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Abstract	

	

In	this	letter,	we	continue	our	discussions	regarding	the	limits	to	both	zero	and	infinity	in	a	system	defined	by	

measurement	by	defining	the	frames	of	reference	embedded	in	paradoxes	and	assigning	an	observer	to	each	frame	

of	reference.	We	demonstrate	that	paradoxes	often	rely	on	including	unstated,	and	relative,	observer	frames	of	

reference	within	the	paradox.	When	any	observer,	in	a	relative	frame	of	reference,	is	asked	to	violate	their		

measurement	minimums,	or	the	rules	of	general	relativity	regarding	the	simultaneous	measurement	of	relative	

frames	of	reference	–	the	result	is	the	appearance	of	paradox.	We	break	down	observational	frames	of	reference	

embedded	in	the	Liar	paradox,	the	Card	paradox,	the	Barber	paradox,	the	Grandfather	paradox,	and	Schrodinger's	

Cat	paradox.		We	then	proceed	to	demonstrate	how	the	rules	of	general	relativity	force	boundary	conditions	on	all	

relative	sets	embedded	within	The	Russell	paradox	–	including	the	set	of	all	sets.	We	finish	with	a	short	discussion	of	

paradox	related	to	the	forcing	of	relative	rules	on	the	set	of	natural	numbers	and	the	Peano	axioms.	

	

1.00	Introduction	

	

The	importance	of	paradox	to	theoretical	mathematics	and	number	theory,	as	well	as	quantum	physics,	is	hard	

to	overestimate.		The	principles	of	uncertainty	and	superposition,	Kurt	Gödel's	theories	of	incompleteness[1]	

and	Einstein's	theory	of	General	Relativity[2]	are	all	limited	by	our	understanding	of	paradox.	As	Einstein	has	

demonstrated,	any	measurement	taken	by	an	observer	must	take	into	account	the	relative	nature	of	the	

observation	in	context	with	all	other	observer	frames	of	reference.		He	also	tells	us	that	there	can	be	no	

simultaneous	measurements	between	different	frames	of	reference.	Here,	we	examine	the	various	observer	

frames	of	reference	embedded	in	paradoxes	and	demonstrate	that	each	observer	is	held	to	measurement	

minimums	and	to	the	rules	of	general	relativity,	regarding	simultaneous	measurement	of	relative	frames	of	

reference.	We	demonstrate	how	paradoxes	often	depend	on	an	observer	being	asked	to	take	a	simultaneous	

measurement	between	relative	frames	of	reference	in	violation	of	the	rules	of	general	relativity	and	their	



	 2	

minimum	for	measurement.	To	understand	how	these	boundaries	affect	paradox,	let	us	begin	by	identifying	all	

observer	reference	frames	embedded	in	"	The	Liars	Paradox".		

	

1.01	-	The	Liar's	Paradox	and	unstated	frames	of	reference	

	

Perhaps	the	simplest	presentation	of	a	paradox	is	the	Liar's	paradox.	It	simply	asks	the	reader	to	evaluate	the	

following	sentence:	

	

"This	sentence	is	false."	

	

The	reader	is,	immediately,	caught	in	a	logic	circle	that	asks	what	is	false	about	a	sentence	which	refers	to	itself.	

The	trick	to	diagnosing	this	paradox	is	that	there	are,	actually,	three	different	frames	of	reference	embedded	in	

the	paradox	–two	of	which	are	unstated.	Because	every	false	statement	implies	the	existence	of	truth,	there	is	an	

unstated,	and	imaginary,	frame	of	reference	that	sees	a	true	statement.	Another	unstated	observer	frame	of	

reference	is	the	reader.	The	reader	understands	the	difference	between	true	and	false	and	can	"see"	all	the	other	

frames	of	reference	in	the	paradox.	All	frames	of	reference	have	different	minimums	for	measurement:	

	

Observer	1-	only	measures	this	sentence	as	false		

Observer	2	-	only	measures	this	sentence	as	true		

Observer	3	-	reader	knows	that	true	and	false	are	relative	measurements		

	

