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Abstract:		
	
In	this	discussion,	on	probability	and	measurement,	we	explore	the	probabilities	associated	with	the	galactic	
boundaries	we	have	established	for	gravity,		“Dark	Matter”	(DM)	and	“Dark	Energy”	(DE).	We	demonstrate	a	clear	
solution	to	the	current	tension	between	measurements	of	the	Hubble	constant,	(𝐻!),	using	measurement	frames	of	
reference	(MFR),	for	global	and	local	galactic	phase	probabilities.	We	show	that	all	global	measurements	of	𝐻!	
require	a	local	calibrator	for	the	establishment	of	any	distance	ladder.	Using	the	phase	probabilities	associated	with	
Fermi-Dirac	statistics	and	De-Broglie	matter	waves,	we	explore	how	local	calibrators	establish	both	mode	and	
mean	for	any	global	measurements	of	the	Hubble	constant,	and	demonstrate	why	measurements	using	the	Tip	of	
the	Red	Giant	Branch	(TRGB),	carbon	stars	(JAGB)	and	water	masers	are	connected	to	boundaries	established	by	
the	galactic	central	black	hole	(BH).	In	this	paper	we	also	demonstrate	the	nature	of	global	phase	measurements	
and	discuss	why	both	measurements	of	the	Cosmic	Microwave	Background	(CMB)	and	The	Leavitt	Law,	using	SN1a	
Supernova	cannot	be	used	as	local	distance	ladders,	without	a	local	distance	calibrator.	Our	concluding	discussion	
establishes	the	galactic	probabilities	in	the	early	universe	that	allow	for	the	formation	of	Super	Massive	Black	Holes	
(SMBH),	Galactic	Clusters,	(GC)	and	Spiral	Galaxies	(SG).	Local	and	global	phase	probabilities	are	then	related	to	
the	topological	limits	we	established	in	our	recent	papers,	“Measuring	the	Universe	Parts	I	and	II”.	
	
Introduction	
	
We	will	assume	the	reader	is	familiar	with	our	earlier	work,	as	we	explore	galactic	probabilities	for	
measurement	in	a	mathematically	closed	universe.	As	you	will	remember,	our	previous	two	papers,	“Measuring	
the	Universe	Parts	I	and	II”,	established	the	topological	boundaries	for	gravity,	DM	and	DE.	We	demonstrated	the	
Λ𝐶𝐷𝑀	standard	model,	and	all	“forces”	in	that	model,	can	be	equated	to	measurement	frames	of	reference,	
(MFR)	limited	by	statistical	probability.	In	this	paper,	we	will	open	with	a	quick	review	of	the	topological	
boundaries	for	measurement	probabilities	in	real	and	imaginary	space	and	review	the	nature	of	both	Hyperbolic	
and	Euclidean	MFR	at	galactic	scales	and	discuss	how	statistical	MFR	can	be	equated	to	all	“forces”	in	the	current	
standard	model	of	particle	physics.	We	follow	with	Section	1.1-	Establishing	a	topological	mean	for	global	and	
local	phase	probabilities,	establish	both	the	global	and	local	phase	mean	for	all	Lorentz	invariant	probabilities	at	
global	scales.	We	tie	the	local	mean	directly	to	measurements	of	the	central	BH.	We	then	discuss	the	nature	of	
local	galactic	phase	measurements	limited	by	Fermi-Dirac	statistical	boundaries.	We	then	establish	the	link	
between	the	Fermi-Dirac	mean	and	measurements	of	degenerate	matter	in	TRGB	stars.	Section	1.2-	Establishing	
the	local	galactic	mode	with	De-Broglie	matter	waves	and	the	fine	structure	constant,	establishes	the	local	phase	
mode	using	measurements	of	JAGB	Carbon	stars	and	the	limits	established	by	De-Broglie	probabilities	at	the	
quantum	scale.	Section	2.0-Global	phase	probability	and	the	Planck	constant,	discusses	the	global	nature	of	the	
Planck	constant	and	provides	a	quick	summary	chart	of	the	galactic	probabilities	as	they	are	related	to	local	and	
global	phase	probabilities	and	demonstrate	how	measurements	of	current	standard	candles,	(TRGB,	JAGB)	can	
be	equated	to	local	phase	boundaries	through	their	quantum	boundaries.	Section	2.1	–	The	Leavitt	Law	as	a	
global	measurement	of	the	least	action	principle	discusses	the	current	tension	between	measurements	of	the	
Hubble	constant	and	why	measurements	of	the	Leavitt	Law	cannot	be	used	as	a	local	distance	ladder	without	a	
local	calibrator.		We	demonstrate	that	both	the	Leavitt	Law	and	Cosmic	Microwave	Background	(CMB)	act	as	
global,	and	flat,	measurements	of	the	Planck	constant.	Our	final	section,	Section	3.0	–	Phase	probabilities	in	the	
early	universe,	reviews	some	of	the	recent	JWST	results	and	links	the	early	appearance	of	Super	Massive	Black	
Holes	(SMBH),	Galaxy	Clusters	(GC)	and	Spiral	Galaxies	(SG)	to	local	and	global	phase	probabilities.		
	



1.0	–	Measurement	frames	of	reference,	topology	and	statistical	probability	
	
In	Part	I	of	“Measuring	the	Universe”	[21],	we	introduced	a	new	model	for	the	early	universe	that	explains	the	
nature	of	DE	and	DM	using	the	limits	of	geometric	completeness,	conformal	topology	and	statistical	probability.	
We	demonstrated	that	all	“forces”	in	the,	current,	standard	model	of	physics,	can	be	equated,	statistically,	and	
geometrically,	to	complete	measurement	frames	of	reference.	In	our	model,	all	measurement	frames	of	reference	
are	mathematically,	geometrically	and	statistically	closed	measurements.	In	Part	II	[22],	we	established	the	
closed	nature	of	statistical	frames	of	reference	and	tied	them,	directly	to	the	topology	of	Bill	Thurston	and	the	
limits	of	the	3-sphere	[1].	The	closed	nature	of	measurement	theory	is	in	perfect	alignment	with	both	General	
Relativity	(GR)	and	quantum	theory	and	can	provide	a	natural	bridge	between	the,	seemingly	opposing,	frames	
of	reference.	As	we	have	demonstrated,	many	times,	completeness	in	measurement	theory	and	topology	also	
allows	us	to	equate	this	model	to	the	statistical	probabilities	associated	with	the	current	model	of	High	Energy	
Particle	Physics	(HEP),	Quantum	Chromo-dynamics	(QCD)	and	Electroweak	Theory	(EW).	In	this	discussion,	we	
will	explore	how	statistical	probability	and	geometric	completeness,	at	the	quantum	scale,	are	related	to	
measurement	frames	of	reference,	and	probability,	at	galactic	scales.	The	topology	of	completeness,	defined	by	
Thurston’s	limits	on	a	3-sphere,	can	provide	the	scaffolding	for	measurement	theory	at	any	scale	(Figure	I).	
	

