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Abstract: Diabetes mellitus (DM) is a chronic metabolic disease characterised by insulin deficiency,
resulting in hyperglycaemia, a characteristic symptom of type 2 diabetes mellitus (DM2). DM
substantially affects numerous metabolic pathways, resulting in 3-cell dysfunction, insulin resistance,
abnormal blood glucose levels, impaired lipid metabolism, inflammatory processes, and excessive
oxidative stress. Oxidative stress can affect the body’s normal physiological function and cause
numerous cellular and molecular changes, such as mitochondrial dysfunction. Animal models are
useful for exploring the cellular and molecular mechanisms of DM and improving novel therapeutics
for their safe use in human beings. Due to their health benefits, there is significant interest in a wide
range of natural compounds that can act as naturally occurring anti-diabetic compounds. Due to
rodent models’ relatively similar physiology to humans and ease of handling and housing, they are
widely used as pre-clinical models for studying several metabolic disorders. In this review, we analyse
the currently available rodent animal models of DM and their advantages and disadvantages and
highlight the potential anti-oxidative effects of natural compounds and their mechanisms of action.
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1. Introduction

Diabetes mellitus (DM) is a chronic metabolic disorder characterised by insulin de-
ficiency (pancreatic 3-cell dysfunction) and insulin resistance. There are three widely
accepted major forms of DM, including gestational DM, type 1 diabetes mellitus (DM1),
and type 2 diabetes mellitus (DM2), which accounts for approximately 90% of all cases of
DM. DM2 is associated with several factors, including chronic hyperglycaemia, hyperlipi-
daemia, and hypertension, as a result of insulin resistance or insulin deficiency [1,2]. The
global prevalence of diabetes in 2019 was estimated at 9.3% (463 million patients), which
is expected to increase to 10.2% by 2030 (578 million) and 10.9% by 2045 (700 million) [3].
Normally, insulin lowers blood glucose levels by stimulating peripheral glucose uptake
and suppressing hepatic glucose production; however, a dysfunction could conduct to
insulin resistance. Thus, an increase in insulin secretion or (3-cell mass can compensate for
the insulin resistance by normal {3 cells, producing more circulating insulin; however, in-
sufficient compensation results in the onset of glucose intolerance, leading to exacerbation
of hyperglycaemia. Once exhausted, pancreatic 3 cells can no longer overproduce insulin
and DM develops [2,4,5].

2. Oxidative Stress in Diabetes Mellitus

Prolonged hyperglycaemia and hyperlipidaemia in DM can lead to oxidative stress as
the result of reactive oxygen species (ROS) overproduction in the cytosol or mitochondria,
which counteracts the cellular redox balance and induces more oxidative stress [6-8].
Oxidative stress, therefore, causes significant damage to various cellular biomolecules,
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including proteins, lipids, and DNA [9,10]. The resulting dysregulated expression in
numerous genes and proteins leads to impaired insulin secretion and signalling [11], which
contributes to the development and progression of DM complications such as retinopathy,
nephropathy, non-alcoholic fatty liver disease, hypertension, and cardiovascular diseases,
jointly known as metabolic syndrome [12-15]. DM is also associated with a long list of risk
factors, including gestational DM, sedentary lifestyle, genetics, and obesity [5,16].

As pancreatic 3-cell function gradually worsens, hyperglycaemia becomes apparent.
Glucose toxicity in 3 cells in DM is, therefore, a significant cause of oxidative stress [9,17,18].
Furthermore, the expression of antioxidant enzymes such as superoxide dismutase (SOD),
catalase (CAT), and glutathione peroxidase (GPx) is low in pancreatic 3 cells; consequently,
B cells could be a target of oxidative stress-mediated tissue damage [18-20]. High glucose
exposure increases oxidative stress in human islets and pancreatic (3-cell lines, and GPx
overexpression increases GPx activity and protects islets against adverse effects [21]. Oxida-
tive stress is therefore a feature that contributes to insulin resistance and (3-cell dysfunction
in DM. The diabetic brain can also be injured, showing a wide profile of microstructural
and macrostructural changes, leading to neurovascular deterioration, progressive cognition
dysfunction, excessive oxidative stress, and neurodegeneration [22].