Observer	one	presents	the	reference	frame	of	the	problem.	Observer	two	is	an	unstated	frame	of	reference	that	

is	implied	by	the	use	of	the	word	"false"	in	the	presentation	of	the	problem.	Observer	three,	(the	reader)	brings	

to	the	problem	the	knowledge	of	the	relative	difference	between	true	and	false.		The	reader	can	observe	the	

relative	measurements	made	from	two	other	frames	of	reference	–	one	stated	and	the	other	unstated.	This	

makes	the	frame	of	reference	for	Observer	three	a	relative	frame	of	reference.	According	to	the	rules	of	general	

relativity,	there	can	be	no	simultaneous	measurement	between	relative	observer	frames	of	reference.		Einstein	

explained	this	concept	using	the	measurements	made	by		a	man	on	a	train	and	a	man	on	the	ground..	Only	a	third	

observer	can	truly	"see"	the	relative	differences	between	the	two	other	observations.	Any	observer	in	a	relative	

frame	of	reference	can	measure	either	of	the	other	two	frames	of	reference	–	just	not	simultaneously.	The	Liar	

paradox,	like	all	the	paradoxes	we	will	discuss,	depends	heavily	on	including	the	reader	as	a	relative	observer.	
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As	we	hope	to	demonstrate,	it	is	Einstein's	limitation	on	the	simultaneous	measurement	of	relative	frames	of	

reference	that	causes	the	appearance	of	paradox.	We	can	expand	on	this	further	by	examining	the	relative	

frames	of	reference	embedded	in	"The	Card	Paradox".	

	

1.02	-	The	Card	Paradox	has	two	solutions	and	three	observers	

	

The	Card	paradox	is	the	similar	to	the	Liar's	paradox.	It	presents	us	with	a	card	with	statements	printed	on	each	

side.		

	

One	side	of	the	card	claims:	"The	statement	on	the	other	side	of	this	card	is	true."	

While	the	other	side	claims:	"The	statement	on	the	other	side	of	this	card	is	false."	

	

The	comparison	to	the	Liar's	paradox	is	fairly	obvious,	but	there	are	some	subtle	differences	that	will	actually	

allow	us	to	solve	this	paradox	in	two	different	ways.	One	easy	resolution	of	the	paradox	is	that	the	problem	isn't	

a	paradox	–	it's	simply	a	card	with	words	printed	on	it.	This	resolution	to	the	problem	happens	in	real	space	and	

meets	all	measurement	minimums	for	every	frame	of	reference.		The	action	of	turning	the	card	has	no	affect	on	

any	observer	frame	of	reference.	However,	this	solution	seems	a	little	like	cheating.	Instead,	we	will	pretend	that	

we	have	a	magic	card	that	turns	itself	and	the	face	of	the	card	determines	what	is	real.	Like	the	Liar's	paradox,	

we	can	define	measurement	minimums	for	the	problem	by	identifying	observer	frames	of	reference:	

	

Observer	1-		measures	other	side	of	card	as	true		

Observer	2	-	measures	other	side	of	card	as	false		

Observer	3	-	reader	can	see	both	sides	of	card,	but	not	simultaneously		

	

In	this	paradox,	the	card	is	the	minimum	measurement	for	all	observers.	Only	observer	three	sees	the	actual	

relationship	between	the	two	contradictory	sides.	In	order	for	observer	3	to	do	this	they	must	be	able	to	

remember	both	frames	of	reference.	Therefore,	observer	three's	frame	of	reference	will	always	be	composed	of	

real	and	an	imaginary	components.	For	both	of	the	other	observers,	their	only	frame	of	reference	is	the	side	of	

the	card	that	they	see.		Observer	1	sees	a	true	statement.	They	must	assume	that	what	they	see	is	true	and	the	

other	side	is	also	true.	Their	frame	of	reference	only	sees	true	statements.	Observer	2	must	also	assume	that	

what	they	observe	is	the	truth.	The	other	side	is	false.	The	difference	between	observers	one	and	two	is	that	
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observer	two	understands	the	nature	of	a	false	statement	and	can	imagine	the	other	side	of	the	card	as	false.	

Observer	3	has	the	additional	advantage	of	being	able	to	see	both	sides	of	the	card.	What	this	paradox	allows	us	

to	discuss	is	the	nature	of	imaginary	potential	related	to	paradox.	The	side	of	the	card	that	observer	2	doesn't	

see	only	can	be	imagined.	Observer	three	also	must	use	their	imagination	to	measure	both	statements,	but	for	a	

different	reason.	For	observers	one	and	two,	what	is	real	is	not	determined	by	the	flipping	of	the	card	because	

each	frame	of	reference	can	never	see	the	other	side	of	the	card.	The	reader	can	see	both	sides	of	the	card	at	the	

same	time	because	they	exist	in	a	relative	frame	of	reference.	As	we	have	discussed,	all	relative	frames	are	held	

to	the	limits	of	general	relativity	when	it	comes	to	simultaneous	measurement	.	In	this	problem,	the	reader	can	

only	measure	conflicting	statements	in	sequence.	Unlike	the	other	two	reference	frames	,	the	reader	can	only	

observe	a	looped	cycle	of	sequential	and	conflicting	measurements	that	have	the	appearance	of	an	unsolvable	

paradox.	In	actuality,	the	reader	is	adhering	the	the	minimums	for	measurement	within	their	frame	of	reference.	