	
	
(Figure	1)	The	conformal	Hyperboloid	metric,	described	by	Thurston,	can	be	tied	to	the	conic	and	parabolic	components	of	Black	Hole	Jets	in	AGN	as	
well	as	the	quantum	probabilities	associated	with	measurements	of	topological	insulators.	
	
Topological	completeness	at	quantum	and	galactic	scales,	allows	us	to	equate	different	measurement	frames	of	
reference	and	model	all	aspects	of	the	current	standard	model	of	physics	without	the	need	for	“fields”	or	
“forces”.	We	use	these	principles	to	explain	the	current	“tension”	between	measurements	of	the	Hubble	constant	
and	the	early	appearance	of	Super	Massive	Black	Holes	(SMBH),	Galaxy	Clusters	(GC)	and	Spiral	Galaxies	(SG).		
In	the	following	sections	we	shall	demonstrate	how	topological	completeness	and	statistical	probability	form	the	
basis	for	global	and	local	phase	probabilities	at	the	galactic	scale,	driven	by	quantum	statistical	phase	
boundaries.	It	is	the	measurement	of	geometric,	and	statistical,	completeness	that	led	Max	Planck	to	his	original	
discovery	of	the	constant	of	least	action,	that	we	now	refer	to	as	the	Planck	constant.	In	an	interview,	he	gave	in	
1931;	Planck	admitted	that	he	was	forced	to	turn	to	statistics,	even	though	it	conflicted	with	his	convictions	
about	the	limits	of	the	laws	of	physics:		
	
“It	was	clear	to	me	that	classical	physics	could	offer	no	solution	to	this	problem,	and	would	have	meant	that	all	energy	would	
eventually	transfer	from	matter	to	radiation.	...This	approach	was	opened	to	me	by	maintaining	the	two	laws	of	thermodynamics.	
The	two	laws,	it	seems	to	me,	must	be	upheld	under	all	circumstances.	For	the	rest,	I	was	ready	to	sacrifice	every	one	of	my	
previous	convictions	about	physical	laws.	...	[One]	finds	that	the	continuous	loss	of	energy	into	radiation	can	be	prevented	by	
assuming	that	energy	is	forced	at	the	outset	to	remain	together	in	certain	quanta.	This	was	purely	a	formal	assumption	and	I	
really	did	not	give	it	much	thought	except	that	no	matter	what	the	cost,	I	must	bring	about	a	positive	result.”	

	
Max	Planck.	The	Observer	January	25,	1931	

	
Planck’s	discovery	of	quanta,	that	could	only	be	described	statistically,	was	a	leap	of	faith.	He	understood	that	he	
had	to	sacrifice	many	of	his	preconceptions	to	achieve	his	goal	of	defining	the	limits	of	the	Raleigh-Jeans	Law	as	
exhibited	by	a	perfect	blackbody.	It	is	important	to	remember	that	Planck	relied	on	a	closed	statistical	
measurement	to	define	the	limits	for	his	quanta	of	least-action.	We	will	take	advantage	of	the	closed	nature	of	
the	Planck	constant	to	help	us	define	the	boundaries	between	global	and	local	phase	probabilities.	(Figure	2)	
shows	how	phase	probabilities	evolve	throughout	our	model.	All	statistical	probabilities	for	measurement	have	



evolved	from	the	previous	eras,	defined	solely	by	Fermi-Dirac	and	Bose	Einstein	statistical	boundaries.	In	our	
measurement	era,	we	exist	at	the	speed	of	light	confined	by	statistical	probability	and	the	laws	of	
thermodynamics.			
	

	
	
(Figure	2)	Our	model	is	based	on	the	evolution	of	a	statistical	blackbody.	Each	phase	space	is	Lorentz	invariant	and	follows	the	limits	of	geometric	
completeness.	This	results	in	the	globalization	of	local	bifurcation	nodes.	Era	3	shows	how	our	local	universe	driven	is	by	all	three	statistical	MFR	and	
the	rules	of	Lorentz	invariance.	A	Hopf	transition	allows	us	to	equate	all	topological	potential	to	spin,	allowing	for	the	appearance	of	SMBH	in	the	
early	universe.	
	
Era	3	is	the	local	era	we	live	in	now.		The	Planck	constant	is	the	constant	of	least	action	for	all	Lorentz	invariant	
measurements.	The	Planck	constant	is	defined,	to	very	high	degree	of	accuracy,	by	measurements	of	Baryonic	
Acoustic	Oscillations,	(BAO),	and	temperature	variations	in	the	Cosmic	Microwave	Background	(CMB)	made	by	
the	Planck	collaboration	(Figure	3).		
	

	
(Figure	3)	The	measurement	of	BAO	by	the	Planck	Collaboration	represents	one	of	the	most	accurate	measurements	of	the	Planck	
constant.		(The	Planck	Collaboration	A&A	641,	A7	2020)	
	
It	is	this,	highly	accurate,	definition	of	the	Planck	constant	that	will	help	us	define	global,	and	local,	phase	
probabilities	at	the	galactic	scale.	As	a	global	probability,	the	Planck	constant	imposes	phase	limits	at	quantum	
and	galactic	scales	of	Lorentz	invariance.	By	treating	galaxies	as	probabilities,	we	hope	to	demonstrate	that	
many	of	the	preconceptions	we	have	about	measurements	at	galactic	scales	must	be	discarded	in	favor	of	a	
statistical	interpretation	of	measurement	at	all	scales.	In	the	next	section	we	discuss	the	nature	of	local	galactic	
probabilities	driven	by	the	topology	of	the	central	galactic	BH.	
	
