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1  |  INTRODUC TION

Aging is a major risk factor for many human diseases, including can-
cer, cardiovascular diseases, and neurological disorders. Hayflick and 
Moorhead first discovered in 1961 that cultured human cells cannot 
proliferate indefinitely, resulting in cellular senescence.1 Cellular 
senescence is a cellular trait induced by various genomic and epi-
genetic stresses such as telomere dysfunction, activated oncogenes, 
reactive oxygen species, and DNA damage. Senescent cells are char-
acterized by irreversible cell growth arrest and excessive secretion 
of inflammatory cytokines2–4 (Figure 1). Induction of senescence 
per se is now thought to act as an antitumorigenic barrier due to 
its inherent property of permanently arresting cell proliferation.5,6 
However, the senescence- associated secretory phenotype (SASP), 
a potent secretion of numerous growth factors, cytokines, prote-
ases, and other proteins, supports a variety of pathophysiological 
phenotypes in age- related diseases, including chronic inflammation, 

destruction of tissue structure, and cell growth stimulation.7 Other 
hallmarks of senescence include upregulation of the cell cycle inhib-
itors p16Ink4a, p21, and p53, induction of senescence- associated β- 
galactosidase (SA- β- gal), and depletion of Lamin B1 from the nuclear 
envelope.8,9

In 2011, Baker et al. developed INK- ATTAC mice in which the 
INK- ATTAC gene capable of selectively inducing apoptosis in 
p16Ink4a- expressing cells by the administration of AP20187, a syn-
thetic drug that induces dimerization of a membrane- bound myris-
toylated FK506- binding protein- caspase 8 (FKBP- Casp8) fusion 
protein, was introduced into the promoter of p16INK4a, currently the 
most reliable marker of cellular senescence.10 In the BubR1 progeria 
mouse background, removal of p16Ink4a- positive senescent cells from 
mice in a drug- dependent manner delayed the progression of various 
age- related disorders. Subsequently, the elimination of naturally oc-
curring senescent cells not only suppressed the development of age- 
related organ dysfunction such as renal failure and atherosclerosis, 
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Abstract
Aging is a life phenomenon that occurs in most living organisms and is a major risk 
factor for many diseases, including cancer. Cellular senescence is a cellular trait in-
duced by various genomic and epigenetic stresses. Senescent cells are characterized 
by irreversible cell growth arrest and excessive secretion of inflammatory cytokines 
(senescence- associated secretory phenotypes, SASP). Chronic tissue microinflamma-
tion induced by SASP contributes to the pathogenesis of a variety of age- related dis-
eases, including cancer. Senolysis is a promising new strategy to selectively eliminate 
senescent cells in order to suppress chronic inflammation, suggesting its potential use 
as an anticancer therapy. This review summarizes recent findings on the molecular 
basis of senescence in cancer cells and senolysis.

K E Y W O R D S
aging, cancer, GLS1, senescence, senolysis

www.wileyonlinelibrary.com/journal/cas
https://orcid.org/0000-0001-5754-1818
mailto:mkt-naka@ims.u-tokyo.ac.jp
https://orcid.org/0000-0002-6707-3584
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:mkt-naka@ims.u-tokyo.ac.jp
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fcas.16184&domain=pdf&date_stamp=2024-04-19


2108  |    IMAWARI and NAKANISHI

but also delayed the progression of neoplastic disease, independent 
of genetic background or diet.10–12 These findings suggest that se-
lective elimination of senescent cells may be a potential strategy for 
cancer suppression.

2  |  A MECHANISM UNDERLYING 
SENESCENCE INDUC TION

We have demonstrated that normal human diploid fibroblasts 
(HDFs) exposed to various senescence- inducing stimuli undergo 
a mitosis skip before entering permanent cell cycle arrest.13 
Activation of p53 in G2 in response to senescence- inducing stim-
uli induces p21, which suppresses the activities of both Cdk1 and 
Cdk2. This suppression leads to premature activation of APC/
CCdh1, which degrades various mitotic regulators and triggers ac-
cumulation of Cdt1. Activated p53 also enhances the function 
of RB1, suppressing the transcription of mitotic regulators. Both 
pathways cooperate to ensure mitotic skipping and induce senes-
cence. Recently, it was also reported that replication stress due to 
elevated cyclin E promotes p53- dependent mitotic bypass, leading 
to cell cycle escape at S/G2 phase and induction of cellular senes-
cence by a similar mechanism.14

