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Abstract:		
	
The	Ricci	tensor	and	the	Ricci	scalar	curvature,	in	the	Einstein	field	equations,	provide	scale	and	curvature	limits	to	
the	stress	momentum	tensor	as	well	as	establishing	a	topological	equivalency	to	the	bounds	associated	with	the	
Laws	of	Thermodynamics.	Mathematically,	Ricci	flow,	and	the	Ricci	tensor,	reduce	regions	of	high	curvature	and	
expand	regions	of	low	curvature.	Like	the	“gravity	funnel”	we	associate	with	topological	representations	of	General	
Relativity,	(GR),	Ricci	flow	forces	the	stress	tensor,	in	the	field	equations,	into	higher	and	higher	curvatures,	limited	
by	the	speed	of	light	and	the	probabilities	we	associate	with	measurements	of	mass.	In	this	extension	of	our	previous	
discussions,	we	investigate	equating	Ricci	flow,	to	topological	spin	at	all	scales	of	Lorentz	invariance.	Using	the	
topological	value	that	we	have	established	for	the	Hubble	constant,	we	establish	equivalencies	to	the	Metric	Tensor	
and	Einstein’s	cosmological	constant.	We,	then,	use	the	field	equations	to	establish	topological	spin	equivalencies	to	
the	Schrodinger	equation,	the	Stefan-Boltzmann	equations,	Schwarzschild	limits	at	the	horizon	of	a	black	hole,	
Eddington	accretion	boundaries	and	measurements	of	Baryonic	Acoustic	Oscillations	(BAO)	in	the	Cosmic	
Microwave	Background.	In	our	equivalency	to	the	CMB,	we	demonstrate	how	topological	spin	potentials,	associated	
with	intrinsic	global	and	local	phase	bifurcation,	establish	oscillation	in	the	CMB.	We	establish	an	equivalency	
between	Hopf-Turing	bifurcation	patterns	and	the	development	of	a	dipole	moment.	To	our	knowledge,	this	is	the	
first	application	of	Hopf-Turing	patterns	as	model	for	the	development	of	BAO	in	the	CMB.	In	our	final	section,	we	
demonstrate	how	the	field	equations,	and	a	topological	definition	for	spin,	are	all	that	is	necessary	to	understand	
the	early	appearance	SMBH,	LRD,	Globular	Clusters,	and	Spirals	in	the	early	universe.		
	
1.0-Introduction	
	
In	this	discussion,	on	the	topology	of	“Dark	matter”	(DM)	and	“Dark	Energy”	(DE),	we	return	to	the	basic	
requirements	of	Einstein’s	field	equations,	to	explain	many	of	the	observations	of	galactic	formation	in	the	early	
universe.	Our	particular	focus	is	to	demonstrate	how	topological	equivalencies	to	the	Ricci	Tensor	(RT),	and	
Ricci	flow	(RF),	can	be	used	to	describe	the	measurements	we	associate	with	Dark	Matter	(DM).	This	paper	is	
structured	to	introduce	some	of	Bill	Thurston’s	concepts	in	topology	to	a	non-mathematically	oriented	audience	
as	well	as,	potentially,	shining	some	“light”	on	the	Field	Equations	for	those	familiar	with	GR.		In	Section-1.1,	we	
discuss	the	equivalencies	established	by	General,	and	Special,	Relativity	(GR),	with	particular	focus	on	the	
various	components	of	the	field	equations	and	their	relation	to	the	topological	limits	of	a	3-sphere.	In	Section-1.2,	
We	discuss	how	geometric	completeness	is	related	to	spin	invariance	at	all	scales	of	Lorentz	invariance.		As	
examples,	we	establish	equivalencies	to	Hubble	constant,	the	Schwarzschild	limits	at	the	horizon	of	a	black	hole	
and	the	Schrodinger	equations.	We	also	establish	the	equivalency	between	geometric	completeness,	topological	
spin	and	the	gravitational	wave	boundaries	associated	with	an	Einstein	ring.	In	Section	1.3,	we	discuss	intrinsic	
spin	and	the	establishment	of	BAO	(Baryonic	Acoustic	Oscillation),	and	a	dipole	moment,	in	the	Cosmic	
Microwave	Background	(CMB).	We	review	the	model	for	Hopf	spin	bifurcation	that	we	established	in	our	last	
few	papers	and	demonstrate	how	intrinsic	topological	spin,	and	phase	bifurcation,	establish	BAO	in	hyperbolic	
plane	of	the	CMB.	An	equivalency	between	topological	spin	and	the	Stefan-Boltzmann	equations	is	established.	
We	proceed	to	discuss	the	possibility	of	Hopf-Turing	spin	bifurcation	patterns	observable	in	the	PLANCK	
measurements	of	BAO	in	the	CMB.		In	Section	1.4,	we	finish	our	investigation	using	current	observations	of	the,	
surprising,	structure	and	complexity	in	the	early	universe,	including	the	early	appearance	of	SMBH	and	Little	
Red	Dots	(LRD).		We	focus	on	demonstrating	the	application	of	Ricci	flow	as	an	equivalency	to	measurements	in	
many	of	the	major	surveys	of	galactic	structure	in	the	early	universe.	As	a	point	of	interest	for	the	reader,	and	to	
assure	them	that	I	am	not	a	robot,	I	am	including	some	of	my	original	notes	regarding	the	application	of	the	field	
equations	towards	the	modeling	of	early	galactic	probabilities	(Figure	1).	



	

	
(Figure	1)	Some	of	my	early	notes	on	the	establishment	of	a	topological	definition	at	spin,	at	all	scales	of	Lorentz	invariance,	using	the	tensors	in	
Einstein’s	original	field	equations.	
	
