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Abstract:		
	
In	our	paper,	“Measuring	the	universe	Part	I:	Dark	Matter,	Dark	Energy,	and	The	Big	Flip”(2022),	we	established	an	
equivalency	between	the	curvatures	defined	in	the	Friedman	equations	and	the	mathematical	equivalencies	found	
in	topology.	We	also	introduced	a	new	model	for	“The	Big	Bang”	that	adheres	to	Planck	measurement	standards	
while	explaining	both	the	nature	of	dark	matter	and	dark	energy.	In	May	of	2022,	we	used	this	model	to	accurately	
predict	the	early	appearance	of	black	holes	and	massive	galaxies	before,	they	were	observed	by	the	James	Webb	
Space	Telescope	(JWST).	In	Part	II,	we	will	demonstrate	the	complete	scalability	of	this	model,	from	quantum	to	
galactic	scales,	as	well	as	explaining	the	nature	of	DM	and	DE	using	William	Thurston’s	topological	limits	on	a	
three-sphere.	
	
Introduction	
	
We	will	assume	the	reader	is	familiar	with	the	monumental	achievements	of	William	Thurston	(1946-2012).	
Any	discussion	of	topological	3-manifolds	begins,	and	ends,	with	Bill	Thurston’s	“The	Geometry	and	Topology	of	
Three-Manifolds”	William	Thurston,	(1979,	AMS	2021).	His	understanding	of	geometric	and	topological	
equivalencies	will	never	find	an	equal.	Let	us	begin	our	discussion	with	his	opening	statement	from	Chapter	2-“	
Elliptical	and	Hyperbolic	Geometry”:		
	
”	There	are	three	kinds	of	geometry	which	possess	a	notion	of	distance,	and	which	look	the	same	from	any	viewpoint	
with	your	head	turned	in	any	orientation:	these	are	elliptic	geometry	(or	spherical	geometry),	Euclidean	or	
parabolic	geometry,	and	hyperbolic	or	Lobachevskian	geometry.	The	underlying	spaces	of	these	three	geometries	
are	naturally	Riemannian	manifolds	of	constant	sectional	curvature	+1,	0,	and	−1,	respectively.”		

	
William	Thurston,	Geometry	and	Topology	of	Three-manifolds	(1979,	AMS	2021)	

	
In	this	paper,	we	hope	to	demonstrate	how	Thurston’s	equivalencies	between	topological	boundaries	on	a		
three-sphere	can	be	used	to	form	conformal	measurement	frames	of	reference	(MFR)	for	gravity,	DM	and	DE.		
Unlike	current	models	of	the	universe,	which	require	a	choice	between	a	flat	or	curved	universe,	our	use	of	
conformal	topology	allows	for	the	simultaneous	measurement	of	curve	and	inverse	curve	as	a	measure	of	
completeness.	Because	both	curve	and	inverse	curve	potentials	exist	simultaneously,	their	associated	
measurement	frames	of	reference	(MFR)	also	exist,	simultaneously	(Figure	1).		
	

	
	
(Figure	1)		In	a	complete	universe,	all	conformal	observations	of	completeness	exist	simultaneously.	We	show	Bill	Thurston’s	drawing	of	
simultaneous,	perpendicular	observations	in	hyperbolic	3-space	next	to	an	illustration	of	Riemannian	manifolds	of	constant	sectional	curvature	of	
+1,0	and	-1.	
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In	Part	I,	of	our	continuing	discussion	on	measurement	theory,	we	demonstrated	the	direct	relationship	between	
the	topological	measurements	of	completeness	and	measurements	associated	with	gravity,	Dark	Matter	(DM),	
Dark	Energy	(DE).	We	discussed	how	Measurement	Frames	of	Reference	(MFR),	at	all	scales,	can	be	used	to	
connect	the	boundaries	associated	with	set	theory	and	geometry	to	the	measurement	of	quantum	and	relative	
probabilities	in	real	space.		In	this	discussion,	we	will	formalize	MFR	using	Bill	Thurston’s	definitions	of	
geometric	completeness,	as	well	as	our	own.	We	will	demonstrate	how	topological	completeness,	and	Lorentz	
invariance,	allows	us	to	equate	to	all	measurements	associated	with	the	current	Λ𝐶𝐷𝑀 model	without	the	need	
for	conformal	“fields”	or	zero	point	vacua.	(Sections	1.0-1.2)	will	concentrate	on	presenting	some	of	Bill	
Thurston’s	concepts	related	to	completeness	in	ring	and	knot	theory	as	a	scaffold	for	our	interpretation	of	
measurement	theory.	(Sections	2.0-2.2)	will	discuss	how	topological	MFR,	and	probability	theory,	establishes	the	
measurement	boundaries	for	completeness.	We	discuss	how	topological	completeness	can	be	equated	to	the	
measurement	of	gravity,	DM	and	DE	at	quantum	and	relative	scales.	(Section	3.0)	demonstrates	how	galaxies	and	
clusters	can	be	modeled	as	conformal	hyperbolic	knots.	We	expand	on	the	discussion	regarding	the	current	
Λ𝐶𝐷𝑀	model	and	demonstrate	how	the	principles	of	phase-space	bifurcation	can	model	the	early	ionization	of	
the	universe	and	the	formation	of	early	Black	Holes	(BH).	We	also	demonstrate	how	the	equivalences	in	ring	
topology	and	homology	can	be	used	as	a	framework	for	the	expansion	of	the	universe.	Perhaps	the	clearest	
example	of	topological	equivalency,	in	real	space,	is	the	equivalency	we	find	between	Thurston’s	use	of	the	
hyperbolic	plane	and	the	boundaries	of	General	Relativity	found	in	Einstein’s	field	equations.	Let	us	begin	our	
discussion	there.		
	
1.0-Hyperbolic	Coordinate	Space		
	
Measurements	in	hyperbolic	space	are	written	in	(𝐻! 𝑜𝑟 𝐻! × 𝑅)	coordinates.	Hyperbolic	space	preserves	
angles,	but	not	lengths.	Unlike	Euclidean	space,	hyperbolic	space	cannot	admit	parallel	measurements	(Figure	2).	
	