Furthermore, we have revealed that SCFFbxo22- KDM4A is a 
senescence- associated E3 ligase targeting methylated p53 for deg-
radation.15 p38MAPK is critically needed for SASP induction, but 
activated p53 suppresses p38MAPK function.16 Thus, activation of 
p53 is necessary for induction of senescence, but SASP and p16Ink4a 
induction requires it to be downregulated at the late phase of the se-
nescence process. We found that FBXO22 is essential for this down-
regulation of p53. SCFFbxo22 specifically ubiquitinates methylated 
p53, which forms a complex with KDM4A for degradation during 
the late phase of senescence. The formation of a ternary complex 
between FBXO22, methylated p53, and KDM4A promotes ubiquiti-
nation of p53 by the SCF complex. Downregulation of methylated 
p53 by SCFFbxo22 at the late phase of the senescence process leads 
to induction of p16Ink4a and SASP.

3  |  SENESCENCE AND C ANCER

3.1  |  Oncogene- induced senescence (OIS)

Induction of cellular senescence requires functional p53 and 
RB1, which are frequently oncogenic mutations in the majority of 
human cancers.17–19 The activation of oncogenes such as HRASV12 

F I G U R E  1  Characteristics of “cellular senescence” and “aging.” Cellular senescence is one of the molecular mechanisms underlying aging. 
Cellular senescence is characterized by irreversible cell growth arrest and secretion of senescence- associated secretory phenotype (SASP).
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causes OIS. This was first demonstrated in vivo in 1997.20 These 
observations have suggested that senescence induction is a 
cancer- suppressing mechanism that effectively prevents the accu-
mulation of cells activating oncogenes.8,21 However, the resulting 
senescent cells may promote carcinogenesis by inducing chronic 
inflammation in surrounding tissues via SASP.8,22 Thus, cellular 
senescence is now considered to be a double- edged sword for 
cancer.

3.2  |  Therapy- induced senescence (TIS)

Therapy- induced senescence is now recognized as a response 
to various anticancer therapies, including conventional chemo-
therapy, cell cycle inhibitors, telomerase inhibitors, and radiation 
therapy.23,24 TIS occurs only in a subset of the treated cells.23 Like 
OIS, TIS can be initially beneficial by inducing tumor suppressors 
such as p53, p21, p27, and PTEN.25–31 Cells with functional Rb 
and p53 appear to be more sensitive to stress and oncogene ac-
tivities that stimulate senescence.23,32 However, even in SAOS- 2 
osteosarcoma and DU145 prostate cancer cells, lacking Rb and 
p53, doxorubicin induced senescence in more than 50% of the 
cells in vitro.33,34 In comparisons of TIS in cancer cells containing 
or lacking functional p53, both demonstrated similarly strong re-
sponses, suggesting that induction of other senescence- inducing 
genes, such as p21, mediated by p53 independent pathway in 
drug- induced senescence.35,36

Low doses of chemotherapy induce senescent cell state, 
especially in human cancer cells, whereas high doses induce 
apoptosis.37 Indeed, in various preclinical models, exposure to 
chemotherapeutic agents or radiation increased the presence of 
senescence marker- positive cells.38 Cytotoxic chemotherapeutic 
agents with different mechanisms of action, alkylating agents, to-
poisomerase inhibitors, and microtubule inhibitors, were all identi-
fied as senescence- inducing agents in preclinical models.39 In fact, 
analysis of biopsy- derived samples from prostate cancer patients 
treated with the topoisomerase 2β inhibitor mitoxantrone also re-
vealed upward regulation of the senescence markers p16INK4a and 
p21 and the SASP factors IL- 6 and IL- 8.4 Areas of increased SA- 
β- gal staining were observed in breast tumors after neoadjuvant 
chemotherapy.40 This staining was restricted to tumor cells and 
was not detected in normal tissues. It is important to note that 
while a significant number of existing chemotherapeutic agents 
have the ability to induce senescence, the apoptotic response is 
predominant in most cancers.8