	
1.1	–	Establishing	a	topological	mean	for	global	and	local	phase	probabilities		
	
In	our	paper	“A	black	hole	as	ideal	spin	capacitor”	[17],	we	established	the	quantum	rules	associated	with	a	BH	
conversion	of	mass	to	spin	using,	complex,	Noether	potential.	In	our	model,	the	topology	of	the	BH,	and	accretion	
disk,	act	as	statistical	potential	in	both	the	real	and	imaginary	plane,	(Figure	4).	
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(Figure	4) The	real	and	imaginary	nature	of	spherical	coordinates	and	Noether	rings,	allows	us	to	model	the	interior	of	a	BH	as	an	ideal	spin	
capacitor	
	
Because	spin	potential	is	a	topological	concept,	a	BH	“capacitor”	can	equate	to	Fermi-Dirac	or	Bose	Einstein	
statistics	using	Markov	chain	probability	[12],	[13],	[14].		Spin	potential	acts	outside	of	Maxwell-Boltzmann	(MB)	
statistics	and	can	only	be	described	using	Bose-Einstein	and	Fermi-Dirac	statistics	[12],	[13],	[14].	For	this	
reason,	any	local	galactic	mean	must	satisfy	both	the	topological	demands	of	GR	as	well	as	the	quantum	
probabilities	associated	with	Fermi-Dirac	statistics.		Maxwell-Boltzmann	statistics	are	driven	by	the	
thermodynamics	of	the	accretion	disk.		In	our	model,	the	topology	of	the	BH,	and	accretion	disk,	act	as	statistical	
potential	in	both	the	real	and	imaginary	plane	[17].	The	galactic	central	BH	sets	the,	Markovian,	time	scale	for	
the	galaxy.	Bayesian	time	is	set	by	the	ideal	black	body	statistics	of	the	accretion	disk.	For	local	galactic	
probabilities	tied	to	this	potential,	the	BH	establishes	both	Markovian	and	Bayesian	time	for	all	relative	matter.	In	
this	discussion,	and	as	a	general	rule,	all	local	galactic	phase	measurements	are	relative	to	the	central	BH	and	it’s	
accretion	disk.		All	local	phase	measurements	must	also	conform	to	global	phase	measurements,	like	the	CMB.	
The	difference	is	that	global	phase	probabilities	are	not	tied	to	the	galactic	central	BH	or	accretion	disk.		
	
In	our	last	paper	[22],	we	demonstrated	that	all	galaxies	and	galactic	clusters	have	a	topological	center	that	
defines	the	hyperbolic	plane	in	galactic	conformal	topology.	We	also	demonstrated	that	our	topological	mean	
was	an	exact	match	with	TRGB	measurements	of	the	Hubble	constant	[2],	[3],	[4].	Local	phase	probabilities	are	
held	to	the	hyperbolic	plane	of	GR	and	all	the	boundaries	of	Lorentz	invariance	at	quantum	and	relative	scales.	
Any	measurement	statistical	mean	or	mode	must	also	be	locally	Lorentz	invariant	as	well	as	conform	to	global	
phase	boundaries.	We	can	establish	the	mode	and	mean	for	all	local	galactic	probabilities	using	the	limits	
provided,	at	the	quantum	scale,	by	JAGB	and	TRGB	statistical	measurements	and	their	calibration	to	the	𝐻!𝑂	
mega-maser	in	NGC-4258	[2].	𝐻!𝑂	Mega-masers	(MM)	are	particularly	sensitive	to	the	statistics	of	both	the	
accretion	disk	and	the	quantum	central	BH.	Like	the	central	BH,	MM	is	highly	polarized	and	operates	at	the	
brightness	temp	of	a	perfect	black	body.	The	measurement	of	the	quantum	jump	between	resonant	frequencies	
establishes	the	local	phase	probabilities	for	MM	at	the	quantum	scale.	Any	calibration	to	a	Mega-Maser,	at	the	
local	quantum	scale,	is	also	a	calibration	to	the	galactic	center	BH	and	local	galactic	phase	measurements.	We	can	
demonstrate	how	this	works	using	the,	current,	tension	in	measurements	of	the	Hubble	constant.		
	
We	will	assume	the	reader	is,	thoroughly,	familiar	with	this	current	disagreement	between	measurements	of	the	
Hubble	constant.	The	four	candles	we	will	discuss,	in	this	analysis,	are	measurements	of	BAO	in	the	CMB	[6],	[9],	
Tip	of	the	Red	Giant	Branch	(TRGB)	[2],	[3],	[4],	JAGB	carbon	stars	[2],	[5],	and	measurements	of	the	Leavitt	Law,	
using	SN1a	supernova	[2],	[3],	[9].		We	will	use	the	recent,	pioneering,	work	by	(Freedman	and	Madore	2024)[2]	
to	reference	measurements	of	TRGB,	JAGB	and	SN1a	candles	that	are	calibrated	to	the	central	BH	utilizing	the	
water	maser	from	NGC	4258.	Additional	measurement	candles,	like	DESI	[9],	and	gravitational	wave	
measurements,	will	be	handled	as	Addendum.		(Figure	5)	shows	us	the	relative	probability	measurements	of	the	
Hubble	constant	using	different	standard	candles	that	are	all	calibrated	to	the	water	maser	located	in	NGC	4258.	
As	you	can	see,	TRGB	relative	probabilities	establish	a	statistical	mean	for	the	measurement	frames	of	reference.	
	



	
(Figure	5)	PDFs	for	the	values	of	𝐻𝟎	based	on	the	three	calibrations:	JAGB	(green),	TRGB	(red)	and	Cepheids	(blue).	The	width	of	each	individual	
Gaussian	represents	the	statistical	uncertainty.	The	error	bars	shown	above,	which	use	the	same	color-coding,	represent	the	systematic	uncertainties	
(see	§5).	The	1σ	statistical	uncertainties	are	determined	from	the	16th	and	84th	percentiles	for	the	Frequentist	sum	of	the	distributions	(shown	in	
gray),	and	decreased	by	√N	−	1.	The	curve	in	black	is	the	Bayesian	product	of	the	three	PDFs.	
	
