development of MAFLD.

It has been reported that an array of natural products [4]
can alleviate MAFLD-related symptoms through the regu-
lation of mitochondrial function. 3e aim of this review was
to examine current knowledge of the relationship between
mitochondria and MAFLD, and the regulation of natural
products to the mitochondria for the treatment of MAFLD.
We herein propose that the development of mitochondrial
regulators/nutrients from natural products can remedy
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mitochondrial dysfunction which represents an attractive
strategy for the treatment of MAFLD. Furthermore, the
mitochondrial regulation of natural products can provide
new insight into the underlying mechanism (s) of action of
natural products used for future MAFLD therapeutics.

2. Role of Mitochondria in the Occurrence and
Development of MAFLD

2.1. EnergyMetabolismDisorders. 3e three major nutrients
in organisms, namely, carbohydrates, fats, and proteins, all
undergo oxidative phosphorylation in the mitochondria
through the tricarboxylic acid cycle to generate energy.
MAFLD occurs in response to energy metabolism disorders
and is therefore intricately linked to mitochondrial function.

Mitochondria provide more than ∼90% of the energy
within cells [5]. Mitochondrial function in healthy cells is
directly related to whole body energy metabolism. Ac-
cordingly, disorders in mitochondrial function and their
reserves in MAFLD patients’ lead to the accumulation of fat
in the liver and subsequent liver injury. Mitochondrial
damage leads to dysfunction in the electron transport chain,
altered mitochondrial protein expression, oxidative phos-
phorylation, and mitochondrial DNA damage. 3ese
changes culminate in a loss of ATP synthesis which impairs
the growth and metabolism of hepatocytes. When hepato-
cytes fail to function correctly, apoptosis frequently occurs
[4].

2.2. Mitochondrial DNA Damage. Mitochondrial deoxy-
ribonucleic acid (mtDNA) is the only genetic material found
in an organelle outside the nucleus. MtDNA plays a crucial
role in oxidative phosphorylation and MAFLD. When
cellular damage or cell stress occur, mtDNA is released from
the mitochondria and is considered an important regulatory
molecule of innate immune responses, which can induce the
occurrence of inflammatory disease [6]. During the for-
mation of MAFLD, continuous inflammation leads to tissue
damage and the overproduction of ROS. An important
factor in inflammatory response amplification in MAFLD
injury is the activation of endogenous “danger signals,”
namely, DAMPs (mainly including mtDNA). Damaged
tissues and cells release mtDNA which can activate the
inflammatory response, subsequently inducing liver
damage.

Mitochondria produce adenosine triphosphate (ATP)
through oxidative phosphorylation. Reactive oxygen species
(ROS) are by-products of the respiratory chain, meaning
mitochondria are the major cellular source of ROS. Studies
have indicated that the MAFLD-related injury induced by
mtDNA damage can affect the respiratory chain, enhance
oxidative stress and inflammatory responses, and induce
apoptosis [7]. In addition, mtDNA damage can inhibit the
production of ATP in the mitochondria, leading to cell
dysfunction and subsequent tissue damage [7].

Due to the lack of histone protection and complete
mutational repair functions, the mutation rates of mtDNA

are high. MtDNA is easily attacked by intracellular ROS,
leading to base pair deletions and mutations which further
disturb lipid metabolism in hepatocytes. Studies by Kamfar
et al. [8] revealed that the copy number of mtDNA in he-
patocytes is key to the susceptibility to MAFLD.

2.3. Oxidative Stress and Lipid Peroxidation. Oxidative stress
and lipid peroxidation are the major causative factors of
MAFLD. Oxidative stress is a pathological state that occurs
in response to the generation of free radicals or ROS by
oxygen molecules, which exceeds their detoxification ability.
Upsetting the dynamic balance between oxidants and an-
tioxidants promotes oxidative stress in the mitochondria. In
patients with MAFLD, mitochondrial function declines,
leading to a loss of ATP synthesis, decreased ROS con-
sumption, and ROS accumulation. 3is leads to lipid de-
position in the liver and increased oxidative stress responses,
ultimately leading to hepatocyte apoptosis.