CDK4, CDK6, and their activating partners, D- type cyclins, link 
the extracellular environment to central cell cycle mechanisms.41 
Constitutive activation of cyclin D- CDK4/6 drives tumorigenesis in 
several types of cancer. Small- molecule inhibitors of CDK4/6 have 
been used with great success to treat hormone receptor- positive 
breast cancers and are in clinical trials against many other tumor 
types.41 In addition to blocking cell proliferation, inhibition of 
CDK4/6 can also cause tumor cell senescence, which is dependent 

on RB1 and FOXM1.42–44 Cyclin D- CDK4/6 phosphorylates and ac-
tivates FOXM1, which has antisenescence activity.43,45 p53 is not 
required for cells to enter or maintain cell cycle arrest in the contin-
ued presence of Cdk4/6 inhibitors, but p53 is essential for maintain-
ing arrest after drug removal.46–48 Because cyclin A2/CDK2 activity 
depends upon CDK4/6 activity throughout the cell cycle, not just 
in G1 phase, loss of CDK4/6 activity in S/G2 phase causes cells to 
replicate their DNA but prevents subsequent cell division, inducing 
cell cycle exit.49

Replicative senescence occurs in response to telomere loss. 
Cancer cells most commonly circumvent this by reactivating telo-
merase activity.50 Telomerase is overexpressed in 80%–95% of can-
cers and is present at very low levels or barely detectable in normal 
cells.51 Inhibition of telomerase can cause a decrease in telomere 
length, leading to cellular senescence and apoptosis in telomerase- 
positive tumors. To date, a number of compounds, including BIBR15 
and GRN163L, that inhibit the telomerase complex have been identi-
fied as candidates for anticancer therapy and are in clinical trials.8,52

Radiation therapy, like chemotherapy, is widely applied in the 
treatment of multiple types of cancer due to its ability to induce 
rapid DNA damage. This anticancer therapy can induce an irrepa-
rable DNA damage response that activates ATM/ATR and p53- p21 
pathway- mediated apoptosis and cellular senescence.53,54 Indeed, 
radiation has been shown to induce senescence in human head and 
neck squamous cell carcinoma- derived cells.22,55 Radiation induced 
senescence even after exposure to relatively high doses (10 Gy) and 
lower doses (0.5 Gy).56,57

3.3  |  Role of senescence in cancer

3.3.1  |  Senescence in precancerous lesions

The sustained cell cycle arrest caused by cellular senescence serves 
as a first barrier to tumorigenesis.58 Cells experiencing DNA dam-
age would enter cell cycle arrest to prevent abnormal proliferation, 
thereby inhibiting cancer development.8,58 Senescent hepatocytes 
induced by oncogenes promote CD4- positive T cell infiltration and 
clearance of senescent cells, preventing further progression of the 
precancerous state.59 In the case of KRasG12V- driven lung neopla-
sia, the presence of the senescence markers p16INK4a and SA- β- gal in 
precancerous lung adenomas and the absence of senescence mark-
ers and increased expression of the proliferation marker Ki67 in lung 
adenocarcinomas reflect the importance of OIS in suppressing tu-
morigenesis.60 Nevertheless, once the cells become senescent cells, 
proinflammatory SASPs cause chronic inflammation in the surround-
ing tissues and promote cancer.

