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Background: Bone and joint formation, maintenance, and regeneration are regulated by both chemical and
physical signals. Among the physical signals there is an increasing realization of the role of pulsed electro-
magnetic fields (PEMF) in the treatment of nonunions of bone fractures. The discovery of the piezoelectric
properties of bone by Fukada and Yasuda in 1953 in Japan established the foundation of this field. Pioneering
research by Bassett and Brighton and their teams resulted in the approval by the Food and Drug Administration
(FDA) of the use of PEMF in the treatment of fracture healing. Although PEMF has potential applications in
joint regeneration in osteoarthritis (OA), this evolving field is still in its infancy and offers novel opportunities.
Methods: We have systematically reviewed the literature on the influence of PEMF in joints, including articular
cartilage, tendons, and ligaments, of publications from 2000 to 2016.

Conclusions: PEMF stimulated chondrocyte proliferation, differentiation, and extracellular matrix synthesis by
release of anabolic morphogens such as bone morphogenetic proteins and anti-inflammatory cytokines by aden-
osine receptors A2, and A3 in both in vitro and in vivo investigations. It is noteworthy that in clinical translational
investigations a beneficial effect was observed on improving function in OA knees. However, additional systematic
studies on the mechanisms of action of PEMF on joints and tissues therein, articular cartilage, tendons, and

ligaments are required.
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Introduction

OSTEOARTHRITIS (OA) 15 A degenerative disorder that is
prevalent in the aged population. More than 30 million
Americans are currently affected and the number is increasing
due to the aging of the population and due to the obesity
epidemic. Articular cartilage is an anisotropic tissue and its
properties are different depending on the depth from the
surface." The characteristic of OA is progressive degener-
ation of articular cartilage in the joints; it is initiated from
the surface and leads to the depth, causing functional joint
failure and disability. However, articular cartilage in joints
lacks the ability for self-repair, and, therefore, no treatment
is available for complete cartilage repair and regeneration.

At present, pain relief by anti-inflammatory medications,
physical therapy, and weight loss are the common treatments
for amelioration of symptoms. Bone marrow stimulation,
autologous chondrocyte implantation, novel biomaterial
scaffolds, and stem-cell-based cartilage repair have been
developed for OA treatment.” However, as the outcomes are

variable, arthroplasty is the most established treatment for
advanced OA.’

One of the main goals of OA treatment is to regenerate a
native articular cartilage, including a low friction coefficient.
Lubricin/superficial zone protein (SZP) has been known to
play an important role in the boundary lubrication in joints,
and the genetic mutations of lubricin cause precocious OA.*”
It is reported that recombinant lubricin prevents cartilage
degeneration.® Transforming growth factor p (TGF-P) and
bone morphogenetic proteins (BMPs) are known to increase
lubricin secretion from articular chondrocytes and synovio-
cytes.”® The pathways of stimulation by growth factors are
one of the targets to regenerate the articular cartilage.

Tissue engineering is the emerging interdisciplinary field
of the design and fabrication of spare parts for the human
body. The goal is for functional restoration of lost parts due
to trauma and diseases including osteoporosis and OA
afflicting the musculoskeletal tissues such as bones and
joints. Tissue engineering is the exiting final frontier of
the wide-ranging field of bioengineering. It is based on
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principles of developmental biology and morphogenesis.
Morphogenesis is the developmental cascade of pattern
formation, the establishment of body plan incorporating
the bilateral symmetry of musculoskeletal organs culmi-
nating in the adult human form. The three key ingredients
of tissue engineering and regenerative medicine are sig-
nals for morphogenesis (TGFs and BMPs), cells (chon-
drocytes or stem cells) that respond to developmental and
morphogenetic signals, and the scaffold of extracellular
matrix.

The ultimate goal of tissue engineering is to design
functional tissues in vitro for implantation in vivo to repair,
replace, restore, and regenerate new tissues with the utmost
fidelity of function. Regeneration, in general, recapitulates
embryonic development and morphogenesis. Among the
musculoskeletal tissues, bone has high potential for regen-
eration as part of the repair process in response to injury, as
well as during skeletal development.'® However, articular
cartilage at the ends of bone lacks the ability to regenerate
because of the limitation of blood supply in cartilage and is
a formidable challenge to new investigations.

The tissue engineering triad consists of signals, stem
cells, and scaffolds and is now well established.” "' How-
ever, considerable progress has been made in the chemical
identification of morphogenetic signals such as BMPs. On
the other hand, the progress in our understanding of the
physical signals including, but not limited to, mechanical
forces and pulsed electromagnetic fields (PEMF) has lagged
behind.