3. Animal Models of Diabetes Mellitus

Due to their relatively similar physiology to humans and ease of handling and hous-
ing, mice and rats are widely used as pre-clinical animal models for studying metabolic
disorders [23,24]. These rodents are therefore useful as models for investigating DM-related
molecular and cellular events and can provide knowledge about the effects of anti-DM
agents in individual or groups of tissues.

Streptozotocin (STZ) is an antibiotic that produces pancreatic islet 3-cell destruction
and is widely used experimentally to produce a DM1 model. Within 48 h, a single high dose
of STZ causes complete 3-cell necrosis and DM [25]. However, low doses of STZ for 5 days
elicit partial (3-cell loss, which results in hypo-insulinaemia and hyperglycaemia [26,27].
There are data indicating a major role for oxidative stress as a consequence of STZ-induced
DM in rats, which demonstrated increased oxidative stress in the early stages of STZ-
induced DM in rats as well as mitochondrial dysfunction [28]. In addition, STZ-induced
DM in female rats on day 5 of pregnancy affected the intra-uterine developmental timeline,
which resulted from maternal DM and preceded embryo implantation, restricted embryo—
foetal growth, and delayed the maturation and remodelling of the structures derived from
neural crest cells [29]. The administration of STZ-nicotinamide (NA) in rats has been
proposed to induce DM2, because STZ causes pancreatic 3-cell damage, whereas NA in
rats partially protects pancreatic 3 cells against STZ [30].

Food highly enriched in fats, commonly known as high-fat diets (HFDs), either alone
or in combination with sodium chloride or glucose is considered to mimic human DM2 [23].
There are data indicating the role of oxidative stress in HFDs, given that ROS production
might be an initial event triggering HFD-induced insulin resistance [31]. To induce DM2 in
a shorter period, HFD combined with low-dose STZ has been employed [32].

The C57BL/6] mouse strain is extensively used as a model for diet-induced obesity
(DIO) due to susceptibility to developing severe obesity, glucose intolerance, elevated
adiposity, and moderate insulin resistance [33,34]. However, the DIO C57BL/6] model
is not the perfect choice for studying the effects of diabetes because this model rarely
develops hyperglycaemia or islet atrophy when fed an HFD [23,35].

Alloxan is an organic compound, urea derivative, carcinogen, and cytotoxic glucose
analogue and is, therefore, one of the most commonly employed diabetogenic agents. Al-
loxan promotes selective pancreatic 3-cell necrosis by promoting ROS accumulation [36,37].

Certain genetic rodent models have been extensively employed as pre-clinical models
for DM, such as leptin-null (0b/ob) mice and leptin receptor (db/db) mutant mice [38,39].
Ob/ob mice maintained on a C57BL/6] genetic background exhibit early-onset severe
obesity, reduced energy expenditure, hyperinsulinaemia, insulin resistance, and mild
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hyperglycaemia [40]. In contrast, the ob/ob mice maintained on a C57BLKS/] background
exhibit pronounced DM, severe hyperglycaemia, and pancreatic islet atrophy, leading to
premature death [41]. Db/db mice are maintained on a C57BLKS/] genetic background,
which imparts the phenotypic differences of severe diabetes [41]. There are data pointing
to oxidative stress as a contributor to the patho-physiologic disorders observed in ob/ob
mice, wherein an increase in oxidative stress has been observed in ob/ob mice as part of the
DM-associated disorders [42,43]. Oxidative damage has been demonstrated in the brains
of DM2 db/db mice [44].

There is a sex difference in most rodent DM2 models, with the Zucker Diabetic Fatty
(ZDF) rat providing one example. Female ZDF rats maintain normal insulin and glucose
levels throughout their lives, despite developing obesity to a similar degree as the males.
In contrast, male ZDF rats develop obesity, insulin resistance, severe hyperglycaemia, and
hyperlipidaemia as a consequence of DM2 [45,46]. Therefore, the sexual dimorphism in
blood glucose can be translated to human beings. The role of oxidative stress can also be a
contributor to the pathophysiologic disorders observed in ZDF rats because increased ROS
production and mitochondrial dysfunction has been shown in ZDF rat brains [47].