3.3.2  |  Senescence in advanced cancer

Characteristics of advanced cancer include accelerated angiogen-
esis, tumor invasion, and metastasis.58 Epithelial–mesenchymal 
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transition (EMT) is a cellular transformation that helps tumor 
cells acquire greater migratory and invasive potential.61 Further 
investigation of the components of SASP revealed that IL- 6 and 
IL- 8 are the primary drivers of SASP- mediated EMT and invasive-
ness of premalignant and malignant tumor cells.4 The increased 
tumor vascularization observed when tumorigenic epithelial cells 
and senescent fibroblasts were coinjected subcutaneously into 
mice suggests that senescence may promote tumorigenesis by 
stimulating angiogenesis.62 Vascular endothelial growth factor 
(VEGF) only partially promotes angiogenesis, and senescence- 
conditioned medium pretreated with VEGF- neutralizing antibody 
failed to completely block endothelial cell invasion into the base-
ment membrane, suggesting the presence of other angiogenic 
factors in the SASP.62 In contrast to immune surveillance of pre-
malignant cells through senescence, SASP in advanced cancer 
creates an immunosuppressive environment and promotes tumor 
growth. Senescent fibroblasts secrete small amounts of anti- 
inflammatory factors (e.g., IFN- α, IFN- γ, IL- 3, IL- 5) and massive 
amounts of proinflammatory factors (e.g., IL- 6, IL- 8, MCP- 1).63,64 
Senescent fibroblasts may affect the balance of myeloid cells, 
lymphocytes, and macrophages in the tumor environment, such 
that cancer cells coinjected with aged fibroblasts into immuno-
competent mice induced larger tumor volumes than cancer cells 
coinjected with nonsenescent fibroblasts; however, coinjection 
into immunocompromised nude mice caused comparable tumor 
growth, regardless of fibroblast status.65 These studies provide 
evidence of the role of senescence in promoting tumor invasion 
and metastasis and have important clinical implications for both 
local and distant tumor control.

However, there are also recent reports that immunization by 
senescent cancer cells upregulates MHC- I and IFNγ receptors and 
promotes prophylactic and therapeutic CD8 T cell- dependent an-
titumor immune responses in tumors.66,67 This was also the case in 
human patient- derived cancer cells during TIS. Thus, senescent cells 
in advanced cancer may play a dual role in promoting not only tumor 
progression but also antitumor immunity. Therefore, further studies 
are urgently needed to determine whether the elimination of cancer 
senescent cells is beneficial or harmful.

4  |  SENOLY TIC S FOR ANTIC ANCER 
THER APY

The strong link between cellular senescence and multiple aging 
pathologies, including cancer, has prompted the search for small- 
molecule compounds called “Senolytics,” which selectively eliminate 
senescent cells8,9 (Table 1). The persistence of therapy- induced se-
nescent cells after cancer treatment may create a tissue environment 
that promotes recurrence and metastasis.63 In cancer, a “one- two 
punch” approach to cancer treatment is effective: First use one drug 
to induce senescence of cancer cells, and then use a second drug to 
eliminate the senescent cancer cells.68

4.1  |  Senolytic small compounds

In 2015, Zhu et al. showed that transcriptome analysis revealed 
increased expression of the antiapoptotic prosurvival signaling 
network in senescent cells, including ephrins (EFNB1 or 3), PI3K, 
p21, BCL- XL, and plasminogen- activated inhibitor- 2 (PAI- 2).69 
They tested whether drugs targeting gene products that protect 
against senescent cell antiapoptotic pathways (SCAPs) are seno-
lytics in vitro, and of the 46 drugs tested, dasatinib (D), an inhibitor 
of multiple tyrosine kinases, and quercetin (Q), a natural flavonol, 
were identified as the first senolytics.69 The DQ combination ther-
apy as the first- in- human senolytic therapy was effective in the 
treatment of idiopathic pulmonary fibrosis, a fatal disease associ-
ated with senescent cells in the lungs.70 Fisetin, another natural 
flavonol similar to quercetin, has more potent senolytic activity 
than quercetin.71 The efficacy of fisetin alone or in combination 
with other anticancer agents has been studied in a wide variety of 
cancers. Fisetin treatment has antiproliferative and proapoptotic 
effects in cancer cells in vitro and in mice and suppresses inflam-
mation, migration, and metastasis in vivo.86

Senescent cells often have elevated levels of the antiapoptotic 
BCL- 2 family of proteins.87 Compounds targeting this protein family 
have been extensively studied for senolytic therapy. Several stud-
ies have shown that navitoclax (also known as ABT263), a selective 
inhibitor of BCL- 2, BCL- XL, and BCL- W, effectively eliminates sev-
eral types of senescent cells, including senescent cancer cells, by 
reactivating the apoptotic pathway.68,72,88,89 Although navitoclax 
has demonstrated high efficacy, several previous clinical trials have 

TA B L E  1  Senolytic or senomorphic treatments in cancer.