Oxidative stress and mitochondrial dysfunction occur in
patients with MAFLD [9]. Mitochondrial dysfunction in-
duced liver steatosis leads to excessive ROS levels, oxidative
stress, and lipid peroxidation, ultimately disrupting the
mitochondrial respiratory chain [10] and energy meta-
bolism, as a result of mitochondrial damage [11].

Lipid peroxidation is a process in which ROS oxidizes
biological membranes in situations of elevated oxidative
stress. ROS reacts with macromolecular substances in-
cluding polyunsaturated fatty acid side chains to generate
lipid peroxides that increase endogenous ROS levels. In
addition, lipid peroxidation products lead to the loss of
mtDNA, replication errors, and the inhibition of mtDNA
repair in patients withMAFLD, thereby reducing the activity
of the respiratory chain complex. Lipid peroxides can
combine with mitochondrial proteins to form adducts that
inhibit electron transfer in the respiratory chain. 3e in-
creased free fatty acids in the liver can induce oxidative stress
responses, leading to reduced mitochondrial function and
aggravated MAFLD.

Furthermore, excessive ROS production in the mito-
chondria can oxidize macromolecular substances, leading to
further oxidation and reoxidation damage to both proteins
and lipids. As a result, ROS induces a series of pathological
changes that ultimately lead to liver damage.

2.4. Hepatocyte Apoptosis. Hepatocytes undergo apoptosis
through death receptor pathways and mitochondrial-de-
pendent apoptotic pathways. Mitochondria are the regula-
tory centers of cell apoptosis. Apoptosis-related factors such
as cytochrome C (Cytc) and apoptosis-inducing factor (AIF)
in the mitochondria are released into the cytoplasm in re-
sponse to changes in themitochondrial membrane potential,
leading to the activation of downstream caspases and ap-
optosis [12].

3e change in mitochondrial membrane permeability is
an important aspect of the occurrence of apoptosis and
necrosis. Membrane permeability is mainly affected by the
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regulation of mPTP on the inner mitochondrial membrane.
Cells survive only when mitochondrial pores are closed, as
their excessive opening leads to apoptosis. Kang et al. [13]
found that the apoptotic rates of hepatocytes in MAFLD rats
fed with a high-fat diet increased when the mPTPs were
open. 3is led to an increase in membrane permeability, a
loss of mitochondrial membrane potential, the release of
apoptosis-inducing factors, and the subsequent activation of
proapoptotic proteins, ultimately leading to apoptosis. Xiao
et al. [14] reported that ginsenoside Rg1 could inhibit he-
patocyte apoptosis in MAFLD rat models and alleviate
disease progression. Cai et al. [15] found that the saponins of
Gynostemma could effectively inhibit oxidative stress re-
sponses in the hepatocytes of MAFLD rats, thereby dis-
playing hepatoprotective effects.

It can therefore be concluded that the mitochondrial
damage caused by MAFLD is closely related to the induction
of apoptosis in liver cells. With a decrease in mitochondrial
membrane potential, Cytc is released from the mitochon-
drial membrane into the cytoplasm, leading to caspase ac-
tivation and hepatocyte apoptosis.

2.5.Mitophagy. Mitophagy is a selective form of autophagy
that eliminates dysfunctional mitochondria. 3e regulation
of mitophagy can be either ubiquitin-dependent or non-
ubiquitin-dependent. Ubiquitin-dependent mitophagy
includes PTEN-induced kinase 1 (PINK1)/E3 ubiquitin
ligase parkin-mediated mitophagy and parkin-indepen-
dent mitophagy. Ubiquitin-independent mitophagy refers
to the mitophagy mediated by mitochondrial autophagy
receptors. Damaged mitochondria can be removed by
mitophagy to avoid the toxic effects of ROS on cells. 3e
damage/death of hepatocytes occurs as a result of dysre-
gulated mitophagy, highlighting its role in cellular
homeostasis.

