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Abstract	
	
In	Part	I,	of	a	two-part	discussion,	we	establish	minimum	measurement	frames	of	reference	for	any	
complex	and/or	real	measurements	in	a	purely	statistical	model	for	the	universe.	The	goal	of	this	paper	
is	to	provide	a	model	that	adheres	to	Planck	measurement	standards	and	explains	both	the	nature	of	
dark	matter	and	dark	energy-without	the	use	of	zero-point	vacua.	We	introduce	a	model	for	the	
expansion	of	the	universe	based	on	the	limits	of	geometric	completeness	and	the	principles	of	phase	
space	bifurcation.	Measuring	the	Universe,	Part	II,	will	focus	on	establishing	the	relation	between	galaxy	
formation,	the	galactic	web	and	the	statistical	phase	space	potential	defined	by	the	limits	of	Lorentz	
invariance	and	the	relationship	between	the	fundamental	constants.	
	
1.0	Introduction		
	
Often	our	universe	is	described	as	having	a	beginning,	and	no	ending,	because	this	is	how	we	
experience	time.	To	our,	human,	frame	of	reference	time	has	a	direction.	The	question	of	what	
constitutes	the	complete	nature	of	the	universe	will	always	be	related	to	how	time	is	measured	and	
the	boundaries	of	measurement	theory.	But	what	is	a	universe?	We	will	begin	with	a	short	discussion	
of	the	definitions	and	boundaries	we	supplied	in	our	previous	papers[6-14].	In	all	of	those	papers	we	
have	stated	that	both	zero	and	infinity	are	outside	the	boundaries	of	measurement.	Here,	we	will	
attempt	to	demonstrate	that	the	elimination	of	smooth	approaches	to	zero	results	in	a	measureable	
universe.	Terms	like	“energy”,	“force”,	“field”	and	“mass”	are	translated	into	terms	based	in	set	
theory,	probability	and	finite	geometry.	By	positioning	all	forces	as	probabilities,	we	are	able	to	
measure	them	in	relative	and	quantum	time.	This	allows	us	to	combine	quantum	theory	and	general	
relativity	into	a	single	frame	of	reference,	without	the	use	of	zero	point	vacua.	We	begin	where	we	
left	off;	a	proven	theorem	of	completeness	[14]		and	the	connection	of	geometric	boundaries	to	
measurement	in	real	space.	The	following	definitions	for	geometric	completeness	and	minimum	
measurement	were	established	in	our	last	two	papers:		
	
Complete	system	of	geometry-	Any	complete	system	of	geometry	must	be	able	to	satisfy	all	the	
requirements	of	Riemannian	geometry	as	well	as	clearly	defining	the	boundary	between	the	real	and	
complex	planes.	
	
Minimum	measurement-	Any	minimum	measurement	is	able	to	be	oriented	on	a	coordinate	plane	
and	contains	the	same	minimum	real	lengths	required	of	any	modular	form,	elliptic	curve	or	non-
trivial	zero.		
	
We	also	live	in	a	universe	that	appears	to	have	a	measureable	redshift,	indicating	that	the	expansion	
of	the	universe	is	accelerating.	Planck	measurements	of	baryonic	acoustic	oscillations	(BAO)	in	the	
early	universe	currently	set	one	of	the	tightest	measurement	standards	for	any	model	[4].	To	create	a	
model	that	can	match	the	Planck	accuracy	requires	that	we	generate	an	equivalency	to	BAO	
measurements	through	all	epochs.	In	addition	there	are	a	number	of	model	requirements	that	are	
tied	to	Lorentz	invariance	and	the	relationships	between	the	fundamental	constants.	Recently	a	



number	of	prominent	researchers	published	a	list	of	conventions	for	any	theorist	attempting	to	
match	the	current	Λ𝐶𝐷𝑀 model	parameters	[5].	We	include	their	table	of	conventions	as	a	valid	
picture	of	Lorentz	invariance:	

	 	SnowMass	2021	
	
Because	we	will	be	working	primarily	with	the	fundamental	constants,	we	won't	encounter	any	
problems	meeting	these	standards.	However,	all	boundaries	and	complex	potentials	will	be	
expressed	as	statistical	probabilities.	This	differs	from	Gaussian	dynamics	which,	though	quantified	
in	physics,	are	not	complete	mathematically.	In	Gaussian,	(and	Hilbert),	spaces,	all	zeroes	are	smooth	
and	incomplete.	As	we	will	discuss,	completeness	in	physical	theory	comes	from	a	complete	theory	of	
mathematics.	The	result	is	that	all	"forces	"	and	smooth	zeros	are	held	to	the	boundaries	of	the	
complex	plane,	as	statistical	potential.	This	includes	gravity,	dark	matter	and	dark	energy.	As	we	
proved,	rigorously,	the	minimum	real	or	complex	measure	in	any	complete	system	of	geometry	is	a	
simple,	closed,	curve	[14]	(Figure	1).		