1.1-Using	the	field	equations	to	set	the	topological	boundaries	for	General	Relativity,	DM	and	DE		
	
Einstein	used	an	equivalency	to	acceleration	to	describe	the	“force”	of	gravity.	He	also	demonstrated	that	every	
observer	experiences	this	acceleration	differently,	based	on	their	velocity	and	mass	[1].	In	this	discussion	we	
limit	the	equivalencies	found	in	Einstein’s	original	field	equations	to	the	boundaries	of	geometric	completeness	
established	by	Bill	Thurston,	on	a	3-sphere	[2].	If	you	are	familiar	with	our	previous	work,	defining	the	
topological	boundaries	for	DM,	you	know	that	we	have	been	using	the	Hyperbolic	and	Euclidean	planes	to	
describe	the	relation	between	DM	and	gravity	[8-14].	Gravity	exists	in	the	hyperbolic	plane	and	DM,	the	
tangential	Euclidean	plane.	As	Bill	Thurston	has	proven,	using	the	boundaries	of	completeness	on	a	3-sphere,	
hyperbolic	and	Euclidean	coordinates	have	different	rules	concerning	the	measurements	of	lengths	and	angles	
and	only	the	Euclidean	plane	can	support	parallel	measurements.	Hyperbolic	space	preserves	angles,	but	not	
lengths.	Unlike	Euclidean	space,	hyperbolic	space	cannot	admit	parallel	measurements	(Figure	2).	
	

	
	
(Figure	2)	Hyperbolic coordinates preserves angles, but not lengths. Thurston’s original drawings demonstrate that the Law of Sines and Fermat’s 
Theorem are both valid in hyperbolic space. In the center, a Thurston horosphere is illustrated using conformal closed curves.	On	the	right,	we	include	
the	3-conformal	surface	tensor	that	can	be	equated	to	the	stress	tensor	in	Einstein’s	field	equations.	
	
We	are	all	familiar	with	representations	of	GR	using	a	topological	funnel.	In	the	feild	equations,	the	vacuum	of	
space	is	a	smooth	zero,	represented	by	Einstein’s	cosmological	constant.	In	our	topological	equivalencies	to	GR,	
we	will	establish	a	zero	point	that	is	limited	by	the	definition	of	geometric	completeness	on	a	3-sphere.	This	
allows	us	to	establish	a	quantum	zero	point	in	the	field	equations,	that	is	the	inverse	of	our	topological	value	for	

the	Hubble	constant.		The	advantages	of	a	topological	definition	for	the	metric	tensor, 𝑔!" =
!!

!!!!
,	the	

cosmological	constant,	 Λ = !!!!

!!
= 𝐻! 	and	the	Hubble	constant	will	be	demonstrated	throughout	this	paper.	

However,	before	we	proceed,	it	may	be	best	to	review	the	various	components	of	the	field	equations	and	their	
functions.	We	ask	the	informed	reader	to,	for	the	moment,	excuse	these	gross	generalizations	of	Einstein’s	
equations.	Our	goal	with	this	paper	is	to	demonstrate,	to	larger	readership,	the	geometric	nature	of	GR	and	2-D	
topological	manifolds.	Clarity	is	our	only	goal	for	this	discussion.	The	field	equations	can	be	stated	as:	
	



𝐺!" =  𝑅!" −
!
!
𝑅𝑔!"			 	 	 	 	 	 	 	 	 (1)	

	
𝑅!" =  𝐺𝑇!" + 𝑔!"(𝑅 − Λ)	 	 	 	 	 	 	 	 	 (2)	
	 	 	 	 	 	 	 	
Where,	 𝐺!" 	is	the	Einstein	tensor,	 𝑅!" 	is	the	Ricci	tensor,	 𝑇!" 	is	the	energy-stress-momentum	tensor,	 𝑅 	is	
the	scalar	curvature,	 𝐺 ,	the	gravitational	constant,	 𝑔!" 	is	the	metric	tensor	and	 Λ 	is	Einstein’s,	infamous,	
cosmological	constant.	We	intend	to	demonstrate	that	everything	we	need	to	set	the	quantum,	and	relative,	
definitions	for	DE,	DM,	and	Astrophysical	spin,	is	in	the	original	field	equations.	Let’s	begin	by	discussing	the	
tensors	and	their	functions.		
	
𝑻𝝁𝒗 	–	The	energy-stress-momentum	tensor	creates	the	equivalency	to	acceleration	that	Einstein	used	to	describe	
gravity	in	terms	of	mass.	The	stress-momentum	tensor	can	be	equated	to	the	boundaries	of	four-momentum	on	a	2-
dimensional,	topological	manifold.		
𝑹𝝁𝒗 	–	The	Ricci	tensor	modifies	the	stress	momentum	tensor	based	on	the	geometry	of	space-time.	The	Ricci	
tensor,	and	Ricci	flow,	maintains	the	constant	positive	curvature	for	all	elements	described	in	equation	(2).		
𝒈𝝁𝒗 	–	The	metric	tensor	is	a	geometric	modifier	to	both	the	scalar	curvature	and	the	cosmological	constant.	The	
metric	tensor	allows	us	to	define	the	relation	between	distance	and	angles	in	the	hyperbolic	plane	of	GR	and	the	
Euclidean	plane	of	DM.	In	our	discussion	we	will	be	using	the	inverse	of	our	value	for	the,	topological	Hubble	
constant	to	define	the	actions	of	the	metric	tensor.		
	