Otsuka Long-Evans Tokushima Fatty (OLETF) rats develop DM and lack the chole-
cystokinin receptor type A, a gut-derived peptide hormone that works as a peripheral
satiation signal. Due to (3-cell collapse, the characteristic symptoms are polydipsia and
polyuria [48,49]. Evidence also points to the role of oxidative stress as a consequence of DM
in OLETF rats because increased oxidative stress levels have been shown in the plasma,
pancreas, and liver of OLETF rats as well as significantly decreased plasma SOD-like
activity [50].

Goto—Kakizaki (GK) rats have neonatal (3-cell mass deficiency, with 50% depletion in
adult rats. Defects in 3-cell metabolism and function are elicited, and a loss of 3-cell mass
occurs with chronic hyperglycaemia, oxidative stress, and inflammation. GK rats therefore
constitute a non-obese polygenic DM2 model [51-53].

4. Natural Compounds against Oxidative Stress in Animal Models of Diabetes Mellitus

The use of natural compounds in animal DM models has been shown to improve
glycaemic control, reduce inflammation, decrease oxidative stress and neurodegeneration,
and prevent various complications of DM [54-57]. Table 1 summarises the outcomes for
the protective effects of natural compounds against oxidative stress in animal DM models.

4.1. Natural Polyphenols

Natural polyphenols are secondary metabolites of plants and found largely in fruits;
vegetables; cereals; and beverages such as wine, coffee, tea, and beer. Polyphenols are,
therefore, considered the most abundant antioxidantantioxidants in the human diet, and
diets rich in polyphenols provide protective effects against DM, cardiovascular diseases,
cancer, and several neurodegenerative diseases. More than 8000 polyphenols have been
identified in several plants and have been classified into various classes including phenolic
acids, flavonoids, stilbenes, and lignans [58,59]. The effects of diverse natural polyphenols
against oxidative stress have been demonstrated in various rodent DM models. Resveratrol
is a natural polyphenol compound, widely found in grapes and blueberries. Long-term
treatment with resveratrol improved neuronal injury and cognitive performance in STZ-
induced diabetic rats by attenuating inflammation, increasing malondialdehyde (MDA)
levels (a marker of lipid peroxidation), and increasing SOD, CAT, and glutathione (GSH)
levels in the hippocampus [60]. In STZ-induced diabetic rats, resveratrol treatment par-
tially normalised oxidative biomarkers, such as the total oxidant status (TOS) and MDA
levels, and improved CAT and SOD1 mRNA levels. Similarly, CAT, GPx, and glutathione
S-transferase (GST) activity was also increased in the brains of treated diabetic rats [61].
The administration of resveratrol in STZ-NA-induced DM2 rats decreased blood glucose
and glycated haemoglobin (HbAlc) levels and increased the antioxidant activity of SOD,
CAT, GPx, and GSH in the liver. Resveratrol has also been shown to increase the expression
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of peroxisome proliferator-activated receptor-gamma (PPARY) and fatty aldehyde dehy-
drogenase (FALDH) genes in adipose tissue. PPARY is a transcription factor involved in
adipogenesis, regulation of adipocyte gene expression, and glucose metabolism and acts
as a key energy balance regulator. PPARYy activation also increases antioxidant defence
and regulates mitochondrial function [62]. FALDH is an enzyme that can metabolise
4-hydroxynonenal (HNE) and decrease HNE-induced ROS production [63].

Table 1. The use of natural compounds as a strategy for counteracting oxidative stress in animal DM models.