At	the	quantum	scale,	TRGB	measurements	depend	on	the	Helium	flash	of	a	red	giant.	The	Helium	flash	is	
triggered	the	boundary	between	matter	and	degenerate	matter.	Like	the	statistics	of	the	water	maser	in	NGC	
4258,	degenerate	matter	follows	the	limits	of	quantum	statistics	and,	the	rules	of	GR.	We	can	use	TRGB	
measurements	to	establish	a	local	phase	mean	because	the	Fermi-Dirac	statistical	boundaries	of	degenerate	
matter	can	be	equated	to	the	quantum	limits	established	by	the	Landau-Zener	equations.	Landau	levels	establish	
a	local	Fermi-Dirac	phase	mean,	using	only	the	limits	of	topology.	Topological	equivalencies,	to	the		
Landau-Zener	equations,	and	Landau	levels,	is	well	established	in	quantum	physics	and,	therefore,	not	necessary	
for	the	scope	of	our	discussion.	What	is	important	is	that	we	will	use	the	same	topological	equivalencies	for	
quantum	and	relative	actions	at	all	scales	of	measurement.	This	is	the	basis	of	Lorentz	invariance.	As	we	noted	
earlier,	our	topological	mean,	limited	by	the	speed	of	light,	is	an	exact	match	to	measurements	of	the	Hubble	
constant	as	determined	using	the	TRGB	measurement	frame	of	reference	[2].		
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Using	TRGB	measurements	to	establish	a	topological	galactic	mean	allows	us	to	equate	local	phase	probabilities,	
tied	to	galactic	central	BH,	to	global	phase	boundaries	that	are	established	by	the	rules	of	Lorentz	invariance.	It	
is	our	establishment	of	the	link	to	topology	that	will	allow	us	to	connect	quantum	and	relative	phase	potentials,	
at	all	scales	of	measurement.	To	establish	the	statistical	mode	for	global,	and	local,	phase	measurements	we	must	
have	a	candle	that	is	the	same	across	all	galaxies	but	also	tied	to	the,	local,	statistics	of	the	central	BH	the	local	
mean.		In	the	next	Section,	we	will	show	how	JAGB	measurements	[2],	[5],	of	carbon	stars	fulfill	these	
requirements	for	the	establishment	of	a	local	phase	mode.	
	
	
1.2-Establishing	the	local	galactic	mode	with	De-Broglie	matter	waves	and	the	fine	structure	constant.	
	
The	galactic	mean,	using	TRGB	measurements	of	Fermi-Dirac	statistical	boundaries,	must	have	a	mode	that	
matches	the	same	topological	probabilities	but	acts	at	all	scales	of	measurement	in	the	galactic	plane.	One	of	the	
requirements	for	the	establishment	of	a	local	phase	mode	is	the	consistency	of	the	mode	across	all	galaxies,	
galactic	clusters	and	even	dust	throughout	the	universe.	The	other	requirement	is	the	ability	to	vector	our	local	
phase	mode	measurements	towards	the	galactic	center	black	hole.	Local	galactic	measurements	require	us	to	
have	a	common	mode	for	phase	probabilities	across	galactic	measurements,	at	all	scales.	This	will	require	us	to	
establish	a	local	mode	that	also	is	a	global	phase	probability	in	the	Euclidean	plane.		JAGB	measurements	of	
carbon	stars	provide	a	local	phase	probability	that	is	consistent	in	color	and	luminosity	across	all	galactic	
probabilities	and	can	be	calibrated	to	the	central	black	hole	using	the	water	maser	in	NGC4258	(Figure	6).		
	



	
(Figure	5)	Color-magnitude	diagrams	for	the	two	fields	in	our	geometric	anchor,	NGC	4258.The	JAGB	stars	were	selected	within	the	light	blue	
shaded	regions.	The	JAGB	stars	in	the	inner	and	outer	fields	were	combined	to	make	this	aggregate	JAGB	LF.	The	number	of	JAGB	stars	within	°æ0.75	
mag	of	the	mode	is	plotted	in	the	upper	right	corner,	as	well	as	the	dispersion	for	those	stars	about	the	mode.	The	measured	JAGB	magnitude	is	also	
shown	in	the	bottom	right.	
	
We	can	set	the	JAGB	mode	for	all	local	phase	measurements,	using	the	local,	and	global,	phase	probabilities	found	in	
the	De-Broglie	matter	wave	equation	and	the	fine	structure	constant.	The	De-Broglie	equations	tell	us	that	matter,	
like	light,	can	be	described	as	a	particle	and	a	wave.	Matter	wave	potential	allows	us	to	adhere	to	global	and	local	
phase	probabilities	while	establishing	the	local	galactic	mode.	Matter	wave	equations	are	based	on	the	ratio	of	
mass	and	momentum	to	Planck’s	least	action	constant:	
	

𝜆 =
ℎ
𝑚𝑣

=
𝑙𝑒𝑎𝑠𝑡 𝑎𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚
	

	
De-Broglie	waves	are	probabilities	and,	therefore	have	both	a	mode	and	mean.	They	can	be	used	to	describe	
global	and	local	phase	probabilities	at	all	scales	of	Lorentz	invariance	because	can	operate	in	the	real	and	
imaginary	plane.	As	we	established	in	our	last	two	papers	[21],	[22],	that	Euclidean	MFR	exist	as	imaginary	
potential	for	any	measurements	in	the	hyperbolic	plane.	Global	phase	probabilities,	like	DM	and	DE,	exist	as	
parallel	measurements	in	the	Euclidean	plane.	Local	hyperbolic	phases	are	limited	by	the	speed	of	light,	but	
global	phase	potential,	in	matter	waves,	can	exceed	the	speed	of	light.	These	aspects	of	De-Broglie	wave	
potential	are	well	established	and	do	not	require	new	physics.	We	can	use	the	same	topological	equivalency	that	
we	used	to	establish	a	phase	mean	to	equate	to	De-Broglie	matter	wave	probabilities,	in	hyperbolic	and	
Euclidean	space:	
	

𝜆 =
ℎ
𝑚𝑣

=
𝑙𝑒𝑎𝑠𝑡 𝑎𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚
=
2𝜋𝑖!

𝑐!
	

	
We	can	now	use	the	relationship	between	local	and	global	phase	velocities	and	momentum,	in	the	De-Broglie	
equations,	to	establish	the	local	phase	mode.	The	relationship	between	local	and	global	phase	velocities	can	be	
stated	as:	

𝑣! =
𝑘𝑐!