	Like	the,	topological,	boundaries	of	a	3-sphere,	the	Ricci	tensor,	in	the	field	equations,	forces	a	right	angle	
between	hyperbolic	and	Euclidean	spaces	and	determines	the	relationship	between	lengths	and	angles.	The	
Ricci	tensor	is	a	mathematical	boundary	for	all	curves	related	to	scale.	As	scale	gets	smaller,	the	Ricci	tensor	and	
Ricci	flow,	force	the	topology	of	any	manifold	into	higher	curvatures.	As	we	can	see	in	Eq.	(1)	and	(2),	the	metric	
tensor	modifies	the	scalar	curvature, 𝑅 ,	and	Einstein’s	vacuum	constant, Λ n	and	defines	the	lengths	and	
angles	in	for	all	elements	of	the	field	equations.	We	will	be	using	the	inverse	of	our	topological	value	for	the	
Hubble	constant	to	represent	the	actions	of	the	metric	tensor.	This	will	allow	us	to	substitute	our,	topological,	

value	for	the	Hubble	constant,	 !!!
!

!!
,	into	the	field	equations	as	a	scalable	equivalency	to	the	cosmological	

constant,	without	defining	DE	as	a	“force”	or	“particle”.	
	

𝐻! =
!!!!

!!
= Λ	 	 	 	 	 	 	 	 	 	 (3)	

𝑅!" =  𝐺𝑇!" + 𝑔!"(𝑅 −
!!!!

!!
)		 	 	 	 	 	 	 	 (4)	

	
𝑅!" =  𝐺𝑇!" + 𝑔!"𝑅 − 1	 	 	 	 	 	 	 	 	 (5)	
	
If	the	metric	tensor	is	stated	as	the	inverse	of	the	vacuum	value	for	the	cosmological	constant	we	get:	
	

if: 𝑔!" =
!!

!!!!
	 	 	 	 	 	 	 	 	 	 (6)	

	

𝑡ℎ𝑒𝑛: 𝑅!" =  𝐺𝑇!" +
!!

!!!!
𝑅 − 1	 	 	 	 	 	 	 	 (7)	

	

𝑅!" −
!!

!!!!
𝑅 =  𝐺𝑇!" − 1	 	 	 	 	 	 	 	 	 (8)	

	

𝑅!" +
!!

!!!!
𝑅 + 1 =  𝐺𝑇!"	 	 	 	 	 	 	 	 	 (9)	

	
Ricci	flow,	the	Ricci	metric	tensor,	and	the	Ricci	scalar	are	defined	by	the	same	boundaries	in	the	hyperbolic	and	
Euclidean	planes	that	we	use	to	define	the	topological	Hubble	constant.	Topological,	boundaries	for	
completeness	in	the,	Euclidean,	and	hyperbolic	planes	is	maintained	by	the	Ricci	scalar	curvature	 𝑅 .	The	scalar	



curvature	is	a	topological	metric	that	sets	the	scale	of	curvature	of	the	Riemann	manifold	and	the	topological	
boundaries	for	Ricci	flow	in	the	hyperbolic	and	Euclidean	planes.	Unlike	the	tensors	it	modifies,	the	Ricci	scalar	
curvature	is	integer	based	and	can	be	used	to	describe	quantum	time	boundaries.	
	
2𝜋𝑖!

𝑐!
=
𝑡𝑜𝑝𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑝𝑙𝑎𝑛𝑒
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠 𝑙𝑖𝑚𝑖𝑡𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑙𝑖𝑔ℎ𝑡

=
 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠 𝑖𝑛 𝑡ℎ𝑒 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑝𝑙𝑎𝑛𝑒

𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠 𝑖𝑛 𝑡ℎ𝑒 ℎ𝑦𝑝𝑒𝑟𝑏𝑜𝑙𝑖𝑐,𝐺𝑅, 𝑝𝑙𝑎𝑛𝑒
	

	
Completeness	in	the	hyperbolic	plane	of	GR	is	maintained	by	Ricci	flow.	In	the	Euclidean	plane,	geometric	
completeness	results	in	the	measurements	we	associate	with	DM.	When	we	view	measurements	of	the	DM	halo	
through	a	“lens”	of	geometric	completeness,	we	can	begin	to	see	it	as	integral	to	GR	and	not	in	conflict	with	
quantum	mechanics.	Because	DM	can	be	measured	by	its	lensing	equivalencies,	strong	gravitational	lenses	are	
the	purest	example	of	the	observable	validity	of	the	field	equations	as	a	measurement	of	topological	DM.	
Therefore,	an	Einstein	ring	equivalency	is	the	most	accurate	measurement	the	effects	of	Euclidean	DM	in	the	
hyperbolic	plane	of	GR.	In	our	papers,	Measuring	the	Universe	Parts	I	,	II	(2023-24),	we	demonstrated	an	
equivalency	between	the	limits	of	geometric	completeness	and	the	limits	of	GR,	represented	by	the	boundaries	
of	an	Einstein	ring,	[11]	(Figure	3).	

	
(Figure	3)		Geometric	completeness	can	be	equated	to	the	strong	gravitational	lensing	measurements	of	an	Einstein	ring.	
	
Geometric	completeness	in	the	hyperbolic	plane	can	be	equated	to	geometric	completeness	of	the	Ricci	flow	in	
the	field	equations.	An	Einstein	ring	equivalency	allows	us	to	tie	topological	spin	directly	to	Ricci	flow	in	the	field	
equations.	Because	DM	can	be	measured	by	its	lensing	equivalencies,	an	Einstein	ring	equivalency	is	the	most	
accurate	way	we	can	measure	the	effects	of	Euclidean	DM	in	the	hyperbolic	plane	of	GR.	Our	ring	equivalencies,	
and	topological	value	for	spin,	at	all	scales	of	Lorentz	invariance,	allow	us	to	equate	to	all	measurements	
associated	with	gravitational	waves.	In	the	next	section	we	will	demonstrate	how	we	can	use	geometric	
completeness	and	the	field	equations,	to	set	a	common,	and	scale	invariant,	definition	for	quantum	and	
astrophysical	spin.	
	