Compound Model Outcome Reference
Polyphenols Oxidative Markers and Protection Antioxidant Proteins
Improved neuronal injury and cognitive 10D, CA}T.’ and GSH levels in the
performance by attenuating inflammation, ippocampus.
. Improved SOD1 and CAT mRNA
Resveratrol STZ-induced DM rats and I MDA levels. levels, 1 CAT, GPx, and GST [60,61,63]
STZ-NA-induced DM rats 1 TOS and MDA levels. aétivity ]1’1 the i)rain T
J blood glucose and HbAlc levels and 1 ’
PPARy and FALDH genes. 150D, CAT, GPx, and GSH
activity in the liver
J blood glucose, 1 neuroprotection.
. . J} TBARS levels, T AGE, AGE-R1 receptor, T S.O.D’ .CAT’ GI.)X’ and GSH )
Curcumin STZ-induced DM rats Ivoxalase-1 in the kidnevs and liver and activity in the hippocampus. [64,65]
gy orevented dyshpi{’iaemia' 1 SOD, CAT, and PONT1 activity.
1 blood glucose, improved memory,
learning and movement deficiency, | MDA
Syringic acid STZ-induced DM rats levels in the brain, sciatic nerve and spinal [66]
cord, T mRNA expression of PGClx and
NRF1 in the brain.
Flavonoids
| blood gl“ﬁ‘;fr'ot) Ie’igiri‘éaegBARS' and 4 50D and CAT activity, T vitamin
1 MDA levels in erythrocytes, | serum CandE levzls in erythrocytes
NO levels. and presma. .
| MDA levels 1 SOD, CAT, and GPx levels in
STZ-induced DM rats, J} AOPP and MDA levels. 450D CpAa"? creadh(c;lt)l ssuoi: . d
Quercetin STZ-NA-induced DM2 rats, } ER-stress and MDA levels. 4 SOI,)1 CA:}nan d C);(Pasllvitg’t;; [67-73]
HFD/STZ-induced DM2 rats, = Ameliorated neurodegeneration, improved 1’ ) . the h tp
and db/db DM2 mice learning and memory impairment, | evels in the heart. -
MDA levels. T GSH levels in pancreatic tissue.
1 MDA levels, 1 ATP generation and 50D, CAt"l}"{eaggnCC;IizsctIVItles m
improved changes in mitochondria, e
AMPK, SIRT1, PGCl,, TEAM, and NRF1 | 90D CATthinti ;’:X activity in
in plasma and sciatic nerves. ’
J blood glucose, | TBARS, 1 SOD, CAT, GPx, and GST
Kaempferol STZ-induced DM rats and and hydroperoxides. activity, T GSH, vitamin C, and [74,75]
P STZ-induced DM mice | DHE level and 3-nitrotyrosine, 1 Nrf-2, vitamin E in the plasma, heart, "
and NQOI1 expression levels. liver, and kidneys.
. . Improved neuronal injury and cognitive T SOD, CAT, and GSH activity in
Luteolin STZ-induced DM rats erformance, | MDA levels the cerebral cortex and [76]
P ! ’ hippocampus.
Improved spatial learning and memory, | 1 SOD and GPx activity in
Ficus STZ-induced DM rats and TBARS in the brain. the brain. [77,78]
deltoidea STZ-NA-induced DM2 rats 1 blood glucose and | MDA levels in the 1 SOD, CAT, GPx, and GSH levels !
pancreas and liver. in the pancreas and liver.
1 blood glucose, improved learning, and
STZ-induced DM rats and memory, | MDA levels in the brain. 1 SOD, CAT, and GSH activity in
Chrysin HFD/sucrose-induced 1 blood glucose and lipids and 1 insulin, | the cerebral cortex and [79,80]
DM2 rats MDA levels, | OH and H;0O; in the hippocampus.
gastrocnemius muscle.
Propolis
_. 1 blood glucose, | MDA, NO, and NOS.
Chinese ~ Alloxan-induced DMratsand %) 04 Ty cose | HbALe, | MDA, | ROS 4 SOD levels in blood. [81,82]

STZ-induced DM rats

and RNS in serum.
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Table 1. Cont.
Compound Model Outcome Reference
Polyphenols Oxidative Markers and Protection Antioxidant Proteins
Chinese and > 1 blood glucose, | MDA levels in blood 1 SOD in blood, 1 CAT in kidneys,

Brazilian §TZ-induced DM rats and kidneys. and 1 GPx in the liver. [83]
Croatian Alloxan-induced DM mice + MDA levels in liver and annracpcal [84]
activity and | 3-carotene degradation.