𝑣!
	

	
Where	 𝑘 ,	is	the	local,	and	global,	phase	vector,	 𝑣! 	is	the	local	relative	phase	velocity	and	 𝑣! 	the	global	
phase	velocity.	A	common	vector,	at	the	particle	and	galactic	scale,	allows	us	to	equate	local	phase	probabilities	
to	De-Broglie	parameters.	Because	global	phase	potential	can	exceed	the	speed	of	light	we	can	state	it	as	an	
imaginary	boundary	with	a	common	vector.	A	common	vector	for	real	and	imaginary	phase	potential	allows	
local	phase	probabilities,	at	all	scales	of	measurement,	to	equate	to	the	black	body	probabilities	found	in	the	
central	BH	and	accretion	disk.	We	can	use	our	topological	equivalency	to	establish	the	inverse	relationship	
between	the	scales	of	local	and	global	phase	probabilities	
	

𝑣! =
𝑘𝑐!

𝑣!
= 𝑘2𝜋𝑖!	

	



Because	it	is	dimensionless,	and	scalable,	we	can	use	the	fine	structure	constant	as	a	local	phase	mode	tied	to	the	
topology	of	the	global	mean.	The	fine	structure	constant	can	be	stated	as:	
	

𝛼 =  
𝑒!

2𝜀!ℎ𝑐
	

	
Like	the	Planck	constant	and	the	speed	of	light,	the	permittivity	of	free	space,	ε!,	is	a	global,	and	local,	phase	
probability.	We	can	also	re-state	the	elementary	charge	(e)	as	a	global	topological	and	electro-dynamic	
probability.	If	we	equate	our	topological	value	of	geometric	completeness	to	the	elementary	charge	of	the	
electron	we	can	convert	the	fine	structure	to	a	topological	phase	probability:	
	

𝑒! =  2𝜋𝑖!	
	

𝑘𝛼 =  
𝑘𝑒!

2𝜀!ℎ𝑐
=
𝑘𝜋𝑖!

4𝜀!ℎ𝑐
 	

	
Like	the	Planck	constant	and	the	speed	of	light,	the	permittivity	of	free	space,	ε!,	is	a	global	phase	probability.	
Like	all	of	our	relative	measurements	we	convert	the	permittivity	of	free	space	to	Electro-volts,	
ε! = 55.263494 e!eV!!um!! .	Because	the	fine	structure	constant	is	a	dimensionless	constant,	we	can	use	it	as	
a	local	scalar	tied	to	the	topology	of	the	global,	and	local,	De-Broglie	phase	mean.		
	

𝛼 =  
𝑘𝑒!

2𝜀!ℎ𝑐
=
𝑘2𝜋𝑖!

4𝜀!ℎ𝑐
=  

𝑘𝜋𝑖!

2𝜀!ℎ𝑐
=  
𝑘. 796165747𝑖!

2𝜀!
=  𝑘

. 796165747𝑖!

110.526988
= 𝑘. 007203360𝑖!	

	
By	equating	the	elementary	charge	to	a	topological	probability	we	are	able	to	use	our	equivalency	as	a		
non-dimensional	mode	for	all	local	galactic	probabilities	tied	to	the	central	BH.	We	have	now	set	the	local	mode	
and	mean	for	any	galactic	phase	probability	using	both	the	limits	of	topology	and	the	boundaries	between	
quantum	and	relative	phases	of	matter.	Both	local	phase	mode	and	local	phase	mean	are	tied	to	the	statistics	of	
the	central	BH	and	the	water	maser	in	NGC-4258.	In	the	next	section,	we	will	demonstrate	why	global	phase	
measurements	lie	outside	the	boundaries	we	have	established	for	all	local	phase	probabilities	and	why	they	
cannot	be	used	to	establish	a	local	distance	ladder	without	a	local	calibrator	–	tied	to	the	statistics	of	the	galactic	
plane.		
	
	
2.0	–	Global	phase	probability	and	the	Planck	constant	
	
When	Max	Planck	first	developed	the	idea	of	quanta,	he	was	solving	a	very	specific	problem.	The	Raleigh–Jeans	
law,	did	not	hold	at	the	shortest	wavelengths	for	an	ideal	black	body.	He	found	that	a	perfect	black	body	(BB),	
could	only	be	described	statistically.	This,	conclusion,	lead	him	to	the	development	of	his	constant	of	least	action,	
which	we	refer	to	as	the	Planck	constant,	(h).	As	we	will	demonstrate,	the	Planck	constant	is	found	in	global,	and	
local,	galactic	phase	probabilities	–	at	all	scales.		
	
The	most	accurate	measurement	of	the	Planck	constant	has	been	performed	by	the	Planck	experiment	[6],	using	
measurements	of	BAO	in	the	CMB.	Measurements	of	the	CMB	using	BAO	are	flat	measurements	of	the	Planck	
constant	that	force	a	global	probability	across	all	galaxies.	We	can	use	these	measurements	to	set	the	Planck	
constant	as	a	global	phase	requirement	for	any	Lorentz	invariant	MFR.		The	parameters	set	by	the	Planck	
Collaboration	measurements	of	BAO	are	very	clear:	
	
“The acoustic oscillations in ℓ seen in the CMB power spectra correspond to a sharply-defined acoustic angular scale on the 
sky, given by 𝜃∗ ≡  !∗

!!
 where,  𝑟∗ is the co-moving sound horizon at recombination quantifying the distance the photon-baryon 

perturbations can influence, and,  𝐷!  is the co-moving angular diameter distance that maps this distance into an angle on the 
sky. Planck measures  
 



100 𝜃∗  = 1.04097 ± 0.00046 (68 %, Planck TT+lowE),       (7)  
 
corresponding to a precise 0.05 % measurement of the angular scale θ∗ = (0.◦59643±0.◦00026). The angular scales of the 
peaks in the polarization spectrum and cross-spectrum are different, The quantity DM is (1+z)DA, where DA is the usual 
angular diameter distance, since the polarization at recombination is sourced by quadrupolar flows in the photon fluid, which 
are out of phase with the density perturbations. The polarization spectra can, however, be used to measure the same acoustic 
scale parameter, giving a stringent test on the assumption of purely adiabatic perturbation driving the oscillations. From the 
polarization spectra we find 
 