1.2-A	scale-invariant	definition	of	spin	for	quantum	and	relative	measurements	
	
In	the	current	model	of	particle	physics,	spin	is	an	intrinsic	property	of	matter	at	the	quantum	scale.	At	quantum	
scales,	spin	is	integer	based.	Fermions	carry	half	integer	spins,	 !

!
, !
!
, !
!
, 𝑠 = !

!
	and	Bosons	carry	integer	spins.	It	

is	important	to	remember	that	quantum	spin	is	a	reflection	of	the	rules	of	probability	and	the	Pauli	exclusion	
principle.	Particles	are	not	actually	spinning.	In	quantum	physics,	spin	is	a	measurement	of	intrinsic	angular	
momentum	as	a	probability	[3].	This	is	not	the	same	as	a	“spinning”	mass.	Quantum	probabilities	are	always	held	
to	the	principal	of	uncertainty.	A	“spinning”	mass	is	a	continuous	measurement	of	angular	momentum	that	is	not	
allowed	under	this	principle.	In	order	for	GR	to	accommodate	the	probabilities	associated	with	Fermi-Dirac	and	
Bose-Einstein	statistics	it	is	important	that	they	share	a	common	definition	of	spin.	An	astronomical	definition	of	
spin	must	be	compatible	with	quantum	probabilities	in	order	conform	to	any	definition	of	Lorentz	invariance	at	all	
scales.	A	topological	definition	of	spin	allows	for	us	to	equate	quantum	and	relative	measurements	at	all	scales	of	
probability.	Because	there	is	no	such	thing	as	a	zero	probability	measurement,	the	limits	of	geometric	
completeness	on	a	3-sphere	will	allow	us	to	equate	topological	spin	to	statistical	completeness.		
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We	can	tie	geometric	completeness	to	the	proof	of	the	Poincare	conjecture,	produced	by	Gregory	Perelman.	
Perelman	used	Ricci	flow	and	the	Ricci	scalar	to	establish	an	equivalency	to	Riemannian	geometric	completeness	
[4].		His	proof	of	the	Poincare	conjecture	also	proved	the	limits	on	a	3-sphere,	established	by	Thurston.	Equating	
topological	spin	to	geometric	completeness	allows	us	to	integrate	statistical	spin	definitions	into	the	field	
equations.	Statistical	spin	is	integer	based,	therefore,	we	must	find	a	common	component	of	the	field	equations	
that	is	limited	to	integers.	Only	one	of	the	elements	of	the	original	field	equations	uses	an	integer-base.	The	Ricci	
scalar	curvature	is	an	integer-based	metric	that	will	allow	us	to	equate	to	quantum,	and	statistical,	spin	to	Ricci	
flow,	in	the	field	equations,	using	the	topological	limits	of	a	3-sphere:	
	

𝑅!" +
!!

!!!!
𝑅 + 1 =  𝐺𝑇!"	 	 	 	 	 	 	 	 	 (10)	

	
!!

!!!!
𝑅 =  𝐺𝑇!" − 𝑅!" − 1	 	 	 	 	 	 	 	 	 (11)	

	

𝐻! =
!!!!

!!
= !

!!"!!"!"!!
	 	 	 	 	 	 	 	 	 (12)	

	
Because	the	Ricci	scalar	curvature	is	stated	as	an	integer:	
	

𝑎! = 2𝜋𝑖! = !!!

!!"!!"!"!!
	 	 	 	 	 	 	 	 	 (13)	

	
“Mass”,	in	both	the	hyperbolic	and	Euclidean	planes,	is	defined	by	the	Ricci	scalar	curvature	modifying	the	
tensors	in	the	field	equations.	We	can	use	our	topological	value	for	spin	to	establish	a	quantum	zero	point	for	
measurements	of	mass	in	the	hyperbolic	plane	of	GR:	
	

𝑖𝑓: 𝑀! =
!

!!"!!"!"!!
= !"#$%&'&(&)) !" !!! !"#$%&'() !"#$%

!"#$%&"!"'( !" !!! !!"#$%&'( !"#$%
	 	 	 	 	 	 (14)	

	
𝑎! = 2𝜋𝑖! = 𝑀! 𝑐!	 	 	 	 	 	 	 	 	 (15)	
	
We	now	have	a	definition	of	mass,	 𝑀! ,	using	Ricci	flow,	that	that	brings	us	back	to	Einstein’s	original;	
equivalency	between	energy	and	matter.	We	can	demonstrate	scale	invariance	by	equating	our	value	for	
topological	spin	to	the	Schwarzschild	equations	and	the	Schrodinger	equations	describing	the	quantum	limits	of	
the	wave	function.	Schwarzschild	limits	are	easily	equated	to	our	topological	definition	for	intrinsic	spin	at	the	
scale	of	a	BH:	
	
!!
!!
= !!!!

!!
= !!"

!!
= 𝐻!	 	 	 	 	 	 	 	 	 (16)	

	
At	quantum	scales,	the	topological	spin-equivalencies	we	have	established	can	be	integrated	into	the	
Schrodinger	wave	equations	[3]:	
	

𝑖ℏ !
!"
𝜓 𝑥, 𝑡 = 𝐻 𝜓	 	 	 	 	 	 	 	 	 (17)	

	

𝑎! = 2𝜋𝚤! = !!

!
	 	 	 	 	 	 	 	 	 	 (18)	

	

𝑎! = 2𝜋𝚤! = !!

!
= 𝑖ℏ !