Malaysian STZ-induced DM rats 1 blood glucose, T TAC and | MDA in 1 SOD, CAT, (}Rxf GR, and [85]

the pancreas. GST activities.
Taiwanese HFD/STZ-induced DM2 rats J blood glucose and | TBARS in serum. 1 SOD and GPx activities. [86]
Mexican STZ-induced DM mice 1 blood glucqse and 1 plasma 1 SOD, CAT, and GPx activities in 187]
insulin levels. the pancreas.
1 HO-1 and GGCL, | nitrite/nitrate levels,
CAPE STZ-induced DM rats and | protein expression of iNOS in [88]
the pancreas.
Alkaloids
J} MDA levels.
HFD/STZ-induced DM2 rats, J blood gluco§e, and | M]?A levels in the 1 .SQD,. CAT, GPX, and GSH
STZ-NA-induced DM?2 mice liver and brain. activity in the liver and serum.
Berberine . ! 1 MDA plasma levels, | TBARS, and 1 SOD1 mRNA in liver, 1T SOD and [89-92]
and HFD/glucose-induced : P .
1 blood glucose, improved memory CAT activities in the kidneys.
DM2 hamsters . . R
impairment, axonopathy, and tau 1 SOD activity in plasma.
hyperphosphorylation.
. 1 blood glucose andt ORAC. R .
Vindoline s12/ f%‘;f[‘;sej“duced 4 FRAP in the cardiac tissue, } ORAC, | T SODT aciy .tthe fiver. [93,94]
rats MDA levels in the kidneys. achvity.
Oxymatrine HFD/STZ-induced DM2 rats 1 blood glucose and | MDA levels. 150D, CAT, aqd GPx activity in [95]
the kidneys.
Ginseng
Ginsenosides CK DM2 rats 1 blood glucose, 1p1proved learning, and T SOD activity in the [96]
memory decline, | MDA levels. hippocampus.
Korean red OLETF DM rats 1 blood glucose and | MDA levels. 1 GPx activity in plasma. [97]

Curcumin is a polyphenolic compound that has been shown to have anti-hyperglycaemic,
anti-inflammatory, and antioxidant activity, attenuating DM complications [98]. Treatment
with curcumin had a neuroprotective effect in the hippocampus of STZ-induced diabetic
rats and significantly increased the activity of SOD, CAT, GPx, and GSH [64]. In addition,
curcumin treatment of STZ-induced diabetic rats decreased the plasma levels of the ox-
idative biomarker thiobarbituric acid reactive substances (TBARS); increased the activity
of the antioxidant enzymes SOD, CAT, and paraoxonase-1 (PON1) in the kidneys and
liver; and increased the levels of advanced glycation end product (AGE) and detoxification
system components (AGE-R1 receptor and glyoxalase-1). Additionally, the combination
of curcumin and aminoguanidine, a therapeutic agent with anti-AGE activity, prevented
dyslipidaemia in diabetic rats [65]. The neuroprotective effects of syringic acid, a natural
polyphenolic derivative of benzoic acid, were evaluated in STZ-induced diabetic rats.
Treatment with a syringic acid significantly improved the rats” memory; improved their
learning and movement deficiency; reduced MDA levels in the brain, sciatic nerve, and
spinal cord, and upregulated the brain mRNA expression of PPARY coactivator 1 alpha
(PGC1«x) and nuclear respiratory factor (NRF1) [66]. PGCl« is a transcription coactivator
that regulates mitochondrial biogenesis and induces NRF1 transcription [99]