A variety of liver-related diseases (including MAFLD)
are related to mitophagy [16–20]. Lipid autophagy can se-
lectively recognize and degrade lipids, thereby maintaining
lipid homeostasis in hepatocytes [19]. Adipogenic autophagy
is an important mechanism through which cells regulate
lipid balance in the liver and is key to cell metabolism and
organelle renewal. Mitophagy regulates mitochondrial
quality to maintain cell homeostasis [20].

Koga et al. [21] found that changes in the membrane
structure of autophagosomes occurred as a result of lipid
deposition, which in turn affected their fusion with lyso-
somes, leading to reduced lipid degradation by autophagy
during the early stages of MAFLD. When autophagy in-
duction fails to remove cellular inflammatory factors,
damaged organelles and excessive ROS, liver tissue injury,
liver cell edema, liver tissue necrosis, and inflammatory cell
infiltration, resulting in NASH, occur [22]. Autophagy is
closely related to MAFLD [23] and represents a therapeutic
target for the prevention and treatment of liver failure.

2.6. Fatty Acid Metabolism. Fat metabolism mainly occurs in
the liver. When fat synthesis and decomposition are imbal-
anced, or the output is obstructed, fat excessively accumulates,
leading to the development of fatty liver [24].3emain form of
fatty acid oxidation is β-oxidation, which mainly occurs in the
mitochondria and plays a key role in fatty acidmetabolism [25].
Lipid metabolism disorders lead to increases in free fatty acids,
disorders of liver fat metabolism, and increased TG synthesis in
liver cells, resulting in excessive lipid accumulation. Excessive
TG and NEFA accumulate in hepatocytes and are oxidized in
the mitochondria, which produces excessive ROS and triggers
inflammatory reactions, causing further damage to the liver
tissue.

Lipid metabolism is regulated by the expression of en-
zymes and genes related to fatty acid metabolism [26, 27].
Amongst them, PPAR and its downstream target genes in
the liver tissue increase fatty acid oxidation and inhibit fatty
acid synthesis, thus improving abnormal fatty acid meta-
bolism and blood lipid levels. 3is has been proposed as a
therapeutic strategy to treat pathological obesity and non-
alcoholic fatty liver [28]. In obese subjects, type 2 diabetes
and insulin resistance are common. In such cases, the
sources of fatty acids in liver cells increase, as does the
oxidation output, resulting in the deposition of TG in the
liver, increasing the risk of NAFLD development [29].

2.7. Morphological Changes. 3e mitochondrial cristae of
normal hepatocytes form clear and abundant matrix par-
ticles of high electron density [30–32].3e liver pathology of
MAFLD is characterized by a dense distribution of fat in the
mitochondria, obvious mitochondrial swelling, the short-
ening of cristae, and rupture of the external membranes.

3. Effects of Natural Products on MAFLD

MAFLD is a metabolic syndrome that induces a series of
pathological changes including alterations in glucose and
lipid metabolism and mitochondrial function. Studies have
shown that many natural products (including mixtures and
monomers) alleviate MAFLD through their regulation of
mitochondrial function (Table 1). 3eir main functions
include improving energy metabolism, the protection of
mtDNA, alleviating oxidative stress and lipid peroxidation,
inhibiting hepatocyte apoptosis, regulating mitophagy,
promoting fatty acid metabolism, and improving mito-
chondrial morphology in hepatocytes.

Additionally, patients with coeliac disease (CD) have to
follow a lifelong gluten-free diet (GFD) [85]. However, GFD
is related to increased lipid and carbohydrate intake [86–93].
3us, many patients with CD become overweight after GFD
treatment [85]. About 3% of patients diagnosed with
MAFLD actually have an underlying CD. Natural products
may be used to remedy GFD-indued MAFLD that merit
further investigation.