	
	
(Figure	2)	Hyperbolic coordinates preserves angles, but not lengths. Thurston’s original drawings demonstrate that the Law of Sines and Fermat’s 
Theorem are both valid in hyperbolic space. In the center, a Thurston horosphere is illustrated using conformal closed curves.	On	the	right,	we	include	
the	3-conformal	surface	tensor	that	can	be	equated	to	the	stress	tensor	in	Einstein’s	field	equations.		
	
Topological	descriptions	of	hyperbolic	space	are	what	we	associate	with	the	actions	of	the	tensors	in	Einstein’s	
field	equations.	The	stress	tensor	in	the	Einstein	field	equations	is	a	single	point	tensor	for	four-momentum	and	
is	written	in	hyperbolic	coordinate	space.		
	

𝑇!" = 𝑅!" −
1
2
𝑅𝑔!" + Λ𝑔!"	

	
In	the	field	equations,	𝑇!"	represents	the	stress	momentum	tensor,	𝑅!"	the	Ricci	curvature	tensor,	𝑅𝑔!"	the	Ricci	
scale	tensor,	and	Λ𝑔!" ,	represents	the	actions	of	Einstein’s	cosmological	constant.	Both	Ricci	tensors	are	related	
to	the	deformation	of	Euclidean	coordinate	space.	The	metric	tensor,	𝑔!"	maps	Euclidean	lengths	and	angles	
onto	conformal	hyperbolic	space.	The	equivalencies	found	between	the	field	equations	and	Thurston’s	
descriptions	of	hyperbolic	space	are	fairly	obvious.	Hyperbolic	MFR	are	limited	to	a	single	point	of	reference	for	
all	Lorentz	invariant	properties.	All	probabilities	are,	therefore,	relative	to	the	measurement	frame	of	reference.	
This	is	the	nature	of	gravity.	Describing	GR	and	Lorentz	invariance,	using	topology,	allows	us	to	step	away	from	
mass	and	work	strictly	with	the	topological	equivalencies	found	in	Einstein’s	field	equations.	In	the	next	section,	
we	shall	discuss	how	the	transformation	from	hyperbolic	to	spherical,	and	elliptical	probabilities,	allows	for	
polarity,	the	establishment	of	charge	and	a	topological	equivalency	to	measurements	of	“force”	and	“mass”	in	the	
standard	model.	
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1.1-Spherical	and	elliptical	coordinate	spaces	
	
In	ring	theory,	spherical	boundaries	are	represented	as	(𝑆!𝑜𝑟 𝑆!×𝑅),	spaces.	Spherical	measurements	with	the	
poles	identified	are	elliptic	measurements	(𝐸!𝑜𝑟 𝐸!×𝑅).	Any	two	points	measured	in	elliptic	coordinate	space	
define	a	real	line.	Like	the	limits	we	established	for	all	relative	sets,	elliptical	measurements	can	be	equated	to	
spherical	measurements	by	including	both	real,	and	imaginary,	components.	Any	2-point	correlation,	or	wave-
based	measurement,	is	measured	in	spherical	or	elliptic	coordinate	space	with	a	real	and	imaginary	component.	
In	spherical	space,	one	of	the	two	poles,	in	a	dipole,	is	always	imaginary	and	in	elliptic	space	the	poles	are	
defined.	Spherical	and	elliptical	probabilities	are	tangent	to	the	hyperbolic	imaginary	plane.		Thurston	uses	
perpendicularity	to	the	Poincare	disk,	𝐷!,	to	translate	between	hyperbolic,	spherical	and	Euclidean	coordinate-
spaces.	As	we	mentioned	earlier,	hyperbolic,	spherical	and	elliptic	spaces	cannot	admit	to	parallel	
measurements.	Parallel	lines	can	only	be	measured	in	Euclidean	space.	In	our	paper	on	QCD	dynamics	and	
equivalencies,	we	demonstrated	that	this	geometric	boundary	results	in	all	mass	probabilities	in	real	space	
having	the	limit	of	coupling,	represented	by	the	“strong	force”	in	High	Energy	Particle	Physics	(HEP)(Figure	3).	

	
	
(Figure	3) Polarity, current, spin, angular momentum and Coulomb dynamics must be conserved for all charged particles. Conservation of these 
Lorentz invariant boundary conditions is accomplished through coupling. 
	
Topological	boundaries	can	be	used	at	both	the	quantum	and	relative	scales	to	define	all	the	probabilities	
currently	associated	with	HEP.	Because	polarity,	charge	and	coupling	are	requirements	for	any	measurement	of	
mass,	spherical	and	elliptical	requirements	define	all	measurements	in	the	standard	model	of	particle	physics.	
As	we	have	discussed,	a	statistical	MFR	is	the	basis	of	both	Quantum	Electrodynamics	(QED)	and	current	High	
Energy	Particle	theory	(HEP).	Statistical	MFR	allow	us	work	without	the	“fields”	and	“forces”	currently	written	
into	the	standard	model.	Like	hyperbolic	space,	spherical	coordinates	do	not	admit	to	parallel	lines.	We	can,	also,	
use	spherical	coordinates	to	define	the	polarity	of	a	black	hole	at	the	horizon.	As	we	demonstrated	in	our	paper,	
“A	Black	Hole	as	ideal	spin	capacitor”	(Blackwood	2019,)	the	real	and	imaginary	nature	of	spherical	coordinates,	
allow	us	to	model	the	interior	of	a	BH	using	Noether	ring	spin	potential	to	establish	a	dipole	moment	and	
Noether	current	to	launch	jets.	(Figure	4).		
	

	
(Figure	4) The	real	and	imaginary	nature	of	spherical	coordinates	and	Noether	rings,	allows	us	to	model	the	interior	of	a	BH	as	an	ideal	spin	
capacitor. 
	