Treatments Targets or drug mechanisms

Dasatinib69,70 Inhibits PI3K

Quercetin69,70 Inhibits PI3K

Fisetin71 Inhibits PI3K

Navitoclax (ABT263)72 Inhibits BCL- 2, BCL- XL, and 
BCL- W

Nav- Gal73 Inhibits BCL- 2, BCL- XL, and 
BCL- W

ARV82574 Degrades BET family proteins

Digoxin75,76 Inhibits Na+/K+ pumps

Ouabain75 Inhibits Na+/K+ pumps

BPTES77 Inhibits GLS1

CAR T cells78 T cell immune responses

PD1 or PDL1 blocking antibodies79 T cell immune responses

Metformin80 Inhibits NF- κB

Rapamycin81 Inhibits mTOR

Temsirolimus82 Inhibits mTOR

AZD805583 Inhibits mTOR

Siltuximab84 Inhibits IL- 6

Canakinumab85 Inhibits IL- 1β
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shown significant side effects of navitoclax related to on- target ef-
fects in blood cells, including thrombocytopenia and neutropenia.90 
Nav- Gal, a galacto- conjugated navitoclax prodrug, remains inactive 
in the prodrug form but becomes active when the galacto moiety is 
cleaved by SA- β- gal. Because senescent cells have high levels of SA- 
β- gal, navitoclax delivered via Nav- Gal is activated by SA- β- gal only 
in senescent cells, thus limiting off- target effects in other cells.73

ARV825, a proteolytic targeted chimeric (PROTAC) drug, con-
sists of a potent inhibitor of the bromodomain and extraterminal 
domain (BET) proteins BRD2, BRD3, and BRD4 and the E3 ligase- 
binding agent pomalidomide.74 ARV825 inhibited nonhomologous 
end- joining (NHEJ), the main mechanism of DNA double- strand 
break repair, by promoting the degradation of BRD4, and also in-
duced autophagy, thereby inducing senolysis through two indepen-
dent pathways.74 ARV825 effectively eliminated senescent hepatic 
stellate cells in the liver of obese mice, thereby reducing the devel-
opment of liver cancer.74

The cardiac glycosides digoxin and ouabain have been identi-
fied as senolytic agents with activity in several cancer models.75,76 
The cardiac glycosides can inhibit Na+/K+ ATPase pump activ-
ity, resulting in an imbalance in the intracellular electrochemical 
gradient, leading to depolarization and acidification. Senescent 
cells have depolarized plasma membranes and high concentra-
tions of hydrogen ions, making them more susceptible to cardiac 
glycosides.76

Glutaminase 1 (GLS1), the rate- limiting enzyme of glutaminoly-
sis is a gene essential for the survival of human senescent cells.77 
In senescent cells, loss of proteostasis occurs due to increased 
production of mistranslated, misfolded, or incomplete proteins.9 In 
general, aggregated proteins are degraded in lysosomes, while an 
excess of aggregated proteins damages the lysosomal membrane, 
resulting in leakage of intralysosomal H+, subsequent intracellular 
acidosis, and induction of apoptosis.91 However, GLS1 expression is 
increased in senescent cells, resulting in accelerated glutaminolysis, 
induced ammonia production, neutralized pH, and enhanced sur-
vival of senescent cells.77 Thus, the results suggest that senescent 

cells are dependent on glutaminolysis and that their inhibition offers 
a promising strategy for inducing senescent cell degradation in vivo 
(Figure 2).