Canadian Journal of Gastroenterology and Hepatology 3



Table 1: Regulating mitochondria to prevent MAFLD by natural products.
Type of natural
product Natural product Mitochondrial regulation Experimental models

Mixture

Tangshen prescription [33] Restoration of autophagy in damaged fatty liver and reduced
mitochondrial damage caused by ROS

MAFLD mouse models induced by a high-fat or
choline-methionine-deficient diet

Zhifang prescription [34] Increased expression of Mfn1 and Opa1, which promote
mitochondrial fusion and enhance mitochondrial autophagy MALFD rat models induced by a high-fat diet

Yinchen Linggui Zhugan decoction [35] Activation of autophagy, balancing the body’s oxidation and
antioxidation systems, improving NASH MALFD rat models induced by a high-fat diet

Tiaogan lipi prescription [36] Improves MAFLD by increasing autophagy levels MALFD rat models induced by a high-fat diet
Baohe pills and Baohe pills added with
Polygoni Cuspidati Rhizoma et Radix

[37]

Reduced mitochondrial swelling, increasing the number
of mitochondria, and maintaining

mitochondrial function and integrity

MAFLD rat models induced by modified high-fat
emulsion

Sini San [38]
Ability to resist lipid peroxidation, increase ATPase activity,

reduce mitochondrial swelling, and increase
mitochondrial membrane potential

MAFLD mouse models induced by methionine
choline deficiency

Erchen decoction [39] Increased ATP synthesis and restoration
of mitochondrial energy metabolism disorders MAFLD mouse models induced by a high-fat diet

Shuganjianpi Huatanhuoxue prescription
[40]

Reduced lipid peroxidation, accelerated
β-oxidation in the mitochondria MAFLD in vitro cell models

Fufang Zhajin granules [31] Improves mitochondrial lipid metabolism in liver cells MALFD rat models induced by a high-fat diet

Huatan Qushi Huoxue prescription [41]
Increased number of mitochondria and their cristae, enhanced

liver cell energy metabolism, and restoration of
mitochondrial morphology and function

NASH rat models induced by a high-fat diet combined
with tetracycline intraperitoneal injection

Ganshu decoction [42]
Reduced mitochondrial swelling, improved

mitochondrial membrane fluidity, and regulation of
mitochondrial lipid oxidation in liver cells

MALFD rat models induced by a high-fat diet

Ganshule tablets [43] Increased mitochondrial fatty acid β-oxidation and
higher number of mitochondrial cristae MALFD rat models induced by a high-fat diet

Ganzhikang capsules [44]
Decreased synthesis of NEFA and TG, enhanced liver
function and oxidation of fatty acids, and ability to

scavenge free radicals and the products of lipid peroxidation
MALFD rat models induced by a high-fat diet

Jiawei Zhaqu decoction [45] Improves lipid metabolism in the mitochondria,
reduced UCP-2 and COX I production MALFD rat models induced by a high-fat diet

Jianpi Shugan Jiangzhi prescription [46]
Increased number of mitochondria and cristae, enhances

ATP synthesis and energy metabolism,
and increases fatty acid metabolism

MAFLD mouse models induced by a high-fat diet and
10% CCL4 edible oil solution

Qingzhi Hugan prescription [47] Reduced mitochondrial swelling and
improved mitochondrial morphology MALFD rat models induced by a high-fat diet

Tiaogan Quzhi prescription [48] Reduced mitochondrial swelling, and
improved mitochondrial morphology MAFLD rat models induced by a high-fat diet

Xiaoyu Huatan decoction [49]

Reduces mitochondrial swelling, increased number of
mitochondria, increased ATP synthesis

and mitochondrial energy
reserves, and increased fatty acid metabolism

MALFD rat models induced by a high-fat diet

Yishen Tiaogan prescription [50]

Increases the number of mitochondria and the
stability of membrane potential and improves the
activity of cytochrome oxidase and the self-repair

processes of damaged mitochondrial DNA

MALFD rat models induced by high-fat diets

Zhigan prescription [4,51]
Ability to reduce mitochondrial energy metabolism disorders,

mitochondrial swelling in liver tissues,
and ability to regulate mitochondrial autophagy

MALFD rat models induced by a high-fat diet

Shiwei Ganzhikang capsules [52] Protection and repair of the mitochondrial membranes
of liver cells and ability to promote the recovery of liver cell functions MALFD rat models induced by high-fat diets

Allium Fistulosum bulbus [53,54] Improves mitochondrial respiratory function, increases
mitochondrial biosynthesis, and promotes fatty acid oxidation MALFD rat models induced by a high-fat diet