Articular cartilage is an anisotropic structure with a zonal
design and consists of three zones: superficial, middle, and
deep zones. The superficial zone contains low proteoglycan
(PG) content, and type II collagen is lined parallel to the
surface.'” The superficial zone chondrocytes secrete lubricin,
also known as SZP, which plays an important role in the
lubrication of joints.* The middle zone consists of higher PG
content and randomly oriented type II collagen.'? This zone is
critical for resistance to compressive forces.'* The deep zone
has the highest concentration for PGs, and tyPe I collagen is
aligned perpendicular to the articular surface.'? In this region,
extracellular matrix is mineralized and plays an integral role
in connecting cartilage to bone. This region is responsible for
resistance to the greatest amount of compressive forces.'?

PEMF, a remedy for delayed union and nonunions of
bone fractures, has also been suggested as an alternative
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treatment for OA.'* PEMF promotes bone and cartilage
growth based on basic principles of physics: Wolff’s law,
the piezoelectric proI:l)erties of collagens, and the concept of
streaming potentials.' The safety and efficacy of the PEMF
is well established.'® PEMF has been known to increase
morphogens to promote osteogenesis.'” '® However, the
therapeutic effects of PEMF on OA treatment are still
debated and not settled.'® Therefore, the aim of this article
is to review the potential benefits of PEMF for the regen-
eration of articular cartilage.

What Is PEMF?

Although there were known reports of success in bone
healing using electrical stimulation as early as 1841, the use
of this treatment did not progress until the 1950s.%° In 1953,
Japanese scientist Yasuda reported the new bone formation
by continuous current in rabbits.>' Since then, many studies
about the effect of electricity on bone healing have been
developed. In 1964, Bassett et al. revealed that the medullary
cavity of caine femora was completely filled by new bone
growth by direct electrical current.?? Brighton’s group first
applied this technology to nonunions in fracture healing.?®
Becker et al. demonstrated the treatment of a variety of
nonunions of fractures with a success rate of 77%.** In
1979, the U.S. Food and Drug Administration (FDA) ap-
proved PEMF therapy for use in treating nonunion fractures.
After Sisken reported the effect of specific frequencies in an
electromagnetic field on soft tissue healing in 1995, clinical
research of PEMF therapy increased dramatically.”> In
1997, Zhuang et al. demonstrated that PEMF increased the
expression of TGF-B1 in osteoblasts to promote osteogen-
esis.'” In 1998, Bodamyali e al. demonstrated that PEMF
has an osteogenic effect through upregulation of BMP-2 and
BMP-4."® Zhou et al. revealed that PEMF can prevent
ovariectomy-induced bone loss through activation of Wnt
signaling.”® However, the applied magnetic fields vary in
their amplitude, frequency, waveform, or stimulation dura-
tions. Thus, there is still a need for more mechanistic in-
vestigations of the mechanisms underlying the actions of
PEMF on skeletal structures (Fig. 1).

Electromagnetic fields are considered to play a role in
bone healing through the same principles as the influence of
mechanical stress on tissues.”” When mechanical stress is
applied to a bone, strain gradients are created, resulting in

FIG. 1. The schema of the

\ applications of PEMF (A)
N\ In vitro system. Culture
plates are placed on the stand
surrounded by coils, which
\,  generates electromagnetic

fields. (B) In vivo system.
Small animals are placed in a
cage, and PEMF is applied to

- u N the animal’s whole body.
\ \ PEMF, pulsed electromagnetic
o - Magnetic fields.
Coil Field
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changes in pressure gradients in the interstitial fluid. These
drive fluid through the canalicular network in bone from
regions of high to low pressure, exposing osteocyte mem-
branes to flow-related shear stress as well as to electrical
potentials in response to the streaming potentials.”® Thus,
the mechanical stress is applied on bone transfers to the
electrical potentials in the same manner as PEMF. These
signals are possibly transduced to transmembrane receptors
and accelerate bone repair.”® PEMF also has a beneficial
effect in the tissue engineering of cartilage to promote
matrix synthesis and, at the same time, to limit the inflam-
matory cytokines.”> However, the precise cellular mecha-
nisms are still not well elucidated. In this article, we have
reviewed the articles published on the influence of PEMF on
joints, including articular cartilage, tendons, and ligaments,
in the synovial joints published between the years between
2000 and 2016.