!"
𝜓 𝑥, 𝑡 = 𝐻 𝜓	 	 	 	 	 	 	 (19)	

	
2𝜋𝚤! = !!

!!
!
!"
𝜓 𝑥, 𝑡 = 𝐻 𝜓	 	 	 	 	 	 	 	 	 (20)	

	
!
!
= !

!"
𝜓 𝑥, 𝑡 = 𝐻 𝜓 = 2𝜋𝚤! = 𝑎!	 	 	 	 	 	 	 	 (21)	



	

𝑎! = 2𝜋𝚤! = !!

!
= !

!
		 	 	 	 	 	 	 	 	 (22)	

	
Integrating	our,	topological,	definition	of	spin	into	the	Schrodinger	equation	allows	us	to	describe	relative	and	
quantum	wave	probabilities	at	any	scale.	In	the	next	section	we	will	demonstrate	how	we	can	use	our	
topological	value	for	completeness,	in	the	hyperbolic	and	Euclidean	planes,	to	explain	the	establishment	of	a	
dipole	moment	and	Baryonic	Acoustic	Oscillations	(BAO)	in	the	Cosmic	Microwave	Background	(CMB).	
	
1.3-Rici	flow	and	Baryonic	Acoustic	Oscillations	in	the	CMB	
	
Bose-Einstein,	Fermi-Dirac	and	Maxwell-Boltzmann	statistics	have	very	specific	topological	boundaries	but	
share	a	universal	scalability	associated	with	rules	of	completeness.	In	the	early	universe,	all	three	statistical	
variations	work	together	as	phase	variations.	As	we	have	been	discussing,	a	common	definition	of	spin,	at	global	
local	scales	allows	us	to	model	hyperbolic	GR	and	the	Euclidean	DM	halo	simultaneously.	Because	DM	exists	in	
the	Euclidean	plane,	we	can	only	measure	its	effects	in	momentum	space.	In	our	last	few	papers,	we	established	
the	global,	and	local,	nature	of	the	statistical	phase	transitions	at	high	redshifts.	Global	phase	probabilities	are	
Euclidean,	like	DM,	and	local	phase	probabilities,	like	the	laws	of	Thermodynamics	are	tied	to	the	speed	of	sound	
and	matter	wave	potential	in	the	hyperbolic	plane	[14].	Both	global	and	local	phases	are	driven	by	a	common	
phase	bifurcation	transition.	In	our	model	of	the	early	universe	Hopf-bifurcation	adds	intrinsic	spin	to	both	
quantum	and	relative	measurements.	We	use	a	Hopf	bifurcation	transition	between	statistical	phases	to	
establish	intrinsic	spin	at	all	scales	of	probability,	(Figure	4).			
	

	
(Figure	4)	Global	and	local	phase	probabilities	are	driven	by	the	topological	requirements	for	geometric	completeness	in	both	the	hyperbolic	plane	
of	GR	and	the	Euclidean	halo	of	DM.	Hopf-bifurcation	complex	transitions	adds	intrinsic	spin	to	all	scales	of	Lorentz	invariance.	
	
Hopf	fibrations	are	well-known	topological	equivalents	to	the	boundaries	of	a	3-sphere.	Vectored	Hopf	
fibrations,	in	hyperbolic	space,	can	be	equated	to	a	torus	in	Euclidean	space	[5,6,7].	It	is,	perhaps,	best	to	assume	
the	reader	is	not	familiar	with	the	mathematics	associated	with	Hopf	fibrations.		For	this	discussion,	all	we	must	
remember	is	that	every	Hopf	fiber	or	bundle	can	be	reduced	to	a	circle	[5,6,7].	Therefore	all	Hopf	transitions,	or	
equivalencies	to	a	3-sphere,	are	valid	under	our	proof	of	Geometric	Completeness.		
	
A	compelling	example	of	Hopf-Turing	spin	bifurcation	at	all	scales,	can	be	seen	in	the	Planck	measurements	of	
Baryonic	Acoustic	Oscillations	(BAO)	in	the	Cosmic	Microwave	Background	(CMB).	The	measurement	of	
Baryonic	Acoustic	Oscillation	in	the	early	universe,	and	its	growth	through	time,	is	a	global	phase	probability	in	
the	hyperbolic	plane.	PLANCK,	DESI	and	Sloan	Digital	Sky	Survey	measurements	of	BAO	establish	an	intrinsic	
dipole	moment	in	the	CMB	[15,16,17]	
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(Figure	5)	The	measurement	of	BAO	in	the	CMB	establishes	the	speed	of	sound	based	on	the	establishment	of	a	dipole	moment.	On	the	left	we	show	
the	establishment	of	BAO	as	a	radius	for	the	speed	of	sound.	On	the	right	we	show	how	measurements	of	BAO	scale	across	redshifts	as	measured	by	
the	Sloan	Digital	Sky	Survey.	Images:	The	Sloan	Digital	Sky	Survey,	The	PLANCK	Collaboration	and	The	DESI	Collaboration	[ref	15,16,17]	
	
The	establishment	of	a	dipole	moment	sets	the	speed	of	sound	for	all	baryonic	matter	in	the	early	universe.	We	
can	use	the	establishment	of	intrinsic	topological	spin	to	equate	to	these	measurements.	Vectored	Hopf	spin,	in	
the	complex	plane,	establishes	the	oscillation	for	all	statistical	potential	in	the	hyperbolic	plane	[5,6,7].	We	can	
equate	Hopf	spin	oscillation,	in	the	complex	plane,	to	a	global	phase	requirement	for	all	BAO.		Dipole	
measurements	establish	micro-fluctuations	in	temperature	in	CMB	and	follow	Maxwell-Boltzmann	statistical	
probabilities	for	a	perfect	blackbody.		Inserting	our	topological	value	for	spin	into	the	Stefan-Boltzmann	
equations	creates	an	equivalency	to	the	laws	of	thermodynamics,	and	the	establishment	of	a	dipole	moment	in	
the	CMB.	The	Stefan-Boltzmann	equations	equate	energy	and	Luminosity	to	temperature	[3]:	
	
𝑃 = 𝜖𝜎𝐴 𝑇!