Regarding the anticancer activity of GLS1 inhibitors, glutamine 
metabolism is one of the hallmarks of cancer. In various cancers, GLS1 
shows higher expression in tumor tissues than in normal tissues, and 
high GLS1 expression is also associated with tumor progression and 
poor prognosis.92 In addition, the inhibition or knockdown of GLS1 
can lead to cell death and induce apoptosis.92 A GLS1- specific inhib-
itor, BPTES, was shown to substantially inhibit cancer cell growth 
in vitro and in mouse tumor models.92–95 These results suggest that 
BPTES may have dual antitumor activities: one is the inhibition of 
cancer cell per se and the other is elimination of stromal senes-
cent cell in the tumor. Indeed, GLS1 inhibition by BPTES has been 
shown to induce apoptosis in pancreatic ductal adenocarcinoma 
cells induced to senescence by low concentrations of gemcitabine.96 
In vivo, areas of decreased SA- β- gal staining was also observed with 
the combination of gemcitabine and BPTES compared with low- dose 
gemcitabine alone. Although many other GLS1 inhibitors have been 
discovered in addition to BPTES, at present there are only a limited 
number of small- molecule GLS1 inhibitors that are selective and ef-
fective against cancer.92 Despite their preclinical efficacy, only a few 
of these inhibitors have advanced to early clinical trials.97

4.2  |  Immune response- mediated senolysis

The immune system may also induce endogenous senolytic effects 
following TIS.22 Urokinase- type plasminogen activator receptor 
(uPAR) was identified as a protein widely induced on the surface 
of senescent cells.78 Chimeric antigen receptor (CAR) T cells can 
induce specific T cell responses to the antigen of interest.98 uPAR- 
specific CAR T cells effectively eliminated senescent cells and sig-
nificantly delayed tumor growth in vitro and in a mouse model of 
lung cancer in which senescence was induced by a combination 
of MEK and CDK4/6 inhibitors.78 Recent studies also suggest that 

F I G U R E  2  Ammonia production by 
GLS1 is essential for survival of senescent 
cells. GLS1 induces ammonia (NH3) 
production and neutralizes the proton 
(H+). Intracellular acidification induces cell 
death.
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uPAR- targeting CAR T cells can persist in vivo for long periods of 
time to continuously target and eliminate uPAR- expressing senes-
cent cells and ameliorate age- related metabolic and physical dys-
function.99 Targeting uPAR- positive cells with CAR T cells may be 
both a cancer prevention and a cancer treatment in humans.

Senescent cells heterogeneously express the immune checkpoint 
protein programmed death- ligand 1 (PD- L1), and PD- L1+ senescent 
cells accumulate with age in vivo.79 PD- L1− cells are sensitive to 
CD8+ T cell surveillance, whereas PD- L1+ cells are resistant, even in 
the presence of SASP. PD- L1 expression in senescent cells induces 
escape from T cell immunity. Taken together, the results suggest 
that the heterogeneous expression of PD- L1 has an important role 
in the accumulation of senescent cells and inflammation associated 
with aging, and the elimination of PD- L1+ senescent cells by immune 
checkpoint blockade may be a promising strategy for antiaging ther-
apy (Figure 3).

Immune checkpoint blockade, such as treatment with mono-
clonal antibodies to PD- 1 or PD- L1, has contributed to substantial 
advances in cancer immunotherapy over the past decade, success-
fully treating a variety of malignancies by redirecting T cells to PD- 
L1- expressing cancer cells.100 Interestingly, CDK4/6 inhibitors are 
known to induce tumor cell senescence.41,46 Treatment of mice 
bearing autologous breast cancers or cancer allografts with CDK4/6 
inhibitors and anti- PD- 1/PD- L1 antibodies increased the efficacy 
of immune checkpoint blockade and resulted in complete tumor re-
gression in a high proportion of animals.101–103

However, NASH model mice treated with anti- PD- 1 therapy 
for a relatively long period of time (8 weeks) had an increased inci-
dence of liver cancer.104 Due to the diversity of T cell populations 
and the ability of these cells to infiltrate most organs, immune 
checkpoint inhibitors (ICIs) can cause a wide range of immune- 
related adverse events, which can affect virtually any organ.105 
Furthermore, 10%–30% of patients treated with ICIs may expe-
rience "Hyper Progressive Disease," in which the tumor grows 
rapidly and the disease worsens.106,107 Therefore, the use of im-
munotherapy for age- related diseases, including cancer, requires 
optimization of dosage and frequency of administration, balancing 
enhanced immune clearance, resistance to acute inflammation, 
and rate of tissue repair.

