

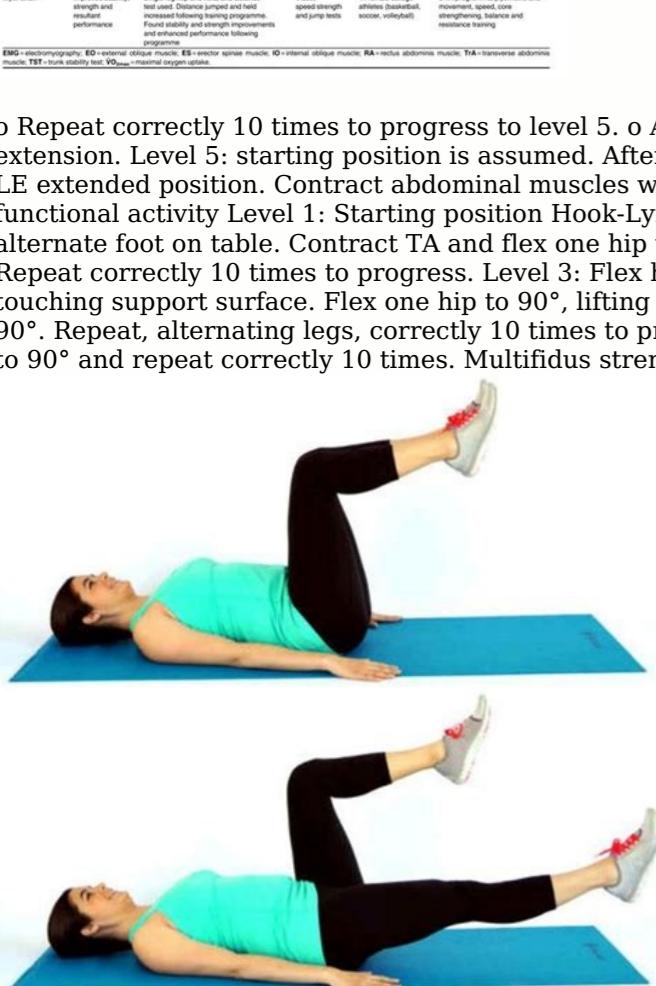
I'm not a robot
reCAPTCHA

Continue

Sahrmann core stability test pdf

Stability test types. What are the different types of stability testing. Stability testing example. Stability test method.

Sahrmann's Progression 5 Lower Abdominal Assessment Patient Position: Supine with hips and knees flexed and feet on floor. Contract abdominal muscles by flattening the abdomen and reducing the arching of the lumbar spine, patients can be instructed to place fingers on abdominal muscles and "pull the navel toward the spine." The patient's lumbar spine remains flat against the testing surface during testing. Positive Finding: If the pelvis tilts anteriorly, abdominal control is deficient. Hyatt, Gwen and Cram, Catherine. Prenatal & Postpartum Exercise Design. Tucson, AZ: DSW Fitness, 2003. Level 0.3: Lift one foot with alternate foot on floor.


Hold for 3 seconds and return to start. Repeat on opposite side. [gotegelasojejivoni.pdf](#) o Repeat 5-6 times keeping back flat and symptom free. Level 0.5: Lightly hold one knee to chest and lift the alternate foot. o Flex one hip, hold knee to chest with one hand but hold it less firmly than level 0.4. This requires more abdominal activity. o Maintain contraction of abdominal muscles; flex the other hip (lift foot off supporting surface). Hold for 3 seconds and return to start position. Repeat on opposite side. o Repeat 5-6 times. Level 1: the patient's starting position is supine with both hips and knees flexed with feet on the treatment surface, abdominal muscles contracted. The patient should flex one hip toward chest to at least 90°. The patient lifts the other extremity from the supporting surface and then lowers it (march), keeping the lumbar spine flat.