! − 𝑇!
! 	 	 	 	 	 	 	 	 	 (22)	
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Where	𝑃 = 𝑝𝑜𝑤𝑒𝑟, 𝜖 = 𝑒𝑚𝑚𝑖𝑠𝑖𝑣𝑖𝑡𝑦 = 1 𝑓𝑜𝑟 𝑎𝑛 𝑖𝑑𝑒𝑎𝑙 𝑏𝑙𝑎𝑐𝑘𝑏𝑜𝑑𝑦 ,𝐴 = 𝑎𝑟𝑒𝑎, 𝑎𝑛𝑑 𝑇!
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𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒.	Our	value	for	topological	spin	can	be	substituted	for	 𝑃 ,	to	return	us	to	the	
equivalencies	to	the	field	equations	in	the	hyperbolic	plane	defined	by	thermodynamic	probability:	
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And	if	𝑟! = 𝑖!,	then:	
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For	all	scale	invariant	spin,	measured	using	the	Stefan-Boltzmann	equations:	
	
𝑎! = 2𝜋𝑖! = !"

!
= 𝐵𝑎𝑟𝑦𝑜𝑛𝑖𝑐 𝐴𝑐𝑐𝑜𝑢𝑠𝑡𝑖𝑐 𝑂𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑡ℎ𝑒 𝐶𝑀𝐵	 	 	 	 	 (33)	

	
Topological	spin,	at	quantum	scales,	establishes	the	dipole	moment	an	intrinsic	spin	of	 !

!
𝑎𝑛𝑑 1 	for	all	BAO.	

We	can	use	the	same	technique	to	establish	topological	equivalencies	to	Eddington	accretion	boundaries,	
between	outward	radiation	pressure	and	the	pull	of	gravity.	
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Where	𝐿 = 𝑙𝑢𝑚𝑖𝑛𝑜𝑠𝑖𝑡𝑦, 𝜅 = 𝑜𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑠𝑡𝑒𝑙𝑙𝑎𝑟 𝑚𝑒𝑑𝑖𝑢𝑚,𝑃! = 𝑔𝑟𝑎𝑣𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙, 𝑎𝑛𝑑 𝑃! =
𝑜𝑢𝑡𝑤𝑎𝑟𝑑 𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒.	We	can	equate	Eddington	accretion	boundaries	to	global	and	local	phase	
probabilities	by	equating	the	opacity	of	the	interstellar	medium	to	local	phase	requirements	in	the	hyperbolic	
plane.	The	opacity	of	the	local	interstellar	medium,	in	the	hyperbolic	plane	creates	a	local	“reaction”	to	the	global	
“diffusion”,	of	Euclidean	phase	probabilities:	
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The	result,	of	the	establishment	of	a	dipole	moment	in	the	CMB,	is	the	formation	of	a	Hopf-Turing	pattern	
between	global	spin	diffusion	and	local	spin	reaction	phases.		We	will	assume	the	reader	is	somewhat	familiar	
with	Turing	patterns,	but	not	an	expert.	While	Turing	patterns	are	most	often	associated	with	patterns	in	
Biology,	the	basis	is	geometric	and	stochastic.	A	simple	way	to	think	about	Turing	bifurcation	is	as	an,	
equidistant,	pattern	forming	on	a	2-D	surface	because	of	a	reaction-diffusion	phase	difference	between	two	ideal	
fluids.	When	Hopf,	complex,	spin	is	added	to	a	Turing	pattern	the	result	is	a	Hopf-Turing	bifurcation,	pattern,	
[5,6,7]	(Figure	6).	
	

	
(Figure	6)	Global	and	local	phase	probabilities	are	driven	by	the	topological	requirements	for	geometric	completeness	in	both	the	hyperbolic	plane	
of	GR	and	the	Euclidean	halo	of	DM.	The	opacity	of	the	local	interstellar	medium,	in	the	hyperbolic	plane	creates	a	local	“reaction”	to	the	global	
“diffusion”,	of	Euclidean	phase	probabilities.	The	result	is	the	formation	of	a	Turing	pattern.	When	Hopf,	complex,	spin	is	added	to	a	Turing	pattern	
the	result	is	a	Hopf-Turing	bifurcation,	pattern.	(Images:	Y.	Chen,	X.	Zeng,	B.	Niu	“Spatiotemporal	patterns	induced	by	Turing-Hopf	interaction	and	
symmetry	on	a	disk”	(2024)[ref	7]	
	
Hopf-Turing	bifurcation	is	scale	invariant	and	is	held	the	same	boundaries,	for	completeness	on	a	3-sphere,	that	
we	have	established	in	the	field	equations	for	our	definition	of	topological	spin.	The	difference	between	
hyperbolic	and	Euclidean	phase	spin	velocities	forms	the	phase	difference	required	for	the	formation	of	a	HTB	
pattern.		A	Hopf	transition	is	a	topological	transition	through	the	imaginary	plane.	Because	our	definition	of	spin	
exists	in	the	imaginary	plane,	we	are	able	to	use	phase	bifurcation	to	drive	early	galactic	probabilities	at	global	



and	local	scales.	In	fact,	vectored	Hopf-Turing	bifurcation	patterns	growing	on	the	surface	of	a	sphere	and	torus	
present	the	same	familiar	pattern	that	we	have	come	to	associate	with	PLANCK	measurements	of	the	CMB	
(Figure	7).		
	