Our	model	for	a	black	hole,	as	an	ideal	spin	capacitor,	is	written	as	a	topological	boundary	between	Euclidean	
and	Hyperbolic	probability	spaces	and	the	imaginary	hyperbolic	plane	allows	us	to	use	Noether	ring	theory	to	
translate	between	Bayesian	and	Markovian	MFR.	We	discuss	this	further	in	(Section	2.0-	Simultaneous	
measurement	and	completeness).		
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1.2-Euclidean	Coordinate	Space	
	
Euclidean	space	defines	geometric	lines	and	points.	It	is	the	space	of	Euclid’s	Geometry	and	Fermat’s	
probabilities.	Of	all	the	three	MFR,	Euclidean	space	is	the	only	measurement	frame	of	reference	that	allows	for	the	
existence	of	parallel	lines	(Figure	5).		

	
	
(Figure	5)	Hyperbolic,	Spherical	and	Elliptic	measurements	cannot	admit	to	parallel	measurements.	Parallel	measurements,	and	quantum	
uncertainty	exist	in	the	imaginary	Euclidean	plane.	
	
In	this	paper,	we	will	exploit	this	equivalency	to	create	our	definitions	of	DM	and	DE	using	the	concept	of	
topological	completeness.	Thurston	defines	completeness	in	Euclidean	space	using	the	isometry	between	curve	
and	inverse	curve.	He	reminds	us	that	any	sphere	in	Euclidean	space,	with	radius	r,	has	a	constant	curvature	of	
!
!!
.		He	uses	the	law	of	Sines,	as	well	as	the	relationship	between	curve	and	inverse	curve,	to	establish	the	concept	

of	geometric	completeness.	As	observers	in	hyperbolic	space,	we	are	unable	to	measure	straight-line	
probabilities.	In	both	hyperbolic	and	spherical	spaces,	straight	lines,	points	and	parallel	lines	are	all	imaginary	
measurements.	Euclidean	least-time	probabilities	exist	outside	of	our	view	and	establish	the	appearance	of	
invisible	“forces”	for	all	observers.	The	mathematical	and	statistical	equivalency,	between	imaginary	curve	
potential,	and	it’s	measurement	in	real	space,	allows	us	to	equate	the	boundaries	of	geometric	completeness	to	
the	measurement	of	quantum	and	relative	probabilities	in	real	space.	
	
2.0-Simultaneous	measurement	and	completeness	
	
In	our	paper	on	the,	“Theorem	of	Geometric	Completeness”	(Blackwood	2021),	we	proved	that	the	smallest	
measure	in	real	or	complex	space	is	a	simple,	closed	curve.	It	is	this	definition,	along	with	Bill	Thurston’s	
definition	of	geometric	completeness,	that	will	connect	topological	and	geometric	boundaries	to	their	
measurement	in	real	space	as	gravity,	DM	and	DE.	Thurston’s,	proven,	boundaries	on	a	three-sphere	are	limited	
to	the	same	real	and	imaginary	definitions	of	completeness	that	we	use	in	set	theory	to	define	a	minimum	
measurement	of	completeness.	He	uses	the	concept	of	the	irreducibility	of	curve	and	inverse	curve,	Sine	and	
cosine,	to	define	the	boundaries	of	a	complete	hyperbolic	manifold:	
	
“Any	compact,	irreducible,	atoroidal	3-manifold	containing	an	incompressible	surface	has	a	complete	Hyperbolic	
structure.”		

William	Thurston,	Geometry	and	Topology	of	Three-manifolds	(1979,	AMS	2021)	
	

The	measurement	of	geometric	completeness,	in	real	and	complex	spaces,	will	allow	us	to	equate	all	quantum	
and	relative	“forces”	to	the	topological	boundaries	found	in	ring	and	knot	theory.		(Figure	6)	shows	how	
completeness	is	related	to	geometric	and	topological	irreducibility	using	a	closed	simple	curve.	Our	proof	on	this	
subject	is	based	on	the	same	concepts	used	by	Thurston	to	define	geometric	completeness.		



	 5	

	
		
(Figure	6)	On	the	left	Thurston	demonstrates	how	hyperbolic	completeness	can	be	equated	to	Euclidean	geometry.	The	other	illustration	is	from	our	
paper,	“The	Geometric	Theorem	of	Completeness”(2021),	where	demonstrated	that	the	smallest	measurement	in	complex	or	real	space	is	a	simple	
closed	curve.	
	
Everything	we	demonstrate	depends	on	the	simultaneous	existence	of	all	topological	spaces.	Because	hyperbolic	
space	preserves	angles	but	distorts	lengths,	we	can	also	define	completeness	using	the	basic	proofs,	established	
by	Fermat,	regarding	least-time	principles	in	Euclidean	space.	Least-time	principles	allow	us	to	set	a	common	
time	frame	between	relative	and	quantum	probabilities.	(Figure	-7)	shows	Thurston’s	equivalency	between	
geometric	space	and	completeness	in	the	hyperbolic	plane.	Next	to	Bill’s	drawing	we	have	placed	two	
illustrations	from	our	paper	on	Fermat’s	theorem	and	geometric	completeness.		
	

	
	
(Figure	7)	On	the	left	Thurston	demonstrates	how	the	isometry	of	the	Law	of	Sines	defines	completeness.	The	other	two	illustrations	are	from	our	
paper,	“Three	paths	for	Fermat”(2020),	where	we	used	solutions	to	Fermat’s	Theorem	to	define	completeness.		
	