One	of	the	measurents	is	always	real,	the	other	always	imaginary.	We	will	expand	on	this	relationship	further	in	

later	sections.	In	the	next	section,	we	show	how	sequential	actions,	and	reference	frame	measurement	

minimums	in	real	space,	can	provide	a	resolution	to	the	Barber	paradox.	

	

1.03	-	The	Barber	Paradox	and	minimums	for	measurement.	

	

This	paradox	was	first	proposed	by	Bertrand	Russell	as	a	way	to	understand	the	Russell	paradox[3],	which	we	

discuss	later.		The	Barber	paradox	can	be	stated	as	follows:	

	

"A	barber	must	shave	everyone	who	does	not	shave	themselves.	Does	the	barber	shave	himself?"	

	

In	this	paradox	we	have	three	observers;	the	barber,	and	two	groups	of	observers.	Each	observer	has	different	

minimums	of	measurement.	The	resolution	of	any	paradox	begins	by	defining	these	minimums:	

	

Observer	1-	Barber	(person	who	shaves	people	that	do	not	shave	themselves)		

Observer	2-	People	who	shave	themselves	

Observer	3-	People	who	not	shave	themselves	

	

To	establish	the	minimum	measurement	for	each	observer	frame	of	reference,	let	us	imagine	we	have	placed	

observers	one	and	two	in	separate	buildings.	On	the	front	of	each	building	is	a	single	door.	Next	to	the	door	is	a	
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sign.	One	sign	says	"Barber	needed"	the	other	says	"	No	Barbers	Allowed".	Observers	in	each	building	do	not	

interact	with	each	other	and	can	only	interact	with	the	barber.	The	secret	to	this	paradox	is	defining	the	

minimum	measurement	for	each	observer	and	taking	a	sequential	approach	to	a	relative	problem,	based	on	

minimum	available	action.	The	minimum	measurement	in	this	paradox	is	not	"shaving"	it	is		"barber".	To	

maintain	his	minimum	measurement	of	"	"barber"	the	barber	has	only	one	action	available	to	him.	His	minimum	

of	action	to	stay	a	barber	is	to	enter	the	building	of	the	observers	who	do	not	shave	themselves	and	get	to	work.	

The	barber	enters	the	building	and	shaves	everyone	who	does	not	shave	himself.	Because	he	has	shaved	everyone	

who	does	not	shave	himself	he	can	no	longer	be	measured	as	a"	barber".	By	shaving	everyone,	he	has	moved	from	

the	observer	3	frame	and	into	the	observer	2	frame.	This	is	not	just	a	clever	way	of	eliminating	the	word	

"barber"	from	the	problem.	A	minimum	sequential	action	allows	the	barber	to	change	his	observational	

reference	frame.		Because	he	can	no	longer	shave	anyone	else	his	minimum	for	measurement	is	still	to	take	

action.	That	minimum	action	is	to	enter	the	other	building	to	shave	himself.		The	problem	does	not	state	that	any	

observers	have	hair	that	grows	back,		therefore;		the	observer	1	reference	frame	is	eliminated	and	the	paradox	is	

resolved.	To	see	how	relative	frames	of	reference	can	deny	a	minimum	of	action	we	can	examine	the	

measurement	minimums	for	each	observer	in	"The	Grandfather	paradox".	

	

1.04	The	Grandfather	Paradox	must	obey	the	rules	of	general	relativity	

	

The	Grandfather	paradox	asks	the	question:	

	

"Can	you	go	back	in	a	time	machine	and	kill	your	grandfather?"	

	

Because	we	are	discussing	a	paradox	that	is	directly	related	to	the	rules	of	general	relativity,	we	will	

demonstrate	how	Einstein	has	already	resolved	this	paradox	by	limiting	the	actions	that	can	be	taken	in	all	

reference	frames.		To	demonstrate	how	this	works	we,	again,	begin	by	assigning	frames	of	reference	and	

measurement	minimums	to	all	the	observers	within	the	paradox.	