4.2. Flavonoids

Flavonoids belong to a large group of natural polyphenolic phytochemicals with sev-
eral subclasses and have shown beneficial effects, such as antioxidantantioxidant activity
in several neurodegenerative and neuropsychiatric disorders, as well as anti-inflammatory,
anti-obesity, anti-diabetic, and cardioprotective activity. Quercetin is a flavonoid com-
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pound present in a wide variety of fruits and vegetables and has been shown to exert
therapeutic effects [100]. The oral administration of quercetin to STZ-induced diabetic
rats resulted in a decrease in blood glucose, plasma TBARS, and hydroperoxides levels.
Quercetin also increased SOD and CAT activity and vitamin C and E levels to near normal
values in the erythrocytes and plasma of treated rats [67]. Furthermore, quercetin treat-
ment decreased MDA levels in erythrocytes and serum nitric oxide (NO) and increased
SOD, CAT, and GPx levels in the pancreatic tissue of STZ-treated rats [68]. Quercetin
treatment of STZ-NA-induced DM2 rats decreased MDA levels and increased SOD, CAT,
and GPx activity levels and caused a significant increase in SOD1, CAT, and GPx1 protein
levels in the heart tissue homogenates of treated rats [69]. Similarly, the administration of
quercetin resulted in a significant decrease in advanced oxidation protein products (AOPP)
and MDA levels along with a significant increase in GSH levels in pancreatic tissue ho-
mogenates of HFD/STZ-induced DM2 rats [70]. Similarly, quercetin treatment reduced ER
stress-mediated oxidative stress, reduced MDA levels, and improved SOD, CAT, and GPx
activity in the pancreas of STZ-induced diabetic rats [71]. Moreover, quercetin ameliorated
neurodegeneration; improved learning and memory impairment; reduced MDA levels;
and increased SOD, CAT, and GPx activity in the brain of db/db mice, which is an animal
model of DM2 [72]. Lastly, quercetin decreased MDA levels, increased ATP generation,
and corrected morphological changes in mitochondria in the plasma and sciatic nerves of
STZ-induced diabetic rats. Quercetin treatment also promoted the expression of phospho-
rylated adenosine 5’-monophosphate-activated protein kinase (AMPK), sirtuin 1 (SIRT1) a
sensor of energetic metabolism, PGClx, TFAM, and NRF1 (key regulators of mitochondrial
biogenesis, energy metabolism, and oxidative phosphorylation) [73]. Kaempferol is a
flavonoid that naturally occurs in a variety of vegetables, fruits, tea, and wine and exhibits
a wide range of kinds of pharmacological activity, including antioxidant, anti-inflammatory,
neuroprotective, and anti-diabetic activity [101]. The ameliorative effects of kaempferol
have been observed in STZ-induced diabetic rats, with a significant decline in TBARS and
lipid hydroperoxide towards normal levels; increased activity of SOD, CAT, GPx, and
GST; and increased levels of non-enzymatic antioxidants towards normal levels, such as
GSH, vitamin C, and vitamin E in the plasma, heart, liver, and kidneys of treated rats [74].
Kaempferol in the heart tissue of STZ-induced diabetic mice decreased the generation
of oxidative stress measured with dihydroethidium (DHE), reduced the generation of
3-nitrotyrosine (a product of peroxynitrite), increased the expression of the nuclear factor
erythroid 2-related factor 2 (Nrf-2) signalling pathway, which plays a major role in regu-
lating of oxidative stress and increased NQO1 expression. In vitro, kaempferol decreased
the levels of MDA and DHE and enhanced SOD activity in H9¢2 cells treated with high
quantities of glucose [75].

Luteolin is a flavonoid with antioxidant and neuroprotective activity. Long-term
treatment with luteolin improved neuronal injury and cognitive performance in STZ-
induced diabetic rats; significantly inhibited the increase in MDA levels; and improved
SOD, CAT, and GSH activity in the cerebral cortex and hippocampus [76]. The leaves of
Ficus deltoidea have been extensively used as herbal medicine to normalise blood sugar
levels and contain more than 20 varieties of flavonoids, giving the leaves antioxidant
effects [102]. Treatment with Ficus deltoidea in STZ-induced diabetic rats improved spatial
learning and memory, increased SOD and GPx activity, and significantly reduced TBARS
in the brains of diabetic rats [77]. Ficus deltoidea also significantly increased SOD, CAT,
GPx, and GSH levels and reduced MDA levels in the pancreas and livers of STZ-NA-
induced DM2 rats [78]. Long-term treatment with the flavonoid chrysin suppressed the
increase in MDA content in the brains of STZ-induced diabetic rats; increased the activity
of SOD, CAT, and GSH in the cerebral cortex and hippocampus; and improved learning
and memory function [79]. Treatment with chrysin normalised the altered blood glucose
levels, serum insulin levels, and lipid profile and significantly reduced the levels of MDA,
hydroxyl radical (OH), and hydrogen peroxide (H;0O,) in the gastrocnemius muscle of
HFD/sucrose-induced DM2 rats [80].
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4.3. Propolis