The	advantage	of	using	geometric	completeness	as	a	measurement	limit	becomes	evident	in	any	translation	of	
boundaries	between	Quantum	Mechanics	(QM)	and	General	Relativity	(GR).	General	Relativity	relies	on	a	
hyperbolic	singularity	to	define	the	measurement	of	completeness.	Quantum	measurements	must	always	
include	the	concept	of	uncertainty.	Completeness	in	quantum	MFR,	therefore,	requires	both	a	real	and	imaginary	
component.	Our	geometric	boundaries	associated	with	measurement	theory	can	be	equated	to	completeness	in	
hyperbolic,	spherical	and	Euclidean	spaces.	Because	spherical	and	elliptical	MFR	allow	for	polarity	and	charge,	
all	wave-based	measurements	exist	in	spherical	or	elliptic	space.	Parallel	measurements	can	only	be	made	in	
complex	Euclidean	space.	The	simultaneous	real	and	complex	probabilities	of	Quantum	Electro-dynamics	(QED)	
follow	the	limits	of	Spherical	space.	Spherical	potentials	exist	in	Bayesian	time	as	waves	or	Markovian	time	as	
wave	packets.	Elliptical	space	defines	both	poles	in	a	real	measurement	and	can	be	used	in	the	measurement	of	
coupled	probabilities.	As	we	discussed	in	Part	I,	real	and	imaginary	measurements	of	geometric	completeness	
can,	also,	be	equated	to	a	complete	Einstein	ring	(Figure	8).		

	
(Figure	8)	Any	complete	system	of	geometry	must	be	able	to	represent	both	the	vertex	of	a	cone	in	real	space,	and	a	genus	one	modular	form	(torus)	
in	the	upper	half	of	the	coordinate	plane.	All	modular	forms	and	homolographic	groups,	in	any	complete	system	of	geometry,	have	a	minimum	real	
length	= 2𝜋𝑖.		Any	real	length	or	radius,	with	either,	real	or	complex	endpoints,	can	be	held	to	the	minimum	measure	of	a	simple	closed	curve	and	
equated	to	the	boundaries	of	an	Einstein	ring.	

i i

iRm

Rm Rm

Real length with 2 complex endpoints

Real length with 1 real and 1 complex endpoint

Real length with 2 real endpoints

Any real length 
with 2 complex endpoints
can only be measured 
as a circle in real space.

Any real length 
with 1 complex endpoint
can only be measured 
as a genus or a cycle 
in real space.

Any real length 
with 2 real endpoints
can be measured as a 
probability with a real mean,
and a real radius =½

2πi

2πi

2πi2

sinθ²+ cosθ²=1
  

All right triangles 

can be counted on the 

the line zⁿand limited to

the coordinate plane

xⁿzⁿ

zⁿyⁿ

zπ ²= 1⁴

cosθ

sinθ

y¹x¹

z z
yⁿ

xⁿy¹x¹

(Euler’s primary identity)

Always forces a right angle and defines 

the limits of the coordinate plane

  

  

i²yⁿ+π²   =i²xⁿπ² zπ ²= 1⁴

  
All right triangles can be counted on 
the line zⁿand limited to the 
surface coordinate planes of a cone

  

xⁿyⁿzⁿ

x¹y¹z¹

x¹yⁿzⁿ

xⁿyⁿzⁿ

z

x

y

x¹y¹z¹

x¹yⁿzⁿ

x=

y=
zx√π  x²+y²= L

xπ ²=⁴ c

h

r

Gravitational 
lense measurent
Einstein 
ring

2πr²

r=d/24 real minima

=2πi²

=1/2

ordinate

boundary
complex 
coordinate 
frame

observer

cusp

cusp cusp

cusp



	 6	

	
Like	our	limits	in	set	theory,	spherical	space	has	a	real	and	imaginary	part	that	fulfills	the	conditions	for	
quantum	uncertainty	and	allows	for	completeness	of	quantum	measurements	at	any	scale.		We	can	add	
Thurston’s	geometric	definitions	of	completeness	to	our	own	to	define	the	measurement	of	relative	and	
quantum	probabilities	as	“forces”	in	real	space.	Thurston	tells	us	that:	
	
“A	sphere	in	Euclidean	space	with	radius	r	has	a	constant	curvature	1 𝑟!.	Thus,	Hyperbolic	space	should	be	a	sphere	
of	radius	i.	To	give	this	a	reasonable	interpretation,	we	use	an	indefinite	metric	𝑑𝑥! = 𝑑𝑥!! +⋯+ 𝑑𝑥!! − 𝑑𝑥!!!! 	in		
𝑅!!!.	The	sphere	of	radius	i	about	the	origin	in	this	metric	is	the	hyperboloid	𝑥! = 𝑥!! +⋯+ 𝑥!! − 𝑥!!!! 	“		

	
William	Thurston,	Geometry	and	Topology	of	Three-manifolds	(1979,	AMS	2021)	

	
Hyperbolic	space	must	establish	a	minimum	measure	of	length	to	establish	a	metric.	In	our	paper	establishing	
the	“Geometric	Theorem	of	Completeness”(Blackwood,	2021),	we	proved	that	measurement	in	real	or	complex	
space	contains	a	minimum	length	measure	of	a	simple	closed	curve.	The	Hyperbolic	sphere	of	radius	i	allows	us	
to	equate	a	constant	inverse	curvature	with	a	sphere	in	Euclidean	space	and	our	limits	on	completeness.	
Geometric	completeness	is	not	limited	by	scale.	The	conformal	Hyperboloid	metric,	described	by	Thurston,	can	
be	tied	to	the	conic	and	parabolic	components	of	black	hole	Jets	in	Active	Galactic	Nuclei,	(AGN)	as	well	as	the	
quantum	probabilities	associated	with	measurements	of	topological	insulators	(Figure	9)(Appendix	A).	
	

	
	
(Figure	9)	The	conformal	Hyperboloid	metric,	described	by	Thurston,	can	be	tied	to	the	conic	and	parabolic	components	of	Black	Hole	Jets	in	AGN	as	
well	as	the	quantum	probabilities	associated	with	measurements	of	topological	insulators.	
	