	

Observer	1-	grandson	exists	in	the	present	and	has	a	grandfather	

Observer	2	-	grandson	exists	in	the	past	and	has	a	grandfather	

Observer	3	-	grandfather	exists	in	the	past	and	has	no	grandson	
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The	existence	of	the	grandfather	is	a	minimum	measurement	for	all	observers	in	this	paradox.	Any	actions	that	

change	this	minimum	for	measurement	will	result	in	a	simultaneous	change	for	the	other	frames	of	reference.		

The	rules	of	general	relativity	forbid	any	observations	that	can	be	measured	simultaneously	by	all		observers.	

The	resolution	of	this	paradox	has	to	do	with	the	minimum	actions	that	are	allowed	in	all	reference	frames.	You	

cannot	kill	your	grandfather	because	you	are	taking	an	action	in	one	frame	of	reference	that	can	be	seen	by	the	

other	observers	simultaneously.	You	cannot	go	back	in	time	and	take	any	action	that	changes	measurement	

minimums	for	any	other	observer	frame	of	reference	simultaneously.	As	we	discussed	in	the	introduction,	Einstein	

has	already	explained	why	simultaneous	measurement	in	all	reference	frames	is	impossible.	To	understand	how	

minimums	for	measurement,	and	the	rules	of	relativity,	can	be	applied	to	a	quantum	measurement;	we	can	move	

on	to	Dr.	Schrodinger's	infamous	cat.		

	

1.05	-		Schrodinger's	Cat	

	

Since	it's	birth,	in	a	letter	to	Einstein,	Schrodinger's	cat	has	been	abused	by	theorists	and	layman	alike	to	discuss	

the	paradoxes	associated	with	superposition	principles	and	quantum	measurement.	With	his	original	thought	

experiment[4],	Dr.	Schrodinger	hoped	to	demonstrate	to	Einstein	the	absurdity	of	a	cat	being	in	"alive"	and	

"dead"	states	at	the	same	time.	To	save	a	little	time,	we	will	assume	the	reader	is	familiar	with	the	specifics	of	

this	famous	paradox.	In	this	discussion,	we	will	attempt	to	demonstrate	that	it	is	the	box	that	defines	all	

minimum	measurement	boundaries	in	the	experiment	–	not	the	cat.	To	begin,	we	identify	all	observer	frames	of	

reference	in	the	paradox:	

	

Observer	1-	outside	of	box-	sees	dead	cat	 	 	

Observer	2-	outside	of	box	-	sees	live	cat	

Observer	3-	Sees	inside	of	unopened	box	 	 	 	

	

All	observers	share	a	common	minimum	measurements	of	"box"	and	"cat".	Like	the	card	paradox,	opening	the	

box	determines	the	difference	between	real	and	imagined	frames	of	reference.	The	mistake	made	in	most	

interpretations	this	paradox	is	that	a	dead	cat	is	thought	of	as	a	zero	state.	The	box	exists	in	time	whether	the	cat	

is	alive	or	dead,	therefore	the	cat	can't	disappear.	For	all	our	observers	there	is	a	cat	state.	The	life	or	death	state	

is	determined	once	a	measurement	has	been	made	in	real	space	by	observer	one	or	observer	two.	As	in	the	other	

paradoxes	these	observers	do	not	interact.		Any	measurement	made	by	observer	three	simultaneously	
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determines	the	outcome	for	observers	one	and	two.	As	we	showed	earlier,	this	is	not	allowed	under	the	rules	of	

general	relativity.		Therefore,	observer	three	can	take	no	measurements	in	real	space.	Dr.	Schrodinger's	cat	can	be	

imagined	as	alive	and	dead	inside	of	the	box	because	no	real	measurements	can	be	taken	by	observer	three.	In	

fact,	when	the	box	is	opened	there	is	only	one	frame	of	reference.	All	the	other	frames	of	reference	no	longer	

exist.	The	solution	to	this	paradox	is	forced	upon	us	by	the	rules	of	general	relativity.	No	measurement	can	be	

taken	inside	of	the	box.	The	opening	of	the	box	determines	the	real	frame	of	reference.	As	we	discussed	in	the	

previous	sections,	any	relative	frame	of	reference	is	forced	to	contain	a	real	and	imaginary	component	to	adhere	

to	the	rules	regarding	simultaneous	measurement.	In	the	next	section,	we	will	discuss	how	these	requirements	

for	all	relative	sets	can	provide	the	set	forcing	needed	to	resolve	the	Russell	Paradox.	