Propolis is a complex resinous material that consists of sap, bark, and bee excreta
accumulated in beehives. More than 300 compounds including flavonoids, phenolic
acids, volatile organic compounds, phenolic aldehydes, alcohols, ketones, sesquiterpenes,
quinones, coumarins, steroids, and amino acids have been isolated from propolis [103]. The
effects of propolis against oxidative stress have been demonstrated in diverse rodent DM
models. Extracts of propolis from north China have significantly decreased levels of blood
glucose, MDA, NO, and nitric oxide (NOS) synthetase, whereas blood SOD levels were
increased in alloxan-induced rats [81]. In STZ-induced diabetic rats, Chinese and Brazilian
propolis significantly inhibited body weight loss and blood glucose increases; decreased
MDA levels in the blood and kidneys; and slightly increased SOD in the blood, CAT in
the kidneys, and GPx in the liver [83]. Treatment with Croatian propolis preparations
prevented bodyweight reduction in alloxan-induced diabetic mice and significantly de-
creased MDA concentrations in the liver. Moreover, 2,2-diphenyl-1-picrylhydrazyl (DPPH)
is frequently used to determine radical-scavenging activity, and propolis preparations
have demonstrated anti-radical activity. The antioxidant capacity of propolis preparations
has been evaluated using a 3-carotene-linoleic acid assay, showing that they inhibited
-carotene degradation [84]. Malaysian propolis increased the activity of SOD, CAT, GPx,
glutathione reductase (GR), and GST; total antioxidant capacity (TAC) and MDA level
was significantly decreased in the pancreas of STZ-induced diabetic rats [85]. Taiwanese
green propolis increased SOD and GPx activity and produced a decrease in a TBARS
assay in the serum of HFD/STZ-induced DM2 rats [86]. Similarly, Mexican propolis sig-
nificantly inhibited increases in blood glucose and loss of body weight in STZ-induced
mice, increased plasma insulin levels, and increased the activity of SOD, CAT, and GPx
enzymes in the pancreas. The chemical composition analysis showed that Mexican propolis
was rich in flavonoids such as kaempferol, quercetin naringin, pinocembrin, naringenin,
acacetin, chrysin, and luteolin [87]. Moreover, extract of Chinese propolis decreased the
levels of HbAlc, which also resulted in the decrease of MDA, ROS, and reactive nitrogen
species (RNS) in the serum of STZ-induced diabetic rats [82]. The protective effects of
caffeic acid phenethyl ester (CAPE), a natural phenolic compound derived from honeybee
hive propolis, were demonstrated in STZ-induced diabetic rats. The expression levels
of antioxidant enzyme-related proteins, such as heme oxygenase-1 (HO-1) and gamma-
glutamylcysteine ligase (GGCL), were restored. Nrf-2 modulates the expression of genes
such as HO-1 and GGCL. CAPE also decreased the nitrite/nitrate levels and decreased
the protein expression of iNOS in the pancreas of STZ-induced diabetic rats [88]. Figure 1
summarises the protective effects of various natural compounds in animal DM models.

Natural Compounds
Polyphenols, Flavonoids, Propolis, Alkaloids and Ginseng

| Animal models of DM |
I

| |

Hyperglycaemia, Mitochondrial Antioxidant Oxidative Neuronal injury
Insulin function enzymes stress Improved learning and
memory

SOD, CAT, GPxand MDA and
GSH) TBARS -
VitaminCand E

Figure 1. Protective effects of various natural compounds in animal DM models. Natural compounds prevented hyper-

glycaemia, ROS production, and neuronal injury; increased insulin secretion and antioxidant enzymes; and improved

mitochondrial function, learning, memory, and lipid metabolism, among others.