Blueberry [55]

Reduction of lipid peroxides, regulation of energy metabolism
in hepatocyte mitochondria, maintenance of the balance

between oxidation and antioxidation, and
reduced oxidative stress responses in the liver

MALFD rat models induced by a high-fat diet

Sibiraea angustata [56] Strengthen β-oxidation of fatty acids in the mitochondria MALFD rat models induced by a high-fat diet

Granati Pericarpium [57] Enhanced antioxidant capacity and maintenance
of stable mitochondrial functions MALFD rat models induced by a high-fat diet

Sida orientalis [58] Improves mitochondrial oxidative stress —

Gecko [59]
Ability to resist lipid peroxidation, prevents

oxidative stress, reduces the
production of lipid peroxides, and prevents cell apoptosis

MAFLD mouse models induced by a high-fat diet

Trillium tschonoskii [60] Reduces mitochondrial swelling
MAFLD rat models induced by a high-fat diet

combined with the intraperitoneal injection of carbon
tetrachloride solution

Gynostemma pentaphyllum [61] Ability to adjust the molecular structure of mitochondrial
cardiolipin and improved mitochondrial functions Primary hepatocytes cultured in high glucose

Extract of Polygoni Multiflori Radix [62] Prevents the β-oxidation of mitochondrial
fatty acids and improves liver lipid metabolism MAFLD mouse model induced by an MCD diet

Rhodiola crenulata extract [63] Improves insulin resistance,
downregulates lipid synthesis in the liver

MAFLD models of C57BL/6 mice induced by a high-
fat diet

Polysaccharides of Cordyceps [64] Reduces mitochondrial swelling and
increases the number of mitochondrial cristae MAFLD rat models induced by a high-fat emulsion

Total flavonoids of Litsea Coreana [65] Increases the number of mitochondrial
cristae, improves mitochondrial morphology and function MAFLD rat models induced by a fat emulsion gavage

Notoginseng total saponins [66]

Decreases hydroxyl free radicals in the mitochondria
of liver cells, reduces MDA concentrations, and increases total

superoxide dismutase activity and the
total antioxidant capacity of serum

—

Polysaccharides of Ganoderma lucidum
[67]

Improves mitochondrial ultrastructure, reduces mitochondrial swelling, lowers
cytochrome C levels, reduces the activity of apoptotic proteins, and increases

mitochondrial oxidation and related enzyme activities
MALFD rat models induced by a high-fat diet

Pomegranate polyphenols [68]
Increases ATP content, inhibits mitochondrial
protein oxidation, and improves the activity of
mitochondrial complex enzymes in the liver

MALFD rat models induced by a high-fat diet
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Table 1: Continued.
Type of natural
product Natural product Mitochondrial regulation Experimental models

Monomer

Hesperidin [69] Reduces mitochondrial swelling and increases the number of mitochondrial
cristae

MAFLD rat models induced by a fat emulsion gavage
and sucrose feeding

Dihydromyricetin [70]
Regulates the SIRT3 pathway to promote the expression of mitochondrial DNA
coding genes, maintains the enzymatic activity of the mitochondrial respiratory

chain complex, and increases mitochondrial ROS scavenging activity
MALFD rat models induced by a high-fat diet

Polydatin [71] Enhances the body’s antioxidant capacity, reduces the production of lipid
peroxides, and improves the β-oxidation of mitochondrial fatty acids MALFD rat models induced by a high-fat diet

Salvianolic acid [72] Protects mitochondria, regulates lipid metabolism, controls oxidative stress and
lipid peroxidation, and inhibits apoptosis MALFD rat models induced by a high-fat diet

Baicalin [73] Inhibits the formation of mitochondrial ROS, increases mitochondrial ATP
synthesis, and restores the activity of respiratory chain complexes I and II

MAFLD rat models induced by a methionine choline-
deficient diet

Betaine [74]
Its effect of reducing lipid accumulation is achieved by inhibiting the expression of
obesity-related genes and N6-methyladenosine demethylation, thereby improving

mitochondrial functions
—

Curcumin [75–77]
Attenuates oxidative stress and the expression of inflammatory factors, alleviates

steatosis in MAFLD rats through the activation of
autophagy and the prevention of mitochondrial apoptosis