	

1.06	The	Russell	paradox.	

	Bertrand	Russell	framed	his	famous	paradox	in	the	following	manner:	

	

"The	comprehensive	class	we	are	considering,	which	is	to	embrace	everything,	must	embrace	itself	as	one	of	its	

members.	In	other	words,	if	there	is	such	a	thing	as	“everything,”	then,	“everything”	is	something,	and	is	a	member	

of	the	class	“everything.”	But	normally	a	class	is	not	a	member	of	itself.	Mankind,	for	example,	is	not	a	man.	Form	

now	the	assemblage	of	all	classes	which	are	not	members	of	themselves.	This	is	a	class:	is	it	a	member	of	itself	or	

not?	If	it	is,	it	is	one	of	those	classes	that	are	not	members	of	themselves,	i.e.,	it	is	not	a	member	of	itself.	If	it	is	not,	it	

is	not	one	of	those	classes	that	are	not	members	of	themselves,	i.e.	it	is	a	member	of	itself.	Thus	of	the	two	

hypotheses	–	that	it	is,	and	that	it	is	not,	a	member	of	itself	–	each	implies	its	contradictory.	This	is	a	contradiction."	

[3]	

	

For	this	paradox,	the	minimums	for	measurement	for	all	reference	frames	are	dependent	on	the	definitions	in	

basic	set	theory.	We	begin	by	breaking		the	problem	into	the	various	observers	within	the	paradox	and	their	

minimum	for	measurement.	For	the	Russell	paradox	we	can	associate	each	observer	with	a	set:	

	

Observer	1-	sets	that	are	members	of	themselves		

Observer	2-	sets	that	are	not	members	of	themselves	

Observer	3-	set	of	all	sets	
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Because	the	common	minimum	measurement	is	a	"set",	all	observers	are	held	to	the	measurement	minimums	as	

defined	by	basic	set	theory.		All	sets	are	forced	to	comply	with	measurement	minimums	and	the	rules	of	general	

relativity	for	any	relative	set	–	including	the	set	of	all	sets.	Because	the	set	of	all	sets	is	a	relative	set,	it	can	contain	

conflicting	reference	frames.	However,	conflicting	frames	of	reference	can	only	be	measured	sequentially.	The	

result	is	that	the	set	of	all	sets	can	be	both	a	member	of	itself	and	not	a	member	of	itself.		Because	the	set	of	all	sets	

is	a	relative	frame	of	reference,	it	is	forced	to	measure	these	members	sequentially.		This	creates	not	only	the	

forcing	of	the	set	of	all	sets	to	conform	to	the	rules	of	general	relativity,	but	also	results	in	the	forcing	of	any	

relative	set	to	contain	at	least	two	members	–	one	real	and	one	imaginary.	Any	observer	in	this	frame	of	

reference	will	be	forced	to	measure	these	members	in	sequential	time.	As	we	hope	we	have	demonstrated	in	this	

short	discussion,		The	Liar's	paradox,	The	Card	paradox,	The	Barber	Paradox,	The	Grandfather	Paradox,	The	

Schrodinger's	Cat	Paradox	and	even	the	Russell	Paradox	are	all	simply	complying	with	the	rules	of	general	

relativity.	In	our	next	section	we	take	the	ideas	we	have	discussed	regarding	paradox	and	measurement	and	

apply	them	to	a	short	discussion	of	how	Einstein's	rules	impact	Gödel's	theory	of	incompleteness.	

	

1.07		Einstein	and	Gödel	

Kurt	Gödel	was	a	good	friend	of	Einstein's.	They	would	often	walk	to	and	from	work	together	during	Gödel's	

time	at	Princeton.	Gödel	used	the	paradoxes	that	he	found	in	the	Peano	axioms	to	form	the	basis	of	his	second	

theory	of	incompleteness[1].	Ironically,	in	this	discussion	of	paradox,	we	will	be	using	Einstein's	limits[2]	to	

force	boundary	conditions	on	Gödel's	theories.	Gödel's	presentation	of	the	paradox	associated	with	his	second	

theory	of	incompleteness	can	be	stated	in	the	following	manner	:	

	

"If P is consistent, then Con(P) is not provable from P."[1] 

 

We can use the same technique that we used earlier to identify all observers in the paradox - including Dr. Gödel: 