Int. J. Mol. Sci. 2021, 22, 7009

8 of 13

4.4. Alkaloids

Alkaloids are a class of natural compounds derived from natural sources, such as
plants. There are approximately 20,000 known alkaloids, most of which have been isolated
from plants. However, alkaloids have also been found in algae; marine organisms; and
animals such as insects, toads, and salamanders [104]. Berberine, an isoquinoline alkaloid
derived from the ancient Chinese herb Coptis Chinensis French, has been used to treat
DM for thousands of years, with a broad range of effects, such as decreased oxidative
stress, reduced inflammation, and protection against neurodegenerative diseases [105].
Berberine decreased MDA levels and increased SOD, CAT, GPx, and GSH activity in the
livers and sera of HFD/STZ-induced DM2 rats [89]. Berberine also increased hepatic
SOD1 mRNA expression and kidney SOD and CAT activity to normal levels and decreased
MDA levels in the livers and brains of STZ-NA-induced DM2 mice [90]. In hamsters
fed a high content of glucose and HFD, treatment with berberine reduced the plasma
levels of MDA and TBARS and increased plasma SOD activity [91]. Berberine significantly
attenuated memory impairment, axonopathy, and tau hyperphosphorylation in HFD/STZ-
induced DM2 rats. Primary neurons treated simultaneously with high quantities of glucose
and berberine improved axonal transport, decreased MDA levels, and increased SOD
activity [92]. Vindoline, an indole alkaloid present in the leaves of the Catharanthus roseus
plant, might serve as an insulin sensitiser. The administration of vindoline significantly
improved oxygen radical absorbance capacity (ORAC), an assay measuring the ability
of antioxidants in a particular sample to scavenge radicals, and improved SOD activity
in the livers of rats exposed to 10% fructose with STZ employed as a DM2 model [94].
Using the above rat DM2 model, treatment with vindoline improved the ferric-reducing
antioxidant power (FRAP) in cardiac tissue significantly improved the ORAC and SOD
activity and significantly reduced MDA levels in the kidneys [93]. Oxymatrine, a major
quinolizidine alkaloid in Sophora flavescens, exhibits several pharmacological effects,
such as anti-inflammatory, anti-oxidative, and neuroprotective activity. Treatment with
oxymatrine effectively increased the activity of SOD, CAT, and GPx and decreased MDA
content in the kidneys of HFD/STZ-induced DM2 rats [95].

4.5. Ginseng

Ginseng is a traditional Chinese herb containing active ingredients known as gin-
senosides, the main compounds that elicit the therapeutic actions of ginseng. Ginsenoside
treatment significantly decreased MDA activity and increased SOD activity in the hip-
pocampus and improved learning and memory decline in the GK DM2 rat model [96].
Korean red ginseng has antioxidant and cardio-protective effects, and therefore, treatment
with this herb decreased MDA levels and increased GPx activity in the plasma of DM2
OLETF rats [97].

5. Clinical Trials

Regardless of the great attributes and potentials of natural compounds used for the
management or treatment of DM in rodent models, there is limited information concerning
their efficacy in human clinical trials. Hence, only a few natural compounds have been
explored in human clinical trials. Some natural components that have been studied in
clinical trials are as follows. The antidiabetic activity of ginseng has been demonstrated in
clinical trials [106]. Grape polyphenols prevented oxidative stress and insulin resistance in
first-degree relatives of DM2 patients [107]. A moderate antidiabetic effect of cinnamon
was observed in a randomised placebo-controlled clinical trial [108]. Allium cepa L.,
also known as the bulb onion or common onion, has been shown to exhibit antidiabetic
activity [109]. Aloe vera extracts have been shown to exhibit a substantial decrease in
glucose [110]. Finally, it has been shown that some natural compounds could improve DM
in clinical trials. However, more clinical trials and prospective, well-designed research are
still needed to confirm these results.
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6. Conclusions

As a chronic metabolic disease with several causative factors, DM is characterised by
insulin deficiency and insulin resistance. In DM2, hyperglycaemia and hyperlipidaemia
generate oxidative stress, causing cellular metabolic dysregulation. We focused on DM
rodent models that play an important role in presenting the pathogenesis of human DM
and its complications. Accordingly, diabetic rodent models are essential for studying
several complications of DM, such as oxidative stress, and for developing new therapeutic
strategies and novel drugs. The use of natural compounds for the management and treat-
ment of DM is increasing, because the available medications sold over the counter are very
expensive and have several side effects. The study of natural compounds with anti-diabetic
potential is gaining greater attention daily because these compounds possess the ability to
mitigate DM via several mechanisms such as the regulation of hyperglycaemia, decrease of
oxidative stress, and neuronal injury; increased insulin secretion and antioxidant enzymes;
and improved mitochondrial function, learning, memory, and lipid metabolism in rodent
models. Thus, natural compounds could contribute to expanding the therapeutic options
for treating or reducing the complications associated with DM. Nevertheless, only a few
natural compounds have been used in clinical studies. Hence, there is a need for further
research progress in the area of natural compounds with anti-diabetes activity and charac-
terised as potential compounds employed as clinical medication or dietary supplements to
ameliorate the management or treatment of DM.
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