	
	
(Figure	7)	Vectored	Hopf-Turing	bifurcation	patterns	growing	on	the	surface	of	a	sphere	and	torus	present	the	same	familiar	pattern	that	we	have	
come	to	associate	with	PLANCK	measurements	of	the	CMB.	(Images:	]	Sánchez-Garduño,	Krause,	Castillo,	Padilla	“Turing–Hopf	patterns	on	growing	
domains:	The	torus	and	the	sphere”	Journal	of	Theoretical	Biology,	Volume	481,	(2019)	and	The	PLANCK	Collaboration)	[ref	5,15]	
	
Our	equivalencies,	to	measurements	of	the	CMB,	are	just	another	example	of	the	flexibility	of	using	a	topological	
definition	of	spin	that	functions	at	all	scales	of	Lorentz	invariance.	In	our	next	section	we	will	explore	how	Ricci	
flow,	spin,	and	topological	completeness	determine	probabilities	for	galactic	formation	in	the	early	universe.	As	
we	have	established,	DM	halos,	for	galaxies	and	clusters,	are	a	Euclidean	requirement	for	any	vectored	spin	in	
the	hyperbolic	plane	of	GR.	Topological	spin	transitions	drive	the	global	and	local	probabilities	in	the	hyperbolic	
and	Euclidean	plane.	It	is	intrinsic	Hopf	spin	that	drives	the	4-momentum	at	astrophysical	scales	that	we	
associate	with	DM	measurements.	A	statistical	frame	of	reference	is	scale	invariant	and	is	able	to	describe	all	
aspects	of	quantum	mechanics.	In	our	final	section,	we	will	explore	how	topological	spin	and	Hopf-Turing	phase	
bifurcation	drive	the	evolution	of	probabilities	in	the	early	universe	at	global	and	local	scales.		
	
1.4-	Global	and	local	phase	evolution	at	astrophysical	scales			
	
We	have	established	DM	as	a	global	phase	probability	in	the	Euclidean	plane.	Local	measurements	of	GR	are	
limited	to	the	hyperbolic	plane.	In	both	planes,	Bose-Einstein,	Fermi-Dirac	and	Maxwell-Boltzmann	statistics	
have	very	specific	topological	boundaries	but	share	a	universal	scalability.	In	the	early	universe,	all	three	
statistical	variations	work	together	as	global	and	local	phase	variations.	Complicated	structures,	like	SMBH,	
globular	clusters,	and	spirals,	at	high	red	shift	are	all	probabilities	in	conformal	topological	space.	Bill	Thurston	
reminds	us,	that,	there	as	many	homeographic	knot	equivalents	as	there	are	galaxies	in	the	universe	[2](Figure	
9).	
	

	
	
(Figure	9)	There	are	as	many	homeographic	knot	equivalents	as	there	are	galaxies	in	the	universe.	Knots	can	combine	to	form	larger	structures	like	
galactic	clusters	and	the	galactic	web	while	still	maintaining	hyperbolic	completeness.	We	show	just	a	few	examples	of	Thurston’s	drawings	of	knot	
equivalents	next	to	a	compilation	of	Hubble	galaxy	images.	
	
Conformal	topology	of	Ricci	flow	in	the	field	equations,	and	a	scale	invariant	definition	of	spin,	is	all	we	need	to	
describe	the	early	appearance	of	SMBH,	“Little	Red	Dots”	and	fully	developed	spiral	galaxies	in	the	early	



universe.	We	have	established	an	equivalency	between	Lorentz	invariant	“mass”	and	the	measurement	of	
geometric	completeness	in	the	hyperbolic	plane	of	GR:	
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Our	topological	equivalency	to	Lorentz	invariant	mass	allows	us	to	cross	the	imaginary	“boundary”	between	
relative	and	quantum	probability,	at	all	scales	of	measurement.	To	model	conformal	topological	probabilities,	in	
the	early	universe,	we	establish	a	vector	for	spin	in	the	hyperbolic	plane	of	GR	that	acts	as	a	local	phase	
requirement.	This	can	be	thought	of	as	an	equivalency	to	Einstein’s	cosmological	constant,	acting	in	opposition	
to	our	value	for	the	topological	Hubble	constant.	At	high	redshifts,	the	ratio	between	local	hyperbolic,	and	global	
Euclidean,	conformal	spin	topology	establishes	the	geometric	potential	for	LRD,	globular	clusters	and	dwarf	
galaxies	(Figure	8).	
	

	
(Figure	8)	Global	and	local	phase	probabilities	are	driven	by	the	topological	requirements	for	geometric	completeness	in	both	the	hyperbolic	plane	
of	GR	and	the	Euclidean	halo	of	DM.	(a.)	Prolate	spheroids	have	the	highest	ratio	of	Euclidean	DM	to	hyperbolic	GR	as	observed	in	LRD.	(a.)	The	
spherical	geometry	of	globular	clusters	and	star	clusters	is	a	result	of	a	balance	between	hyperbolic	and	Euclidean	conformal	spin.	(c.)	In	the	local	
universe,	the	continuing	expansion	of	hyperbolic	spin	flattens	Euclidean	DM	to	an	oblate	torus	and	the	hyperbolic	plane,	into	a	Hopf	spiral.	
	