 

Observer	1-	sets	of	P	

Observer	2-	sets	that	are	not	of	P	

Observer	3-	Kurt	Gödel		
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In	this	instance,	we	have	identified	an	unstated	observer	that	can	observe	both	P	and	not	P.	Dr.	Gödel	has	

neglected	to	include	his	frame	of	reference	in	this	problem.	His	measurement	minimums	include	all	the	same	

minimums	as	the	other	two	frames	of	reference	,	but	he	brings	with	him	the	understanding	of	the	concept	of	

"provability"	and	the	relative	nature	of	"P"	and	"Con	P".		The	other	two	frames	of	reference	do	not	observe	a	

paradox.	From	the	frame	of	reference	of	observer	one,	all	sets	are	of	P	and	true.	From	observer	two's	frame	of	

reference	all	sets	are	not	P.		Observer	two	adds	a	minimum	measurement	of	an	understanding	of	true	and	false.	

Let	us	summarize	the	measurement	minimums	for	each	frame	of	reference:	

	

Observer	1-	sets	of	P	(held	to	minimum	measurements	of	{set}	and	the	definition	of	(P))	

Observer	2-	sets	that	are	not	of	P	(held	to	minimum	measurements	of	{set}	and	the	definition	of	(P)	and	Con(P))	

Observer	3-	Kurt	Gödel	(held	to	minimum	measurements	of	{set},	the	definition	of	(P)	and	Con(P),	and	the	

definitions	of	(provable)	and	(not	provable))	

	

Because	he	can	observe	the	relative	nature	of	both	of	the	other	frames	of	reference,	Dr.	Gödel	is	forced	to	comply	

with	the	rules	of	general	relativity	regarding	simultaneous	measurement.			He	has	the	same	problem	as	any	

observer	in	a	relative	frame	of	reference.	By	trying	to	measure	two	conflicting	statements	simultaneously	he	is	

violating	his	set	forcing	rules.	The	result	is	the	appearance	of	paradox.	All	relative	sets	are	forced	to	contain		a	

minimum	of	a	real	and	a	complex	measureable	state.	To	describe	this	requirement	in		set	notation	we	can	say	

that:	

	

 𝑖 ,𝑅!  = 𝑆! 																																																																																																																																																																													(01)	

	

Where	 𝑆! 	represents	any	relative	set	and	𝑅! represents	the	measured	frame	of	reference.		Obviously,	this	

subject	deserves	a	more	extensive	and	formal	investigation,	related	to	the	roots	of	set	and	number	theory,	that	is	

beyond	the	scope	of	this	letter.	However,	in	our	final	sections,	we	will	have	a	short	discussion	of	how	relative	set	

forcing		can	establish	minimums	for	the	measurement	of	the	the	unit	integral	and	set	real	boundaries	for	the	

Peano	axioms.	

	

1.08	Relativity	and	the	unit	integral	
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In	order	to	be	of	any	use	to	science,	theoretical	principles	must,	at	some	point,	succumb	to	measurement	in	real	

space.	As	we	have	shown	earlier,		all	relative	sets	can	be	forced	to	comply	with	the	rules	of	general	relativity	and	

held	to	minimums	for	measurement.		We	have	shown	that	one	of	the	repercussions	is	that	the	set	of	all	sets	can	

be	forced	to	follow	the	limits	of	general	relativity	regarding	the	simultaneous	measurement	of	relative	members	

of	the	set.	In	our	final	two	sections,	we	will	attempt	to	demonstrate	that,	in	any	set	bounded	by	real	measurement	

both	zero	and	infinity	are	not	measurable	states.		This	simple	and	logical	premise	invalidates	all	smooth	

approaches	to	zero	in	a	system	defined	by	measurement	and	establishes	a	measurement	boundary	that	is	

greater	than	zero	for	any	real	measurement.	To	demonstrate	how	these	limits	affect	basic	number	theory,	we	

will	exclude	zero	from	the	set	of	natural	numbers	and	replace	it	with	a	measurement	boundary	dividing	real	

space	from	complex	potential.	We	can	represent	this	as	a	hard	measurement	boundary	between	the	real	and	

complex	potentials	within	any	relative	set:		

	

 𝑖 ,𝑅!  = 𝑆! = 1																																																																																																																																																																							(02)	

	