Geometric	probability	and	completeness	exist,	simultaneously,	for	all	observer	frames	of	reference.	Quantum	and	
relative	MFR	have	different	time	requirements.	All	quantum	probabilities	must	be	measured	using	Markov	
chains	to	preserve	uncertainty.	Bayesian	time	can	be	equated	to	waves	or	cycles.	For	both	quantum	and	relative	
MFR	there	exists	a	simultaneous	and	measureable	probability	in	both	hyperbolic	and	Euclidean	space.	Gravity	is	
the	result	of	all	of	relative	MFR	being	held	to	the	same	hyperbolic	curve.	Quantum	frames	of	reference	use	
Markovian	time	and	Markov	chain	probabilities,	but	follow	the	same	curved	hyperbolic	curve.	The	imaginary	
hyperbolic	plane	allows	us	to	use	ring	theory	to	translate	between	Bayesian	and	Markovian	MFR.	Because	
Euclidean	space	allows	for	parallel	MFR,	quantum	MFR	are	allowed	parallel,	Markovian,	time-lines.	The	result	is	
the	ability	of	Euclidean	probabilities	to	adhere	to	the	principle	of	uncertainty	while	equating	to	measurements	in	
relative	time.	In	the	next	Section	we	will	discuss	how	the	completeness	of	curve	and	inverse	curve	manifest	
themselves	as	conformal	mapping	probabilities	in	hyperbolic	space	for	measurements	of	DE	and	the	Hubble	
constant.	
	
2.1-DM	as	measure	of	topological	completeness		
	
The	ability	to	make	simultaneous	equivalencies	between	curve	and	inverse	curve	allows	us	to	map	any	
conformal	hyperbolic	surface	with	a	Euclidean	tensor,	tangent	to	the	hyperbolic	disk	𝐷!.	It	is	this,	conformal,	
Euclidean	tensor	that	we	will	use	to	model	the	measurements	of	“dark	matter”.	A	conformal	hyperbolic	torus	
allows	us	to	model	all	galaxies	using	the	same	topography.	In	this	model,	galaxies	become	complete	geometric	
probabilities	built	around	the	intersection	of	hyperbolic,	spherical	and	Euclidean	probability	spaces.	Galaxies	
can	then	be	modeled	as,	both,	topologically	and	relatively	complete.	As	a	complete	Euclidean	tensor	acting	on	
hyperbolic	conformal	space,	DM	boundaries	allow	for	parallel	measurements.	Lorentz	invariance	requires	any	
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conformal,	and	complete,	Euclidean	tensor	to	act	on	all	relative	and	quantum	probabilities.	DM	is	not	
measureable	using	radiation	because	it	requires	a	Lorentz	invariant	measurement	of	all	relative	probabilities,	
like	those	found	in	gravitational	lensing.	We	can	associate	all	current	measurements	associated	with	DM	with	a	
topological	equivalent.	(Table	1)	gives	a	quick	overview	of	the	primary	measurements	currently	associated	with	
the	actions	of	DM	coupled	with	their	topological	equivalents:	
	
(Table	1)-Measurements	of	Dark	Matter	

Measurement	Dark	Matter	 Topological	Equivalent	

Gravitational	lensing	measurements		 Gravitational	lensing	measurements	are	complete	because	they	are	Lorentz	invariant.	Strong	
gravitational	lensing	measurements	can	be	equated	to	Einstein	ring	topology.	Gravitational	wave	
measurements	are	written	in	spherical	or	elliptic	coordinate	spaces	because	of	the	addition	of	
polarity	to	the	MFR.		

Galaxy	rotation	and	structure	 Hyperbolic	space	conforming	to	a	Euclidean	tensor	equates	to	all	actions	associated	with	momentum	
measurements	of	star	orbits	in	galaxies.	This	is	because	all	galaxies	are	complete	rings	or	knots.	

Galactic	clusters	 Galactic	clusters	are	the	result	of	conformal	hyperbolic	rings	combining	into	single	knot.	The	
measurements	associated	with	galactic	clusters	are	the	same	as	the	conformal	space	requirements	for	
each	of	the	component	galaxies.	In	our	model	many	knots	combine	to	form	a	single	knot	because	they	
all	share	the	same	unknot.	(Section	3.0-	Galaxies	and	Cluster	as	knots)	

	(Bullet	Cluster)	 Observations	of	The	Bullet	Cluster	provided	early	evidence	existence	of	DM.	The	Collision	of	two	large	
clusters	of	galaxies	demonstrated	that	most	of	the	matter	could	not	be	measured	using	x-ray	
observations	and	could	only	be	measured	using	gravitational	2-point	probability	distributions.	Any	
two-point	probability	distribution	can	be	equated	to	elliptic	or	spherical	coordinates.		

PLANCK	measurements	CMB	 DM	and	DE	are	written	into	the	PLANCK	collaboration	measurements	of	BAO	in	the	CMB.	PLANCK	
measurements	rely	on	the	establishment	of	Dipole	moments.	Dipole	moments	are	spherical	or	elliptic	
probabilities	(This	is	covered	in	greater	depth	in	Part	I	of	this	paper).		

	
Any	categorization	of	galaxies,	including	Edwin	Hubble’s	first	“fork”	diagram	of	galactic	evolution,	are	measures	
of	completeness.	Topological	completeness	and	Lorentz	invariance	allow	us	to	model	galaxies	as	complete	
probabilities.	Our	topological	definition	of	completeness	allows	us	to	jump	between	relative	and	quantum	MFR,	
model	actions	at	the	horizon	of	a	black	hole,	explain	the	nature	of	the	Hubble	constant	and	model	the	actions	DM	
and	DE	without	resorting	to	new	particles	or	new	physics.	Gravity,	in	our	model,	is	the	Bayesian	probability	that	
exists	for	all,	relative	MFR,	limited	by	the	speed	of	light.	All	quantum	frames	of	reference	use	Markovian	time	
and	Markov	chain	probabilities.	This	allows	us	to	equate	quantum	and	relative	time	scales	utilizing	Markovian	
and	Bayesian	statistical	potentials.	Statistical	completeness	can	be	equated	to	the	measurements	associated	with	
Quantum	Electrodynamics	or	Quantum	Chromo-dynamics	in	High	Energy	Particle	Physics	(HEP).	The	difference	
we	have	to	these	models	is	that	they	are	both	based	on	the	existence	of	zero-point	vacua	represented	as	“forces”.	
Our	model	uses	the	completeness	of	probability	measurements	in	real	and	complex	space	as	the	only	invisible	
“force”.		
	