The Effects of PEMF on Articular Cartilage-Derived
Chondrocytes and Stem Cells In Vitro

To regenerate intact articular cartilage surface is chal-
lenging due to the lack of the innate ability for self-repair.
Chang et al. reported that 24 h exposure of PEMF had a
possibility to increase chondrocyte proliferation and mRNA
expressions of aggrecan, type I and X collagen in porcine
(Table 1). However, glycosaminoglycan (GAG) production
was decreased by PEMF treatment in their study.>* Others
also analyzed the effect of PEMF on porcine chondrocytes
and reported that 3 weeks of 2 h per day treatment of PEMF
increased GAG and type II collagen.>’ Bovine explant cul-
tures revealed that PEMF increased matrix synthesis,‘u’33
and the effect was age dependent and not seen in damaged
explants.>? However, Veronesi et al. reported that PEMF
counteracted the progression of OA in bovine explants
treated with interleukin-1p (IL-1p).**

PEMF also increased proliferation in human healthy
chondrocytes as well as in human OA chondrocytes.>>~°
Fitzsimmons et al. revealed that PEMF increased human
chondrocyte proliferation through nitric oxide signaling.®’
PEMF has positive effects on PG synthesis in human OA
chondrocytes®® and preservation of chondrocyte morphol-
ogy in monolayer culture.*® Further, PEMF has a protective
effect on the catabolic environment. PEMF upregulated A,
and Aj adenosine receptor expression, resultin§ in the de-
crease in pro-inflammatory cytokine release.*”*' Insulin-
like growth factor I (IGF-I) plays an anabolic role in
chondroczlte metabolism,42 and PEMF enhances the effect
of IGF-1.52 However, controversial effects of PEMF are still
reported. Schmidt-Rohlfing et al. reported that PEMF had
no effect on gene expression of type II collagen** and ag-
grecan in human OA chondrocyte culture, and Sadoghi ef al.
reported that PEMF had no effect on proliferation and GAG
synthesis in human OA explant culture.*’ There is no es-
tablished protocol for PEMF treatment, and many different
waveforms of PEMF were used. Thus, this may affect the
controversial results.

The beneficial effect of PEMF on chondrogenic differ-
entiation from stem cells was also reported. Esposito et al.
treated human umbilical cord-derived stem cells with PEMF
and revealed that PEMF enhanced cell proliferation and
chondrogenic differetiation.*® Chen et al. also reported that
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PEMF enhanced the chondrogenic differentiation from hu-
man adipose-derived stem cells in both two-dimensional
and three-dimensional cultures.*” Amin er al. reported that
PEMF upregulates TGF-3 secretion and promotes chon-
drogenic differentiation through the TGF-f pathway.*®
Thus, PEMF might have beneficial effects on chondrocyte
proliferation, differentiation from stem/progenitor cells
release of anti-inflammatory cytokines, and upregulation of
extracellular matrix synthesis through adenosine receptors
and the TGF-B pathway. However, the different cell sources
as well as the different protocols of PEMF might affect the
different outcomes.

The Effects of PEMF on Articular Cartilage In Vivo

Positive effects of PEMF on chondrocytes and cartilage
were also demonstrated in in vivo studies (Table 2). Zhou
et al. revealed that PEMF improved histological scores and
reduced MMP-13 expression in the anterior cruciate ligament
transection model of rats.** A similar effect was seen in
ovariectomized rats and PEMF also upregulated X-linked
inhibitor of apoptosis (XIAP), which is considered the most
potent caspase inhibitor.’® Fini et al. treated aged guinea pigs
with PEMF up to 12 weeks and found that PEMF preserved
morpholo%?/ of articular cartilage as well as subchondral bone
thickness.”' Ciombor et al. adopted the same model and
treated it with PEMF for 6 months. They showed that
PEMF preserved morphology of articular cartilage for a
long time and also found that PEMF increased the numbers
of cells immunopositive to TGF-$ and decreased those
immunopositive to IL-1.>* TGF-B Elays a significant role
in the anabolism of chondrocytes. * Therefore, PEMF is
believed to have both anabolic and anti-catabolic effects.
Veronesi et al. investigated two different frequencies of
PEMF (37 and 75 Hz) in aged guinea pigs and revealed
that PEMF at 75 Hz had more beneficial effects on car-
tilage preservation.” They applied this system to a car-
tilage defect model of rabbit and found that PEMF
improved the cartilage regeneration and the combination
with bone marrow concentrate further improved the re-
generation.’® Boopalan er al. also used a cartilage defect
model of rabbit and showed similar results.”’ Benazzo
et al. adapted the osteochondral autografts model of sheep
and revealed that PEMF increased TGF-1 and decreased
IL1 and TNFa, and, as a result, PEMF improved the re-
generation of the defect site.’® These studies demon-
strated that PEMF has beneficial effects on cartilage
regeneration.