5  |  SENOMORPHIC S FOR ANTIC ANCER 
THER APY

Considering that the majority of tumor- promoting and 
chemotoxicity- promoting functions of senescent cells may be 
causally related to SASP, controlling the induction of SASP using 
senomorphic SASP inhibitors is another promising approach to 
prevent the adverse effects of senescence22,108 (Table 1). SASP 
is reported to be induced by multiple mechanisms, including the 
nuclear factor- κB (NF- κB), cyclic GMP- AMP synthase (cGAS)- 
stimulator of interferon genes (STING), GATA4, CCAAT/enhancer 

F I G U R E  3  Accumulation of PD- 
L1+ senescent cells with aging. PD- 
L1− senescent cells are eliminated by 
activated CD8+ T cells. On the other hand, 
PD- L1+ senescent cells escape immune 
surveillance by binding to PD- 1 molecules 
on CD8+ T cells and suppressing the 
activity of CD8+ T cells, resulting in 
accumulation.
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binding protein- βa (CEBPβ), NOTCH, IL- 6, Janus kinase (JAK)- 
signal transducer and activator of transcription (STAT), p38 MAPK, 
and mTOR pathways.3,81,109–116

Metformin prevents, to some extent, the nuclear translocation 
of the NF- κB pathway components and subsequent transactivation 
at target gene promoters, thereby reducing the expression of vari-
ous SASP factors, which may explain, at least in part, the anti- aging 
and antitumor effects of metformin in both mouse models and di-
abetic patients.80 Although these were small clinical trials using a 
"window of opportunity" design, a decrease in tumor cell prolifera-
tion was observed with metformin treatment in breast and prostate 
cancer patients.117,118

mTOR is an essential regulator of SASP, and mTOR inhib-
itors have shown senomorphic effects in senescent cancer 
cells.81,83,119,120 In various preclinical studies, the mTOR inhibitor, 
rapamycin, may have the context- dependent potential to reduce 
NF- κB activity, suppress proinflammatory SASPs at the transla-
tional level, and suppress the ability of senescent fibroblasts to 
stimulate prostate tumor growth in mice.81 The combination 
treatment with docetaxel and temsirolimus, an mTOR inhibitor, 
suppressed the growth of prostate and breast cancer in mice.82 In 
addition to its senomorphic effect as an mTOR inhibitor, AZD8055 
acted as potent senolytic agents against liver cancer cells induced 
senescent through CDC7 inhibition.83

Antibodies to the SASP factors may also limit deleterious 
senescence- related functions. Siltuximab, a neutralizing anti- IL- 6 
monoclonal antibody approved for the treatment of multicentric 
Castleman's disease, has been tested in clinical trials in a variety of 
solid tumors.84 Canakinumab is a human immunoglobulin Gκ mono-
clonal antibody with high specificity and affinity for IL- 1β for use in 
patients with juvenile arthritis and periodic fever syndrome, and has 
shown some activity in various trials involving patients with non- 
small cell lung cancer.85 Because SASP also has beneficial effects 
such as wound healing, tissue regeneration, and immune surveil-
lance, detailed follow- up in appropriate model systems and clinical 
trials will be necessary to accurately identify the specific anticancer 
effects of drugs targeting SASP.

6  |  PERSPEC TIVE

There are several methods of senolytics and senomorphics. 
Senolytics using senescent cell- eliminating vaccines that target pro-
teins highly expressed in senescent cells as antigens have also been 
reported.121 Development for future clinical application will be pur-
sued from many directions.

However, one of the key remaining challenges is the lack of 
gold- standard biomarkers for the senescent state. There is no 
single marker that can clearly distinguish senescence from other 
growth arrest states. There is a need to develop a method for 
quantification of senescent cells other than tissue staining, such 
as liquid biopsy, as a biomarker to determine the efficacy of se-
nolytic drugs.

Tumor heterogeneity is another challenge. Tumor heterogeneity 
can lead to a variety of drug responses and limit the effectiveness 
of inducing senescence within tumors. Since they can lead to resis-
tance and side effects, the development of broadly- acting senolytic 
agents is desirable.

Therefore, further research on cellular senescence, cancer, and 
senolysis is warranted.
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