Thurston’s	definition	of	topological	completeness,	based	on	the	minimum	measure	of	curve	and	inverse	curve,	
will	serve	as	the	conformal	probability	for	all	galaxies	in	our	model.	This	eliminates	the	conflict	between	
quantum	and	relative	measurements.	Unlike	Quantum	Field	Theories	(QFT,	QCD),	Gauge	theory	(GT)	or	
Conformal	Field	Theories	(CFT),	our	model	is	purely	statistical	and	based	on	Measurement	Theory	(MT).	By	
attaching	a	statistical	MFR	to	the	requirements	of	topology	we	can	model	actions	at	both	the	quantum	and	
galactic	time	scales,	giving	us	a	complete	measurement	of	Lorentz	invariance.	As	we	have	demonstrated,	
statistical	completeness	allows	us	to	model	the	universe	as	a	complete	probability	limited	only	by	the	
boundaries	of	topology	and	measurement.		When	the	universe	is	viewed	as	a	complete	probability,	all	galaxies,	
galactic	clusters,	stars	and	black	holes	become	probabilities	that	are	linked	together	by	Lorentz	invariance.		In	
the	next	section	we	discuss	how	completeness	and	conformal	mapping	can	be	used	to	describe	the	expansion	of	
the	universe	and	explain	the	nature	of	the	Hubble	constant.		
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2.2-Dark	Energy	and	Hyperbolic	conformal	mapping	in	Euclidean	space	
	
When	all	probabilities	and	curves,	both	real	and	complex,	exist	simultaneously	in	hyperbolic	space,	they	have	a	
measureable,	and	perpendicular,	equivalency	in	Euclidean	space.	Measurement	in	curved	space-time	is	limited	
by	the	speed	of	light.	Euclidean	space	is	not.	Of	the	three	spaces	we	have	been	discussing,	Euclidean	space	is	the	
only	coordinate	space,	which	allows	for	the	existence	of	parallel,	relative	and	simultaneous,	measurements	and,	
therefore	the	only	space	that	can	accommodate	the	concept	of	quantum	uncertainty.	As	we	approach	quantum	
scale	measurements,	we	get	closer	and	closer	to,	Euclidean,	least	time	probabilities	and	must	shift	to	Markovian	
time.	Both	Dark	Energy	and	Dark	Matter	operate	on	least-time	principles	in	Euclidean	space.	And	work	in	
Markovian	time.	This	is	one	of	the	reasons	DM	and	DE	have	been	so	difficult	to	measure	for	observers	living	with	
Bayesian	probability	and	the	limits	of	GR.	In	this	model,	gravity	is	equated	to	hyperbolic	least-time	potential	and	
is	not	created	by	“mass”.	From	the	viewpoint	of	our	statistical	model,	mass	is	simply	a	probability	caused	by	the	
requirements	of	least	time	completeness	at	the	quantum	scale.	Least-time	completeness	allows	us	to	use	
topological	boundaries	to	equate	Bayesian	and	Markovian	probability	spaces.		
	
Thurston	uses	the	equivalencies	between	Euclidean	and	hyperbolic	spaces	to	create	conformal	maps.	Conformal	
mapping	is	dependent	on	the	equivalency	between	topological	spaces.	Any	co-evolving	hyperbolic	or	spherical	
space	has	a	Euclidean	equivalent	that	is	measurable	in	real	and	complex	space.	Conformal	mapping	of	
hyperbolic	least	time	probabilities	in	a	Euclidean	background	is	how	we	will	be	structuring	our	model	the	
expansion	of	the	universe	and	explaining	the	nature	of	“Dark	energy”(Figure	10).		

	
	
(Figure	10)	Topological,	conformal	mapping	of	an	open	torus	on	a	recent	JWST	catalog	of	early	release	images.	
	
Lorentz	invariance	requires	that	all	probabilities,	relative	and	quantum,	follow	the	curvature	of	space-time.	Our	
use	of	topological	completeness	as	a	minimum	measure	for	all	MFR	is	also	a	measure	of	Lorentz	invariance.	
Therefore,	the	closer	we	come	to	defining	a	least-time	measure	for	all	topological	MFR,	the	closer	we	come	to	a	
complete,	Lorentz-invariant,	measurement	of	the	completeness	of	the	universe	in	real	space.	All	observers	in	
relative	time	are	bounded	by	the	speed	of	light	and	Bayesian	probability.	Measuring	the	Hubble	constant	
requires	the	inclusion	of	all	probabilities	within	a	hyperbolic	inverse	curve	limited	by	the	speed	of	light.	As	we	
have	demonstrated	in	our	previous	papers,	our	value	for	the	Hubble	constant	is,	basically,	a	complete	ring	
measurement	of	relative	space	limited	by	the	speed	of	light:	
	

𝐻! =
2𝜋𝑖!

𝑐! = .699𝑖! = 69.9
𝑚𝑝𝑐
𝑠

	

	

This	same	limit	can	be	equated	to	the	Schwarzschild	radius	of	a	black	hole:	
	

𝐻! =
2𝜋𝑖!

𝑐! =
𝐺𝑀
𝑐! 	

	
Our	value	for	the	Hubble	constant	is	a	topological	requirement	for	all	complete,	hyperbolic,	measurements	of	
Lorentz	invariance.	Measuring	each	part	of	a	Lorentz	invariant	distribution,	separately,	results	in	normal	
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distributions	with	different	means.	Recent	published	values	of	the	Hubble	constant	(Freedman,	Madore	2023),	
based	on	the	measurement	of	different	standard	candles,	demonstrate	this	concept	(Figure	11).			
	