The Effects of PEMF on Ligaments and Tendons

Diarthrodial joints consist not only of bone and cartilage
but also of ligaments and tendons (Table 3). We were unable
to find any articles about the regeneration of ligaments and
tendons in the human joints in vivo; however, there are
several articles regarding PEMF and tendon repair in animal
models and human tenocytes culture. PEMF increased in
tensile strength of repaired Achilles tendon of rats® and also
improved early tendon healing in the rotator cuff repair model
of rats.° A similar effect was seen in human tenocytes cul-
ture.’’ de Girolamo er al. treated human tenocytes with
PEMF up to 12h and revealed that PEMF increased tendon-
specific markers, such as scleraxis and COL1Al, in a dose-
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TABLE 4. THE CLINICAL EFFECTS OF PULSED ELECTROMAGNETIC FIELDS ON JOINTS
Model Treatment Effect Results Reference
Knee OA PEMF: 2h per day Positive PEMEF significantly improved stiffness after ~ Thamsborg et al.®’
for 6 weeks 2 weeks in patients <65 years.
Frequency: 50Hz
Arthroscopic PEMF: 6h per day Positive  Knee injury and OA outcome score at Zorzi et al.”’
treatment of for 90 days 90 days was significantly higher in the
knee cartilage = Frequency: 75 Hz PEMF-treated group.
Intensity: 1.5 mT At 3 years follow-up, the numbers of
completely recovered patients were
significantly higher in the PEMF-treated
group.
Early knee OA PEMF: 4h per day Positive PEMF significantly improved symptoms, Gobbi et al.®®
for 45 days function, and activity at 1 year follow-up.
Frequency: 75Hz
Intensity: 1.5 mT
Microfracture for PEMF: 6h per day Positive At 5 years follow-up, clinical and functional ~Osti et al.”
knee OA for 60 days outcomes were better in the PEMF-treated
Frequency: 75 Hz group.
Intensity: 1.5 mT
Knee OA PEMF: 12h per Positive PEMF induced a significant reduction in Bagnato et al.*®
day for 1 month visual analog scale pain and The Western
Frequency: 27.12MHz Ontario and McMaster Universities
Osteoarthritis Index (WOMAC) score.
Microfracture of ~PEMF: 4 h per day None There were no significant between-group Reilingh et al.”"

for 60s
Frequency: 75Hz
Intensity: 1.5 mT

osteochondral
talar defects

differences in sport resumption and bone
repair.

dependent manner.®**> PEMF has been also shown to en-

hance gene expression of growth factors in human tenocytes
culture under inflammatory condition.** Further, PEMF
maintained stem cell properties of human tendon stem cells.®’

The Clinical Effects of PEMF on Joints

PEMF has been used for more than 20 years for the
treatment of OA joints (Table 4). However, there appears to
be a lack of consensus, and recent studies demonstrated that
PEMF has a moderate effect on OA treatment. Bagnato
et al. revealed that 1-month treatment of PEMF signiﬁcantl6y
reduced pain and improved functional scores in knee OA.%°
The effects of PEMF on knee OA were seen especially in
early OA and in younger patients who are less than 65
years.67‘68 In other studies, PEMF was combined with
surgical treatments. Zorzi et al. combined arthroscopic
cartilage abrasion and PEMF treatment. They showed that
functional scores were significantly better in the PEMF-
treated group 90 days after surgery, and the numbers of
completely recovered patients were significantly higher in the
PEMF-treated group at 3 years follow-up.® Osti et al. com-
bined microfracture and PEMF for the treatment of knee OA
and reported that the clinical and functional outcomes were
better in the PEMF-treated group after 5 years follow-up.’®
However, Reilingh et al. treated osteochondral talar defects
by microfracture and PEMF, but they did not find any ben-
eficial effects of PEMF.”! The continuing progress in this
area permits one to conclude that PEMF might have a ben-
eficial effect on the treatment of knee OA. However, there are
no established clinical protocols for PEMF treatment for the
regeneration of articular cartilage in the diarthrodial joints.

Conclusions

PEMF has a beneficial effect on chondrocyte prolifera-
tion, matrix synthesis, and chondrogenic differentiation by
upregulation of TGF-§ and BMPs, and it decreases anti-
inflammmatory cytokines via A2A and A3 adenosine re-
ceptors in in vitro studies (Fig. 2). In in vivo studies, PEMF
has beneficial effects on OA progression and cartilage de-
fects. PEMF also has a positive effect on tendon repair. In
clinical translational investigations, PEMF has a beneficial
effect on pain and functions of OA knees. On the other hand,
some of the studies showed no effect of PEMF on cell

[ PEMF stimulation ]

! !

[ TGF BMPs J {AZAASreceptors ]

! !

'~ Proliferation
4 Osteogenesis
Chondrogenesis

Vl' pro-inflammatory
cytokines

FIG. 2. The mechanisms of PEMF for cartilage regener-
ation. PEMF upregulates the expression of TGF and BMPs to
increase cell proliferation, osteogenesis, and chondrogenesis.
PEMF inhibits pro-inflammatory cytokines through adeno-
sine receptors A2, and A3. BMPs, bone morphogenetic
proteins.
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proliferation and matrix synthesis may be due to different
protocols such as waveforms or stimulation duration. Al-
though PEMF might have a beneficial effect on cartilages
and tendons, it is important to establish an optimized protocol
for PEMF treatments.
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