100 𝜃∗ = 1.04156 ± 0.00049 (68 %, Planck TE+lowE),        
100 𝜃∗ = 1.04001 ± 0.00086 (68 %, Planck EE+lowE),         
 
in excellent agreement with the temperature measurement. The constraint from T E is of similar precision to that from TT: 
although the polarization data are much noisier, the TE and EE spectra have more distinct acoustic peaks, which helps improve 
the signal-to-noise ratio of the acoustic scale measurement. Using the combined likelihood we find:  
 
100 𝜃∗ = 1.04109 ± 0.00030 (68 %, TT,TE,EE+lowE),         
 
a measurement with 0.03 % precision. Because of its simple geometrical interpretation,  𝜃∗ is measured very robustly and 
almost independently of the cosmological model. It is the CMB analogue of the transverse baryon acoustic oscillation scale 
 !!"#$
!!

 measured from galaxy surveys, where 𝑟!"#$  is the co-moving sound horizon at the end of the baryonic-drag epoch.  In 
ΛCDM, the CMB constraint can be expressed as a tight 0.04 %-precision relation  between  𝑟!"#$  ℎ and  Ω!  as: 
 
 !!"#$!

!"#
 Ω!
!.!

!.!
= 101.056 ± .036 (68 %, TT,TE,EE +lowE)” 

       (Planck 2018 results. VI. Cosmological parameters, 2018) 
 
	
Planck	measurements	of	the	CMB	are	built	using	a	flat	𝛬𝐶𝐷𝑀	model.	Global	phase	probabilities,	like	Planck	
measurements	of	the	CMB	are	Euclidean,	and,	therefore,	allow	for	parallel	MFR.	All	local	phase	probabilities	are	
tied	directly	to	the	hyperbolic	probabilities	of	the	central	BH	and	accretion	disk.	(Table	1)	summarizes	the	local	
and	global	nature	of	each	standard	candle	as	it	relates	to	the	topological	phase	probabilities	we	discussed	
earlier:	
	
(Table	1)-	Global,	and	local,	phase	probabilities	
	

Measurement	Frame	of	
Reference	

Standard	Candle	 Statistical	topology	

Measurement	of	the	Leavitt	Law	 SN1a	Supernova	
Period/Luminosity	

Global	Euclidean	

Measurement	of	the	CMB	 Speed	of	Sound,	BAO	 Global	Euclidean	

Fermi-Dirac	galactic	mean	 Slope	of	the	TRGB,	Red	giant	
Helium	flash		

	

Local	Hyperbolic	and		
Global	Euclidean	

De-Broglie	galactic	mode	 JAGB,	Carbon	star	color	
consistency	across	galaxies	

Local	Hyperbolic		
	

	
Euclidean	measurements	and	global	phase	probabilities	can	be	modeled	as	conics.	They	exist	in	the	2-
dimensional	plane	as	potential	for	hyperbolic	measurement.	Planck	measurements	of	the	BAO,	and	Leavitt	Law	
measurements,	must	be	complete	statistically	and	geometrically.	If	you	will	recall,	from	our	last	paper	[22],	the	
universe	is	actually	both	open	and	closed.	It	is	the	measurement	frame	of	reference	that	determines	
probabilities	in	real	space.	The	Euclidean,	global	phase	probabilities	of	BAO	measurements	and	micro-
fluctuations	in	the	CMB	are	all	related	to	global	phase	measurements	of	the	Planck	constant,	coupling,	and	the	
Maxwell-Boltzmann	statistics	of	an	ideal	perfect	thermal	black	body.	Measurements	of	the	CMB	are	extremely	
accurate,	but	exist	at	all	points	in	space.	Because	Euclidean	phase	probabilities	allow	for	parallel	measurements,	
we	can	use	measurements	of	the	Planck	constant,	as	defined	by	measurements	of	the	CMB,	to	tie	all	global	
thermodynamic	phase	probabilities	together	in	a	single	conic.	This	is	done,	by	creating	topological	equivalencies	
to	Landau	levels.		While	a	topological	discussion	of	the	nature	of	Landau	probabilities	sounds	tempting,	it	is,	
again,	beyond	the	scope	of	this	discussion.		In	the	next	section	we	discuss	how	the	Leavitt	Law	is	actually	a	global	
measurement	the	Raleigh-Jeans	limit,	using	SN1a	Supernova,	and,	like	measurements	of	the	CMB,	cannot	be	used	



as	a	local	distance	candle	without	a	local	distance	calibrator	that	is	tied	to	the	galactic	plane,	established	by	the	
central	BH.	
	
	
2.1-The	Leavitt	Law	as	a	global	measurement	of	the	least	action	principle		
	
The	Leavitt	Law	is	a	measurement	of	the	linier	relationship	between	the	luminosity	and	period	in	SN1a	
supernova	explosions.	Because	the	Leavitt	Law	represents	the	statistical	relationship	between	luminosity	and	
period	it	is	not	tied	to	galactic	probabilities	of	the	galactic	center	BH.	The	Leavitt	Law	is	a	global	probability	for	
all	SN1a	measurements.	Because	the	Leavitt	Law	global	is	measured	as	a	global	phase,	it	is	measured	in	
Euclidean	space.	Euclidean	global	phase	measurements	of	the	Leavitt	Law	can	be	parallel	to	global	CMB	
measurements,	but	at	a	different	scale.	If	we	consider	that	any	statistically	complete	measure	of	the	Leavitt	Law	
is	a	closed	probability,	we	can	equate	the	measurement	of	SN1a	period/luminosity	relationship	to	the	quanta	
used	by	Max	Planck	to	describe	an	ideal	black	body	and	the	limits	of	the	Raleigh-Jeans	Law.	If	we	examine	the	
extinction	curve	of	Type	1a	and	compare	it	to	the	curve	generated	by	the	PLANCK	experiment,	we	can	clearly	
see	the	same	sharp	rise	and	Rayleigh-Jeans	cut-off	that	defines	all	measurements	of	the	Planck	constant	using	an	
ideal	black	body	(Figure	6).	
	