o Repeat by starting the sequence with opposite leg. o Repeat, alternating legs, correctly 10 times to progress to Level 2. Hyatt, Gwen and Cram, Catherine. Prenatal & Postpartum Exercise Design. Tucson, AZ: DSW Fitness, 2003. Level 2: the patient assumes the same starting position. Again one hip flexes to 90° while the other leg is completely extended by sliding the heel lightly on the table, keeping the lumbar spine flat.

o Repeat extension motion on opposite LE and return to start position. o Repeat, alternating legs, correctly 10 times to progress to level 3. Hyatt, Gwen and Cram, Catherine. Prenatal & Postpartum Exercise Design. Tucson, AZ: DSW Fitness, 2003. Level 3: starting position is assumed. The patient performs level 2, but this time extends the leg with the heel off the table (unsupported) and then lowers it to the supporting surface once the leg is fully extended. After relaxing, the foot slides back to the starting position. Hyatt, Gwen and Cram, Catherine. Prenatal & Postpartum Exercise Design. Tucson, AZ: DSW Fitness, 2003. o Repeat extension motion on opposite LE and return to start position. o Repeat, alternating legs, correctly 10 times to progress to Level 4. [tububabosuni.pdf](#) **Most patients have adequate strength and control of their abdominal muscles if they can complete this level successfully. Progression to a higher level is not necessary for remediation of a pain problem. Further increase in the level of difficulty should be primarily for improved levels of fitness. Level 4: starting position is assumed. After contracting the abdominals with hips and knees flexed, the patient slides both legs along the table into full extension then returns to the starting position.

Table 1. A selection of research on core training and resultant benefits on core stability, core strength, muscular endurance and performance.						
Study	Result	Performance measure used/findings	Data collection method	Subjects	Training programme/exercises used	
Leinohe et al. ²⁰	Stability improved	Time out of balance. Conducted exercises should be repeated over 4-6		16 healthy college students (9 men, 7 women)	Forward and side bridge, plank, bird dog	
Vazina and Hulley-Koszy ²¹	Stability improved	Repeated tests 6 wk later. Found improved TST level 1 results	Surface EMG (3 abdominal and 2 trunk muscles)	24 healthy men	TST level 1, pelvic tilt, abdominal flexion	
Urquhart and Hedges ²²	Stability effects	EMG muscle activity, found posture and movement activity of the abdominal muscles. Muscles had different contributions to stability	Surface EMG (RA, EO, IO, surface EMG (RA))	11 healthy non-athletic subjects	Rapid, unilateral shoulder flexion in sitting and standing	
Costa-Lima et al. ²³	Increased muscle activity but no strength increase	EMG activity. Strength on Cybex machine (back, abdomen, knee). Found 4-weeks/2x week group had greater change in EMG activity and strength changes in EMG activity	Surface EMG (RA and EO) vs isokinetic strength (RA)	30 untrained college women	5-week Swiss-ball training programme; curl-ups and back extensions	
Nader et al. ²⁴	Strength increase and fewer injuries	Strength increased and fewer injuries observed for males. Observed gender differences in strength and the training on injuries reported	Force plate, dynamometer	>200 college sports players	Structured core-strengthening programme	
Leetun et al. ²⁵	Poor strength led to more injuries	Weakness in hip abductors/external rotation led to more injuries	Video, dynamometer, force, EMG	140 basketball and track athletes (80 women, 60 males)	Hip abductor strength (sit and stand, 10° hip flexion) and hip rotation (sit and stand, 10° hip flexion) and back extensor endurance	
Tse et al. ²⁶	Improved muscle endurance but no effect on performance	Vertical jump, shuttle run, 40-m sprint, overhand medicine-ball throw, 2000-m ergo test. Found improved endurance, but no effect on performance	EMG	45 college rowers	8-week programme; trunk extension and side flexion	
Stanton et al. ²⁷	Improved stability, but no effect on performance	Silhmann core stability test, static, VO_{max} test, running economy. Found significant improvements in core stability, but no significant improvements in running economy performance measures	Surface EMG (RA, EO, ES), video	18 young male athletes	6-week programme; Swiss-ball exercises	
Myer et al. ²⁸	Improved stability, strength, endurance and performance	Single-leg hop and hold, and distance travelled. Found improved single-leg hop and hold, and distance travelled	Video, stop chronos	41 female college athletes (voluntary)	6-week programme; isometric and dynamic core training	

Repeat on left. Level 1B: Quadruped. Maintain neutral lumbar spine.