In	which	𝑅!	represents	the	measurement	of	complex	potential	in	real	space.	To	understand	how	this	affects	

number	theory,		we	need	to	define	minimums	for	the	measurement	of	the	unit	integral.	All	relative	sets	are	

required	to	contain	an	imaginary	component	and	a	real	component	that	represents	the	measurement	of	complex	

potential	in	real	space.	Therefore,	we	can	define	the	unit	integer	using	a	measurement	boundary	and	an	

imaginary	zero:	

	

0𝑖| ← 1																																																																																																																																																																																													(03)	

	

The	boundary	we	have	placed	based	on	minimums	for	the	measurement	of	any	relative	set	will	always	prevent	

the	establishment	of	a	zero	in	real	space.	As	we	have	demonstrated,	all	zeros	are	imaginary	under	these	set	

forcing	boundaries.	To	represent	this	geometrically	we	can	think	of	any	line	with	a	real	point	at	one	end	and	an	

imaginary	zero	at	the	other:	

	

0𝑖| ← − − − − − − − − − − − − − − − − −1																																																																																																																		(04)																																																																																																																							
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This	establishes	the	real	part	of	our	function	converging	discretely	on	an	imaginary	zero.	In	effect	we	have	a	line	

that	has	real	point	on	one	end	and	imaginary	on	the	other.	It	only	becomes	a	real	measurement	when	both	ends	of	

the	line	are	established	through	measurement.		

	

𝑅! ← − − − − − − − − − − − − − − − − −1																																																																																																																	(05)				

	

𝑅! = 1																																																																																																																																																																																												(06)				

	

In	which	𝑅!	represents	the	stopping	measurement	of	the	converging	function	as	well	as	a	barrier	to	the	

measurement	of	any	null	or	empty	sets.	There	is	no	way	to	measure	a	purely	imaginary	number	in	real	space.	

The	minimum	measurement	is	always	a	real	number,	therefore	real	arguments	will	always	outweigh	any	

imaginary	arguments	in	a	real	measurement.	Requiring	that	any	lower	boundary	for	real	measurement	to	be	

greater	than	the	sum	of	complex	arguments:	

	

𝑖!!!!
!!!! < 𝑅!

2																																																																																																																																																																										(07)				

	

Establishing	an	real	boundary	for	measurements	in	the	complex	plane	at	< !
!
	therefore:	

	

 0𝑖 | !
!
 =  𝑖! ,𝑅!  = 𝑆! = 1																																																																																																																																														(08)				

	

Which	leads	us	to	the	conclusion	that	any	imaginary	zero	must	have	a	real	part	of	one	half	to	be	a	real	

measurement.	Unfortunately,	a	formal	mathematical	discussion	of	the	how	we	establish	limits	to	number	

probabilities	must	wait	for	a	later	investigation	and	a	more	specialized	audience.	In	our	final	section,	we	discuss	

how	defining	minimums	for	measuring	the	unit	integral	in	real	space	affects	the	Peano	axioms	and	Gödel's	

theory	of	incompleteness.		

	

1.09	Measuring	the	Peano	axioms	

	

Since	it's	adoption	in	the	latter	part	of	the	19th	century,	Peano	arithmetic[5]	has	served	as	the	foundation	for	

mathematical	theory	and	practice.	It	is	based	on	the	simple	idea	that	inductive	reasoning	can	provide	rules	for	
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logical	formulation	of	the	number	sets.	It	was	intended	as	a	complete	description	of	the	basic	operations	of	

arithmetic.	Kurt	Gödel	later	demonstrated	that	the	Peano	axioms	were	incomplete	because	they	allowed	for	

infinite	sets	which	could	exceed	the	set	of	natural	numbers[1].		This	established	a	formalized	view	of	infinite	sets	

and	the	use	of	zero	as	one	of	the	members	of	the	set	of	natural	numbers.	The	Peano	axioms	can	be	stated	as	

follows:	

	

1.	0	is	included	in	the	set	of	natural	numbers	

2.	If	(a)	is	a	number	then	it's	successor,(	b),	is	a	number	

3. 𝑇𝑤𝑜 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 𝑤ℎ𝑜𝑠𝑒 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠 𝑎𝑟𝑒 𝑒𝑞𝑢𝑎𝑙 𝑎𝑟𝑒 𝑎𝑙𝑠𝑜 𝑒𝑞𝑢𝑎𝑙	