	
(Figure	6)	(On	the	left)	A	comparison	between	the	BV	absolute	magnitude	light	curves	of	SN	2015F	(black	circles)	and	SN	2004eo	(red	points;	
Pastorello	et	al.	2007).	Both	Supernova	show	remarkably	similar	light	curves,	and	the	main	difference	between	them	is	that	SN	2004eo	is	slightly	
fainter	by	∼	0.1	mag.	(on	the	right)	we	show	the	limits	of	the	Raleigh-Jeans	Law	and	the	Planck	curve	of	an	ideal	black	body.		
	
Because	Supernova	explosions	act	at	the	ultraviolet	limit,	any	luminosity	measurements	are	limited	to	a	
statistical	measurement	of	limits	of	the	Raleigh-Jeans	Law.	Therefore,	the	period/luminosity	relationship	
established	by	any	measurement	of	the	Leavitt	Law	represents	a	global	measurement	of	the	Planck	constant	and	
cannot	be	used	to	measure	a	local	value	of	the	Hubble	constant.	Like	the	Planck	collaboration	measurement	of	the	
CMB,	measuring	the	Leavitt	Law	relies	on	a	flat	global	measurement	of	the	Planck	constant	that	is	not	vectored	
to	the	galactic	plane	established	by	our	galactic	mean	and	mode.	The	Leavitt	Law	tells	us	that	a	no	matter	how	
big	a	Cepheid’s	magnitude,	the	relationship,	between	the	period	and	luminosity,	is	a	constant.	We	can	use	the	
Planck	constant	as	a	constant	of	least	action	to	describe	this	relationship	globally.	Planck’s	law	tells	us	that:		
	

𝐸! = ℎ𝑣 =
ℎ𝑐
𝜆
	

	
Where	𝐸! ,	is	the	energy	stated	in	quanta,	ℎ	is	the	Planck	constant,	𝑣	the	frequency	and	𝜆	the	wavelength.	The	
Leavitt	Law	can	be	stated	as	the	relationship	between	period	and	luminosity		
	

𝑀 = ℎ
𝑝
𝑙
	

	
Equating	the	two	scales	of	the	Planck	constant	to	global	and	local	phase	probabilities	allows	us	to	also	equate	
SN1a	Supernova	to	the	quanta	used	by	Max	Planck	to	describe	the	statistical	limits	attached	to	any	black	body	
measurement.	



𝐸! = 𝑀! = ℎ
𝑝
𝑙
= ℎ𝑣 =

ℎ𝑐
𝜆
	

	
In	our	final	section,	we	shall	“circle”	back	to	our	establishment	of	DE	and	DM	as	closed	probabilities,	in	a	
universe	defined	by	mathematical	and	geometric	completeness.	
	
	
3.0	–	Phase	probabilities	in	the	early	universe	
	
In	“Measuring	the	Universe	Parts	I	and	II”,	we	established	the	topological	nature	of	both	“Dark	Energy”	and	
“Dark	Matter.	We	can	use	the	same	topological	and	statistical	measurements	for	DM	and	DE	at	the	local	phase	
level	to	tie	all	galactic	phase	probabilities	to	the	topology	of	the	central	black	hole.	As	we	demonstrated,	both	DM	
and	DE	are	Euclidean	boundaries	for	completeness	that	allow	for	parallel	measurements.	Galaxies	exist	in	the	
hyperbolic	plane,	limited	by	the	speed	of	light.	The	hyperbolic	plane	of	GR	lies	perpendicular	to	the	Euclidean	
topological	probabilities	we	associate	with	DM	and	DE.	Essentially	galaxies	then	become	complete	both	
topologically	and	statistically	by	including	both	hyperbolic	and	Euclidean	frames	of	reference.	Topological	
boundaries	for	completeness	drive	the	statistical	phase	nature	of	the	early	universe.		
	
In	our	model,	we	demonstrated	how	a,	Hopf,	transition	allows	for	the	transition	between	statistical	boundaries	
at	global	and	local	scales.	We	will	assume	the	reader	is	familiar	with	our	model	of	the	early	universe,	as	
established	in	our	last	two	papers	[21],	[22].	A	Hopf	topological	transition	allows	us	to	pass	statistical	spin	
potential	through	the	complex	plane	between	eras	and	to	add	spin	to	all	global	and	local	phase	probabilities	
(Figure	7).	A	transition	through	the	complex	plane,	allows	us	to	use	our	topological	mode	and	mean	in	all	
statistical	Eras.	
	

	
(Figure	7)	As	the	universe	expands	it	is	required	to	follow	phase	space	limitations.	Forces	in	this	model	are	equated	to	global	phase	space	
boundaries	required	by	geometric	completeness	and	the	rules	of	relative	measurement.	
	
Complex	potential	from	the	previous	Era	provides	the	statistical	potential	for	the	early	appearance	of	SMBH,	
galactic	clusters	and	galaxies.	In	our	model,	a	SMBH	exists	as	ideal	spin	potential	that	can	only	be	described	
statistically.	They	are	formed	from	global	phase	spin	potential	and,	therefore	their	early	appearance	in	our	
universe	should	come	as	no	surprise	(Figure	8).		As	we	have	been	discussing,	global	phase	probabilities	operate	
in	Euclidean	space	and	provide	the	global	statistical	boundaries	for	all	local	measurements.	If	we	consider	SMBH	
to	be	a	global,	Euclidean,	phase	probability	it	would	explain	their	appearance	in	the	early	universe.	As	quantum	
statistical	objects,	black	holes	can	act	as	global	phase	probabilities	in	Euclidean	space.	As	an	ideal	spin	capacitor,	
a	black	hole	operates	using	the	same	statistical	basis	as	Quantum	Electro-dynamics	(QED)	and	Quantum	
Chromo-dynamics	(QCD).	The	horizon	becomes	the	line	between	quantum	statistical	potential	and	the	black	
Body	probabilities	of	the	disk.	Galactic	Clusters	and	early	massive	galaxies	are	also	probabilities	in	a	statistical	
model	driven	by	thermodynamic	probability	and	the	limits	of	GR.		
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(Figure	8)	The	left	panel	shows	the	redshift	distribution	of	the	CEERS	sample.	The	observed	surface	density	of	galaxies	lies	above	most	predictions	at	
z	>	10,	and	above.	This	confirms	early	results	based	on	smaller	samples	that	the	observed	abundance	of	z	�	10	galaxies	significantly	exceeds	most	
pre-launch,	physically	motivated	expectations.	On	the	right,	we	show	one	example	of	SMBH	in	the	early	universe.	The	JWST,	NIRCam,	image	of	the	
surroundings	of	UHZ1,	and	a	zoom-in	NIRCam	image	of	UHZ1	in	Panels	(b	and	c).	Panel	(d)	JWST	images	of	UHZ1	in	seven	filters.	The	galaxy	is	
detected	in	all	JWST	bands	except	for	F115W.	The	non-detection	in	the	bluest	F115W	band	clearly	indicates	the	dropout	nature	of	the	galaxy	and	
suggests	that	it	is	located	at	z	≈	10.		
	