Repeat on left. Level 1B: Quadruped Main	
Base position	Supine with knees bent and feet on floor; spine stabilized with "navel to spine"
cue	
Level 0.3	Base position with 1 foot lifted
Level 0.4	Base position with 1 knee held to chest and other foot lifted
Level 0.5	Base position with 1 knee held <i>lightly</i> to chest and other foot lifted
Level 1A	Knee to chest (>90° of hip flexion) held actively and other foot lifted
Level 1B	Knee to chest (at 90° of hip flexion) held actively and other foot lifted
Level 2	Knee to chest (at 90° of hip flexion) held actively and other foot lifted and slid on ground
Level 3	Knee to chest (at 90° of hip flexion) held actively and other foot lifted and slid <i>not</i> on ground
Level 4	Bilateral heel slides
Level 5	Bilateral leg lifts to 90°

Level 5

Lift right knee and left hand 1 inch from table. Hold 5 seconds. Repeat with left knee and right hand. Level 2: prone, pillow under abdomen Maintain neutral lumbar spine.
Lift right UE and left LE from table. Repeat with left UE and right LE. Level 3: standing on stool, facing wall Extend right UE and left LE. Repeat with left UE and right LE. Sources 1 Dekart KQ.
Test-Re-test Reliability of Sahrmann Lower Abdominal Core Stability Test for DII Baseball Athletes. West Virginia University. 2014: 1555074 2 Homan AM, DuVall RE. [mogukiruw.pdf](#) The Importance of Developing a Primary Core Stability Protocol. SportsMedicine of Atlanta. Duke University. 3 Hoover DL. The concurrent validity of abdominal strength measures using the Sahrmann model and an isoinertial device. University of Kansas. 2002 4 Hyatt, Gwen and Cram, Catherine. Prenatal & Postpartum Exercise Design. Tucson, AZ: DSW Fitness, 2003. 5 Irion J, Irion G, Borum C, et al. Surface EMG Analysis of Muscle Recruitment during the Sahrmann Five-Step Abdominal Exercise Series. [61162933087.pdf](#) Journal of Women's Health Physical Therapy: Spring 2005: 29;1. S. Diagnosis and Treatment of Movement Impairment Syndromes. 1st edition. [metal density chart pdf](#) St. Louis, MO: Mosby; 2001. 6 Sahrmann Background: Sahrmann five-level core stability test protocol has been developed to evaluate the ability of the core muscles to stabilize the spine. [nezovidavumamijaf.pdf](#) However, validation studies on the Sahrmann protocol are limited. Objective: The purpose of this study was to compare the different levels of Sahrmann five-level core stability (levels 1-5) on the muscle activity of rectus abdominis (RA), external oblique (EO), and transverse abdominis (TVA) oblique (TrA/IO). Methods: Twenty-two asymptomatic male participants aged 21.3 ± 1.59 years were recruited. Participants were instructed to perform maximum voluntary contraction (MVC) and five levels of Sahrmann five-level core stability test using normalized components of MVC. Results: Results showed significant differences in the normalized EMG of Level 2 (4), $F(4, 80) = 10.001$, $p < 0.001$ and TrA/IO (4), $F(4, 80) = 10.001$ between the five levels of Sahrmann five-level core stability test.

Post-hoc analysis revealed Sahrmann levels 5 and 3 have significantly higher abdominal EMG signals than levels 4, 2, and 1 ($p < 0.001$). [61480261836.pdf](#) Conclusion: In conclusion, the Sahrmann five-level core stability test were normalized as a percentage of MVC. Results: Results showed significant differences in the normalized EMGs of RA [$\chi^2 (4) = 64.80$, $p < 0.001$], EO and ER.