Prolate	spheroids	have	the	greatest	Euclidean	to	hyperbolic	ratio,	representing	the	highest	DM	ratio.	Prolate	
conformal	topology	can	be	seen	in	the	extreme	compaction	of	“Little	Red	Dots”	(LRD)	currently	being	observed	
at	very	high	redshifts.	Globular	clusters,	following	spherical	conformal	topology,	have	the	next	highest	ratio	of	
Euclidean	to	hyperbolic	spin.	It	is	only	in	our	own	Era	that	we	find	a	balance	between	hyperbolic	and	Euclidean	
spin	topologies,	resulting	in	the	formation	of	spiral	galaxies	in	conformal	oblate	geometry.	Because	topological	
spin	is	scale	invariant,	any	of	these	geometries	can	exist	at	any	redshift,	however	the	scale	may	vary.	A	good	
example	is	the	high	intrinsic	spin	we	see	in	dwarf	galaxies.	Dwarf	galaxies	show	many	of	the	traits	of	their	much	
larger	cousins,	but	contain	a	higher	intrinsic	spin	because	of	the	compaction	of	the	conformal	topological	curves	
at	smaller	scales.	The	conformal	topology	of	the	early	universe	allows	for	the	simultaneous	development	of	
complicated	structures	as	distinct	probabilities	following	the	same	local	and	global	phase	rules:	
	
Super	Massive	Black	Holes	(SMBH)-	In	our	paper	describing	a	black	hole	as	an	ideal	spin	capacitor,	we	used	
Noether	potential	to	describe	spin	[10].	The	reason	we	did	this	is	simple.	Noether	potential,	and	Noether	
current,	are	able	to	describe	simultaneous	real	and	imaginary	states.	Noether	current	carries	three	charge	states	
positive,	negative	and,	simultaneous,	positive	and	negative.	This	apparent	paradox	is	perfectly	acceptable	within	
the	rules	of	quantum	probability.	The	early	appearance	of	quantum	black	holes	as	actual	quantum	“holes”	allows	
us	to	equate	the	early	appearance	of	SMBH	to	the	knot	topology	of	Bill	Thurston.	DM	halos	can	be	equated	to	a	
conformal	torus	in	Euclidean	space.	The	early	appearance	of	SMBH,	as	complete	quantum	objects,	is	actually	an	
expectation	of	this	model	and	not	a	surprise	development	[15-23].	
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Little	Red	Dots	(LRD)-	LRD	exhibit	many	indicators	that	they	are	driven	by	a	central	AGN	in	a	compact	pristine	
environment	of	gas.	Observations	of	LRD	show	a	characteristic	broad	emission	line,	indicative	of	very	high	
velocity	gas	in	the	accretion	disk	of	a	BH.	The	prolate	geometry	exhibited	by	LRD	indicate	a	very	high	DM/mass	
ratio.	In	terms	of	conformal	topology,	the	curves	are	compressed	in	the	hyperbolic	plane	of	GR,	which	forces	the	
increase	in	gas	pressure	feeding	the	SMBH.	[19,20,23].		
	
Globular	clusters	(GC)	and	star	clusters	(SC)-	The,	spherical,	geometry	of	a	cluster	creates	an	equivalency	between	
Euclidean	and	hyperbolic	spin	probabilities.	Both	galactic	globular	clusters	and	star	clusters	exhibit	a	central	
hyperbolic	spherical	geometry	of	GR	that	spins	with	the	additional	intrinsic	spin	in	the	Euclidean	plane	that	we	
measure	as	DM.		Although	globular	clusters	and	star	clusters	exist	at,	vastly,	different	scales,	they	exhibit	the	
same	conformal	topology	[15-23].		
	
Spiral	Galaxies	(SG)	and	Barred	Spiral	Galaxies(BSG)-	SG	and	BSG	have	the	lowest	Euclidean/hyperbolic	ratios	
and	are	driven	by	the	actions	in	the	hyperbolic	galactic	plane.	The	central	SMBH	in	these	galaxies	forces	the	
topology	of	the	spiral.	SG	and	BSG	exhibit	the	clearest	observable	example	of	Hopf	intrinsic	spin	at	all	scale	of	
probability.	In	spirals,	local	and	global	phase	probabilities	drive	the	conformal	topology	of	the	galactic	plane.	We	
recommend	you	read	our	last	paper,	“Galaxies	as	probabilities”	(Blackwood,	2024),	for	a	complete	discussion	of	
galactic	probabilities	driven	by	phase	bifurcation	[13].	
	
Conclusions:		
	
In	this	discussion,	we	have	demonstrated	an	equivalency	between	Ricci	flow	in	the	field	equations	and	the	
topological	boundaries	for	geometric	completeness	established	on	a	3-sphere,	by	Bill	Thurston.	Using	a	
topological	value	for	spin,	we	demonstrated	equivalencies	to	The	Schrodinger	equations,	Schwarzschild’s	
boundaries	at	the	horizon	of	a	BH,	The	Eddington	equations,	the	Stefan-Boltzmann	equations	and	Einstein’s	field	
equations.	In	addition,	we	believe	we	may	be	the	first	to	apply	Hopf-Turing	boundaries	to	explain	the	
establishment	of	BAO	in	the	CMB.	We	discussed	the	probabilities	associated	with	the	appearance	of	SMBH,	LRD,	
Globular	Clusters	and	Spiral	Galaxies,	in	the	early	universe	and	illustrated	the	evolution	of	intrinsic	spin	in	the	
Euclidean	and	hyperbolic	planes.	The	equivalencies	we	have	established	to	the	fundamental	laws	of	physics,	
using	the	field	equations,	are	what	anyone	should	expect	of	a	Lorentz	invariant	model	that	is	scale	invariant	and	
able	to	describe	all	aspects	of	quantum	and	relative	measurement.	A	common,	topological,	definition	for	spin	can	
bridge	the	gap	between	GR	and	quantum	probability,	beautifully.	
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