4.	𝐼𝑓 𝑎 𝑠𝑒𝑡 𝑜𝑓 𝑆 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑏𝑜𝑡ℎ 0 𝑎𝑛𝑑 𝑒𝑣𝑒𝑟𝑦 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟 𝑜𝑓 𝑒𝑣𝑒𝑟𝑦 𝑛𝑢𝑚𝑏𝑒𝑟 𝑖𝑛 𝑆, 𝑡ℎ𝑒𝑛 𝑒𝑣𝑒𝑟𝑦 𝑛𝑢𝑚𝑏𝑒𝑟 𝑖𝑠 𝑖𝑛 𝑆  	

	

It	turns	out	there	is	a	very	simple	solution	for	this	that	will	allow	us	to	complete	the	Peano	axioms.	The	solution	

is	to	consider	the	Peano	axioms	as	measurements.	This	requires	that	zero	only	exist	in	the	complex	plane	and	

not	be	included	in	the	set	of	measureable	natural	numbers.	The	Peano	axioms	and	the	set	of	natural	numbers	

can	be	now	re-stated	as	follows:	

	

1.	For	any	natural	number	there	exists	forced	set	requirements		

2. 0	is	not	a	natural	number	in	any	frame	of	reference	because	it	has	no	measureable	minimum	

3.	any	number(a)	must	be	measured	to	establish	its	frame	of	reference.	

4.	If	a	set	of	S	contains	𝑏𝑜𝑡ℎ 0𝑖 and	the	measurement	definition	of	(a)	then	the	set	of	S	is	complete	within	that	frame	

of	reference.	

5.	If	(a)	is	a	measured	number	then	it's	successor,(	b),	is	a	number	

6. 𝑇𝑤𝑜 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 𝑤ℎ𝑜𝑠𝑒 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠 𝑎𝑟𝑒 𝑒𝑞𝑢𝑎𝑙 𝑎𝑟𝑒 𝑎𝑙𝑠𝑜 𝑒𝑞𝑢𝑎𝑙	

7.	𝐼𝑓 𝑎 𝑠𝑒𝑡 𝑜𝑓 𝑆 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑏𝑜𝑡ℎ 0𝑖 𝑎𝑛𝑑 𝑒𝑣𝑒𝑟𝑦 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟 𝑜𝑓 𝑒𝑣𝑒𝑟𝑦 𝑛𝑢𝑚𝑏𝑒𝑟 𝑖𝑛 𝑆, 𝑡ℎ𝑒𝑛 𝑒𝑣𝑒𝑟𝑦 𝑛𝑢𝑚𝑏𝑒𝑟 𝑖𝑠 𝑖𝑛 𝑆  	

	

The	measured	Peano	axioms	now	establish	a	minimum	real	measurement	of	1	for	the	set	of	natural	numbers	

using	the	same	minimums	for	measurement	that	we	established	for	the	resolution	of	paradox.	This	has	the	effect	

of	constraining	all	infinite	sets	to	the	complex	plane.	Our	adjustment	to	the	Peano	axioms	have	made	it	

impossible	to	make	a	measurement	in	real	space	using	infinities.	Therefore,	infinite	sets,	in	a	system	defined	by	

measurement,	are	invalid	in	real	space.	Gödel's	proof	of	incompleteness	relies	completely	on	the	existence	of	

infinite	sets	and	on	the	inconsistencies	within	the	Peano	axioms.	By	limiting	all	infinite	sets	to	the	complex	plane	
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we	have	invalided	Gödel's	proof	in	measurable	space.		This	allows	us	to	use	the	adjusted	Peano	axioms	to	define	

the	boundaries	for	all	numbers	used	as	measurements	in	real	space.	

	

Because:	

	

 0𝑖 | !
!
 =  𝑖! ,𝑅!  = 𝑆! = 1																																																																																																																																																(09)				

	

All	zeros	and	empty	sets	are	eliminated	from	a	system	of	mathematics	defined	by	measurement.	Therefore,	the	

unit	integral	for	set	of	natural	numbers	becomes	bounded	by	measurement	as	well:	

	

 0,1,2,3,4,5. . . = 𝑁 																																																																																																																																																																		(10)				

	

becomes	

		

0𝑖 ,1,2,3,4,5. . . = {𝑁!}																																																																																																																																																																(11)			

	

	Where	{𝑁!}	represents	the	adjusted	set	of	natural	numbers.	For	the	adjusted	set	of	naturals,	all	zeros	and	

infinities	are	held	to	the	complex	plane.	This	simple	and	intuitive	solution	results	in	a	complete	theory	of	

mathematics	for	measurement.	
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