	
(Figure	11)	Measuring	each	part	of	a	Lorentz	invariant	distribution,	separately,	results	in	normal	distributions	with	different	means.	On	the	left	are	
some	of	the	recent	measurements	of	the	Hubble	constant.	On	the	right,	we	show	the marginalized posterior density distribution for the Hubble 
constant derived from the strong gravitational lensing detection of GW170817. 	(Images:	courtesy	of	Barry	Madore,”Progress	in	direct	
measurements	of	the	Hubble	constant.”	Freedman,	Madore,	2023	) 
	
Each	separate	probability	distribution	yields	a	different	value	for	the	Hubble	constant.	It	is	only	together	that	
they	fulfill	the	definition	of	measured	completeness	required	by	Lorentz	invariance.	Measurements	of	type	1a-
Super	Nova,	(SN-1a)	render	a	higher	value	of	the	Hubble	constant	because	the	limited	sample	size	and,	basis	in	
the	Levitt	Law,	create	a	normal	distribution	for	any	probability	density	measurement.		If	type	1A	Super	Nova	
represent	measurements	using	the	largest	scale	“ladder”	in	the	universe	and	the	Planck	measurement	of	BAO	
represent	the	smallest	ladder,	then	the	three	standard	candles	measured,	recently	by	(Freedman	and	Madore,	
2023,	see	Appendix	A-	Observations)	represent	the	mean	of	a	Lorentz	invariant	distribution.	Our	value	of	the	
Hubble	constant,	based	only	on	the	requirements	of	topology,	is	an	exact	match	to	this	Lorentz	invariant	mean.		
	
3.0-Galaxies	and	Clusters	as	knots	
	
Thurston	proved	that,	every	complete	conformal	knot	contains	an	unknot.	Because	all	galaxies	contain	a	black	
hole	at	their	center,	galaxies,	galaxy	clusters	and	even	the	galactic	web	can	be	modeled	as	topological	knots	(Figure	
12).	

	
	
(Figure	12)	Every	knot	contains	an	unknot	and	every	galaxy	contains	a	Black	Hole	in	it’s	center	(Left	from	Thurston).	Ring	theory	allows	for	
galactic	clusters	and	the	galactic	web	to	equate	to	same	complete	knot. (Knot	image,	Bill	Thurston) (Star cluster image: European Space 
Organization- ESO1825) 
 
When	we	model	galaxies	as	knots,	it	gives	us	the	ability	to	combine	all	elliptical	orbits	into	a	single,	relative,	path.	
The	Black	Hole	at	the	center	acts	as	an	unknot,	but	we	can	“tighten”	the	knot	by	using	the	inverse	of	our	value	for	
the	Hubble	constant	in	place	of	the	metric	tensor:	
	

𝑇!" = 𝑅!" −
1
2
𝑅𝑔!" + Λ𝑔!"	

	

𝑔!" =
𝑐!

2𝜋𝑖!
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2𝐻! 𝑇!" − 𝑅!" = 2Λ − 𝑅	
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Where	𝐷!	represents	the	imaginary	hyperbolic	disk	limited	by	the	speed	of	light,	which	lies	perpendicular	to	the	
Euclidean	tensors	(on	the	other	side	of	the	equation).	Equating	the	boundaries	of	a	black	hole	to	the	topological	
boundaries	of	the	galaxy	unknot	gives	us	the	ability	to	equate	to	measurements	of	galactic	DM	halos	using	
conformal	mapping.	Each	galaxy	or	galaxy	cluster	DM	halo	becomes	a	Lorentz	complete	measurement	of	the	
sum	of	bound	knots.	(Table	2)	demonstrates	how	galactic	knots	can	define	many	of	the	characteristics	associated	
with	current	galactic	categories:	
	
(Table	2)-Galaxy	categories	and	topological	equivalents	

Galaxy	category	 Topological	Equivalent	

Elliptical		 Elliptical	galaxies	can	be	thought	of	as	the	“loosest”	knots,	compared	to	Ultra-Compact	Dwarfs	(UCD).	
The	center,	unknot,	acts	as	a	center	of	gravity	for	any	bound	orbits	sharing	the	same	unknot.		

Spiral		 Spiral	galaxies	are	the	clearest	example	of	the	conformal	geometry	in	the	hyperbolic	plane.	Our	model	
of	a	BH,	as	the	center	unknot,	equates	to	ideal	models	of	GR	at	the	horizon	of	a	BH.					

Barred	Spiral	 Barred	spiral	galaxies	are	spirals	with	the	addition	of	polarity.	Unlike	the	hyperbolic	probabilities	of	a	
simple	spiral	galaxy,	Barred	spirals	have	built	in	polarity	of	measurement.	Both	the	hyperbolic	and	
elliptical	plane	lie	perpendicular	to	the	central	Euclidean	unknot.		

Irregular	 Irregular	galaxies	are	associated	with	the	collision	between	different	galaxies.	IR	galaxies	have	their	
own	catalog	of	subtypes.	Like	merging	black	holes,	colliding	galaxies	are	in	the	process	of	forming	a	
shared	unknot.			

Dwarf	and	Ultra-compact	Dwarf	 Dwarf	galaxies	have	the	largest	ratio	of	measurements	of	the	mass/luminosity	relationship,	(an	
indicator	of	the	largest	influence	of	DM	on	the	measurement	of	mass).	In	our	model	of	galaxies	as	
knots,	this	translates	to	the	tightest	knot	around	the	central	unknot.	Ultra-compact	dwarfs	have	been	
tidally	stripped	of	lowest	mass	stars,	resulting	tighter	knot.	This	exaggerates	the	disparity	between	
mass	and	luminosity	measurements.	