As	local	phase	probabilities,	galactic	measurements	are	all	relative	and	limited	by	the	speed	of	light.	All	local	
phase	probabilities	are	well	described	by	the	limits	of	GR	found	at	the	horizon	of	a	black	hole	and	the	black	body	
statistics	of	the	BH	accretion	disk.	The	topology	and	statistics	of	the	galactic	plane	are,	clearly,	set	by	the	central	
black	hole.	We	have	shown	how	local	phase	probabilities	are	tied	to	Lorentz	invariance	at	the	quantum	and	
galactic	scales	and	how	global	phase	probabilities	set	all	scales	for	the	Planck	constant.	Like	the	knot	
equivalencies	that	we	established	in	our	last	paper	[22],	galactic	probabilities	can	all	be	extended	to	larger	
structures	(Figure	9).		
	
	

	
	
(Figure	9)	There	are	as	many	homeographic	knot	equivalents	as	there	are	galaxies	in	the	universe.	Knots	can	combine	to	form	larger	structures	like	
galactic	clusters	and	the	galactic	web	while	still	maintaining	hyperbolic	completeness.	We	show	just	a	few	examples	of	Thurston’s	drawings	of	knot	
equivalents	next	to	a	compilation	of	Hubble	galaxy	images.	
	
Galactic	clusters	and	the	cosmic	web	are	examples	of	the	same	relationship	between	the	Hyperbolic	and	
Euclidean	boundaries	for	geometric	completeness.	Each	galaxy	represents	a	local,	hyperbolic	phase	probability	
that	has	global	Euclidean	phase	requirements.		The	relationship	between	local	and	global	phase	probabilities	is	
the	same	as	the	topological	relationship	between	the	hyperbolic	and	Euclidean	planes.	By	attaching	all	local	
phase	measurements	to	the	central	BH	we	have	attached	the	topology	of	DM	and	DE	to	the	hyperbolic	plane	of	
GR.,	Euclidean	phase	measurements,	like	the	CMB	or	the	Leavitt	Law,	exist	as	global	phase	probabilities	because	
their	measurement	is	not	affected	by	the	statistics	of	the	galactic	plane.	Like	De-Broglie	potential,	global	phase	
potential	can	exceed	the	speed	of	light	and,	therefore,	can	describe	probabilities	that	exist	at	the	scale	of	the	
black	holes,	galaxies,	galactic	clusters	and	the	cosmic	web.	Our	topological	equivalents,	for	DM	and	DE,	exist	as	
global	geometric	boundaries	that	establish	completeness	for	all	global,	and	local,	phase	probabilities.	We	hope	
we	have	demonstrated	that	local	phase	probabilities	driven	by	De-Broglie	waves	coming	from	the	central	BH	
and	accretion	disk	are	the	only	local	measurements	that	can	be	used	as	standard	distance	candles.	Any	
measurement	of	the	Hubble	constant	must	calibrate	to	these	local	phase	probabilities.	
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Addendum	A:		Local	calibration	of	global	phase	probabilities	with	DESI	measurements	
	
Like	the	Planck	measurements,	DESI	measures	BAO	in	the	CMB	as	a	global	phase	probability.	DESI	also	captures	
the	relative	motions	of	galaxies	in	a	single,	hyperbolic,	measurement.	Because	DESI	uses	a	unique	design	that	
allows	for	the,	simultaneous,	tracking	of	the	relative	motions	of	galaxies,	we	can	use	these	measurements	to	
demonstrate	the	calibration	of	a	global	phase	probability	with	a	local	phase	mode.	We	are	going	to	skip	a	lot	of	
math	here	because	DESI	has	already	done	the	calibration	for	us:	
	
“Since BAO distance measurements alone are sensitive to the combination 𝐻!𝑟!  an external calibration of the 
sound horizon 𝑟!  is required in order to break the 𝐻! − 𝑟!  degeneracy and obtain a constraint on the Hubble 
constant 𝐻!. This method of calibrating the BAO distance scales using the sound horizon at early times is known 
as the “inverse distance ladder” approach. Directly calibrating the BAO standard ruler using the value 
 𝑟!  = 147.09 ± 0.26 Mpc obtained from using all CMB and CMB lensing information gives 𝐻! = (69.29 ± 0.87) 
km s−1 Mpc−1 (DESI BAO + 𝑟!  from CMB).”   

DESI 2024 VI: Cosmological Constraints from the Measurements of Baryon Acoustic Oscillations 
 

 
Calibrating DESI measurements to the sound horizon, effectively, calibrates all the global phase requirements of 
Lorentz invariance to a local phase probability. Their inclusion of the sound horizon has established a 
hyperbolic, and relative, measurement frame of reference for all, Euclidean, phase probabilities. In this set of 
measurement parameters, DESI has calibrated a Euclidean global phase measurement, (CMB, BAO), with the 
hyperbolic local measurement of the speed of sound, established by Baryonic Acoustic Oscillations in the local 
CMB. If we set the “BAO standard ruler”, referenced in the DESI paper, using the vectored fine structure 
constant, we can create an equivalency to the local, topological, phase mode and mean: 
 

𝐻! =
2𝜋𝑖!

𝑐!
= .699𝑖! = 𝑇𝑅𝐺𝐵 𝑙𝑜𝑐𝑎𝑙 𝑝ℎ𝑎𝑠𝑒 𝑚𝑒𝑎𝑛 = 𝐷𝐸𝑆𝐼 𝐵𝐴𝑂 +   𝑟! 	
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The result establishes equivalencies between the local phase calibration of DESI global probabilities, the local 
Fermi-Dirac phase mean, the fine-structure phase mode and our topological equivalent to the Hubble constant. 
 
 
 
 

	
	