MAFLD rat models induced by high-sugar and high-
fat diets

Quercetin [78]

Improves mitochondrial morphological damage and dysfunction in the liver,
promotes mitochondrial

biosynthesis, promotes mitochondrial fusion and division, enhances
PINK1-parkin-mediated mitochondrial autophagy levels, and improves

mitochondrial homeostasis

MAFLD models of C57BL/6 mice induced by a high-
fat diet

Rhein [79] Reduces mitochondrial swelling and deformation MALFD rat models induced by a high-fat diet

Sophocarpine [80] Inhibits the synthesis of inflammatory cytokines, downregulates UCP-2, and
increases the rate of mitochondrial lipid oxidation MALFD rat models induced by a high-fat diet

α-Mangostin [81] Reduces the activity of apoptotic proteins, increases mitochondrial oxidation rates
and related enzyme activities MALFD rat models induced by a high-fat diet

Oxymatrine [82] Increases CPT-1 enzyme activity and the β-oxidation of fatty acids in the
mitochondria MAFLD rat models induced by a high-fructose diet

Sennoside A [83] Protects mitochondrial structure and function by targeting VDAC1 MAFLD mice models induced by a high-fructose diet
Resveratrol [84] Increases the number of mitochondria MAFLD rat models induced by a high-fructose diet

ATP, adenosine triphosphate; COX I, cytochrome oxidase I; CPT-1, carnitine acyl transferase-1; DNA, deoxyribonucleic acid; MAFLD, metabolic associated
fatty liver disease; MDA, malondialdehyde; Mfn1, mitofusin1; NASH, nonalcoholic steatohepatitis; NEFA, nonesterified fatty acid; Opa1, optic atrophy
proteins; ROS, reactive oxygen species; TG, triglyceride; UCP-2, mitochondrial uncoupling protein 2; VDAC1, recombinant voltage-dependent anion
channel protein 1; SIRT3, sirtuin-3.

Energy metabolism
obstruction

Mitochondrial DNA
damage

Mitochondrial
autophagy

Fatty acid oxidation

Morphological
changes

Oxidative stress and
oxidation lipid
peroxidation

Hepatocyte apoptosis

Natural products

MAFLD

Mitochondria

Figure 1: Protecting the mitochondria to cure MAFLD using natural products. MAFLD: metabolic associated fatty liver disease.
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4. Summary

MAFLD shows the pathological characteristics of excessive
mitochondrial damage due to the weakened clearance of
dysfunctional mitochondria. Natural products can regulate
mitochondria to alleviate MAFLD states (Figure 1).
However, the active ingredients of many natural extracts
and their specific interactions with mitochondrial proteins
remain largely undefined. Further in-depth studies on the
regulation of mitochondria by natural products are now
required to define the mechanisms of MAFLD resistance
and to improve drug development and the subsequent
clinical treatment of MAFLD. It is believed that the in-
creased discovery of natural products that can remedy
mitochondrial dysfunction have the potential for the
treatment of MAFLD.

Abbreviations

AIF: Apoptosis-inducing factor
ATP: Adenosine triphosphate
COX I: Cytochrome oxidase I
CPT-1: Carnitine acyl transferase-1
Cytc: Cytochrome C
DNA: Deoxyribonucleic acid
MAFLD: Metabolic associated fatty liver disease
MDA: Malondialdehyde
Mfn1: Mitofusin1
mPTP: Mitochondrial permeability transition pore
mtDNA: Mitochondrial deoxyribonucleic acid
NASH: Nonalcoholic steatohepatitis
NEFA: Nonesterified fatty acid
Opa1: Optic atrophy proteins
PINK1: PTEN-induced kinase 1
PPARs: Peroxisome proliferator-activated receptors
ROS: Reactive oxygen species
TG: Triglyceride
UCP-2: Mitochondrial uncoupling protein 2
VDAC1: Recombinant voltage-dependent anion channel

protein 1
SIRT3: Sirtuin-3.
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