	
There	are	as	many	homeographic	knot	equivalencies	as	there	are	galaxies	in	the	universe	(Figure	13).	Knots	and	
rings	have	the	ability	to	combine	into	larger	structures	while	maintaining	Lorentz	invariance.	Knots	can	also	link	
together	to	form	the	largest	structures	in	the	universe,	represented	by	measurements	of	the	galactic	web.	
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(Figure	13)	There	are	as	many	homeographic	knot	equivalents	as	there	are	galaxies	in	the	universe.	Knots	can	combine	to	form	larger	structures	
like	galactic	clusters	and	the	galactic	web	while	still	maintaining	hyperbolic	completeness.	We	show	just	a	few	examples	of	Thurston’s	drawings	of	
knot	equivalents	next	to	a	compilation	of	Hubble	galaxy	images.	
	
An	example	of	observational	evidence	tying	knot	theory	to	galactic	compactness	can	be	found	in	Dwarf	Galaxies	
(DG)	and	their	evolution	into	Ultra-Compact	Dwarfs	(UCD).	Ultra-compact	dwarfs	galaxies	have	the	highest	DM	
to	luminosity	ratio	of	all	galaxies.	Like	DG,	UCD	galaxies	have	a	massive	black	hole	in	their	center.	When	a	Dwarf	
galaxy	compacts	into	a	UCD,	the	super	massive	black	hole	remains	the	same	size.	This	can	be	equated	to	the	
tightening	of	a	Euclidean	tensor	on	conformal	Hyperbolic	space	acting	like	the	tightening	of	a	knot	around	the	
central	unknot.	We	cover	this,	and	the	modeling	of	other	astronomical	and	experimental	observations,	in	
(Appendix	A-	Observations).		
	
In	Part	I	of	this	discussion,	we	demonstrated	how	phase	space	transitions	allow	for	simultaneous	local	and	
global	probabilities.	We	discussed	the	boundary	conditions	of	phase	space	bifurcation	and	the	application	of	
statistical	principles	to	the	modeling	of	the	early	universe.	A	statistical	model,	driven	by	the	equivalencies	found	
in	topology,	uses	the	complex	hyperbolic	plane	as	a	Hopf	transition	between	Markovian	quantum	potential	and	
it’s	measurement	as	hyperbolic,	spherical	and	elliptical	probabilities	in	real	space.		
	

	
	
(Figure	14)	On	the	left,	we	show	an	illustration	from	Part	I,	showing	the	evolution	of	a	statistical	blackbody.	Each	phase	space	is	Lorentz	invariant	
and	follows	the	limits	of	geometric	completeness.	This	results	in	the	globalization	of	local	bifurcation	nodes.	Our	local	universe	driven	is	by	Bayesian	
cause	and	effect	statistics	and	limited	by	the	speed	of	light.	On	the	right	we	show	that	Hopf	phase	transitions	can	be	tied	directly	to	Thurston’s	use	of	
the	imaginary	hyperbolic	plane.	
	
(Figure	14)	Demonstrates	how	we	can	model	the	beginning	of	the	universe	using	phase	space	bifurcation	and	
Hopf	transitions.	In	a	topologically	complete	universe,	Lorentz	invariant	probabilities	are	equivalent	to	
measurements	of	topological	completeness.	Hopf	transitions	allow	us	use	the	complex	plane	as	Hyperbolic	
potential	for	Markovian	and	Bayesian	probabilities.	Galaxies	are	complete	only	when	they	include	the	Lorentz	
invariant	probabilities	at	all	scales.	As	we	have	demonstrated,	in	all	the	previous	sections,	topology	is	not	limited	
by	scale.	We	can	model	any	level	of	statistical	completeness,	both	quantum	and	relative,	using	the	boundaries	of	
topology	and	geometry	(Figure	15).	
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(Figure	15)	Topological	equivalencies	are	not	scale	dependent.	On	the	left	we	show	how	additive	probability	affects	topological	boundaries.	On	the	
right	we	use	Thurston’s	equivalency	to	a	hyperbole	to	model	a	Fermi	surface	and	the	dynamics	of	jet	launching	at	the	scale	of	a	black	hole.	
	
Observations	of	the	early	universe	are	indicating	the	early	appearance	of	both	massive	galaxies	and	Black	Holes.	
As	we	show	here,	those	probabilities	can	be	explained	using	the	equivalencies	found	in	topology.	Thurston	tells	
us	any	knot	can	be	equated	to	a	single	unknot	through	Dehn	surgery.	This	is	not	a	scale	dependent	quality	of	
knots.	If	we	assume	that	the	galactic	web	is	just	a	large	single	knot,	we	can	equate	the	galactic	web	to	a	single	
relative	probability	because	topological	equivalency	is	not	limited	by	scale	or	the	speed	of	light	(Figure	16).		
	

	
	
(Figure	16)	Thurston	shows	us	that	no	matter	how	complicated	and	messy	a	knot	is,	it	can	still	be	equated	to	single	torus	and	limited	to	the	
measurement	of	a	simple	closed	curve. (Cosmic web image: V.Springel, Max-Planck Institut für Astrophysik, Garching bei München)	
	
4.0-Conclusion	
	
On	December	3,	2013,	I	received	the	inspiration	that	was	to	guide	my	investigations	for	the	next	ten	years.	As	I	
write	this	conclusion,	it	is	December	3,	2023.	Since	those	early	days,	I	have	learned	to	depend	on	the	robustness	
of	this	model.	It	has	never	let	me	down.	I	actually	didn’t	run	into	Bill	Thurston’s	work	until	2022,	after	having	
already	developed	my	model	of	a	Black	Hole	as	an	ideal	spin	capacitor	and	my	Theorem	of	geometric	
completeness.	The	resonance	between	Bill’s	work	and	my	own	writing,	in	measurement	theory,	was	
immediately	apparent	and	I	have	now	become,	completely,	“Thurstonized”.	In	the	coming	months,	I	will	be	
completing	the	Appendix	for	this	paper,	which	will	cover	observational	evidence	from	most	of	the	major	
Astronomical	surveys,	focusing	on	JWST	results	from	the	early	universe.	Until	then,	enjoy	the	breadth	and	depth	
of	this	model.		
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