	 	
(Figure	1)		Any	complete	system	of	geometry	must	be	able	to	represent	both	the	vertex	of	a	cone	in	real	space,	and	a	genus	one	
modular	form	(torus)	in	the	upper	half	of	the	coordinate	plane.	All	modular	forms	and	homolographic	groups,	in	any	complete	
system	of	geometry,	have	a	minimum	real	length	= 2𝜋𝑖.		Any	real	length	or	radius,	with	real	and	complex	endpoints,	can	be	held	to	
the	minimum	measure	of	a	simple	closed	curve.	
	
Any	real	length	or	radius,	with	either	real	and	complex	endpoints,	can	be	held	to	the	minimum	
measure	of	a	simple	closed	curve,	 2𝜋𝑖 ,	in	any	complete	system	of	geometry	(Figure	1).		This	
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eliminates	points	as	physical	objects	and	places	all	Hilbert	potential	in	the	complex	plane.	All	"forces"	
are	quantified	and	held	to	the	same	theory	of	geometric	completeness.	In	our	earlier	paper,	regarding	
completeness	and	relative	sets	as	they	are	related	to	paradox	[9],	we	proved	that	the	limit	of	
completeness	is	the	measurement	of	paradox	related	to	the	set	of	all	sets.	As	we	demonstrated,	
geometric	completeness	allows	us	to	address	quantum	uncertainty	and	relativity	using	set	theory	
and	geometric	completeness.	By	adhering	to	the	principles	of	relative	set	theory	and	establishing	a	
minimum	measurement	of	a	closed	curve	for	all	observational	frames	of	reference	we	will	
demonstrate	that	both	DM	and	DE	are	the	inevitable	result	of	the	interaction	of	Bayesian	statistical	
probability	and	Markovian	complex	potential	in	any	complete	universe.	Throughout	our	discussions,	
we	have	stressed	the	need	to	think	outside	of	our	human	frame	of	reference.	Our	frame	of	reference	
requires	that	we	view	all	probabilities	as	relative	and	continuous.	Our	view	of	time	is	like	an	endless,	
flowing	river.	We	exist	in	a	cause	and	effect	universe	that	can	see	"fields"	and	"forces",	but	not	the	
probabilities	behind	them.	For	any	observer	in	a	statistical	frame	of	reference,	probability	is	only	
force.	Because	gravity	and		DM	share	a	common	observer	frame	of	reference,	they	can	both	be	
measured	using	gravitational	lensing.		
	
We	can	create	an	equivalency	between	the	geometric	completeness	and	the	boundaries	for	all	
relative,	Lorentz	invariant,	observer	frames	of	reference	by	equating	to	measurements	using	
gravitational	lensing.	Lensing	measurement	frames	of	reference	(MFR)	will	allow	us	to	equate	our	
mathematical	boundaries	to	those	of	a	strong	an	Einstein	ring.	In	this	context,	a	common	observer	
frame	of	reference	provides	the	origin	for	the	measurement	of	gravity	and	DM	in	the	same	coordinate	
plane	and	in	real	space.	(Figure	2)	shows	the	comparison	between	simultaneous	geometric	potentials	
and	measurements	using	gravitational	lensing.		

	
(Figure	2)		Geometric	completeness	can	be	equated	to	strong	gravitational	measurements	of	an	Einstein	ring	
	
Just	as	in	our	theorem	of	completeness	[14],	all	observer	MFR	have	a	minimum	measurement	of	a	
circle	 2𝜋𝑖 .	On	the	left	of	(Fig.	3),	we	show	the	limits	to	measurement	in	real	space.	On	the	right	we	
use	the	same	boundaries	to	describe	real	space	using	the	observer	as	the	origin	of	the	coordinate	
space.	Our	geometric	boundaries	equate	to	any	4-point	(Einstein	ring),	three-point	and	2-point	
measurement	of	strong,	and	weak,	gravitational	lensing.	In	this	model,	all	MFR	are	held	to	the	limits	of	
the	theorem	of	geometric	completeness.	Complete	geometric	potential	provides	the	basis	for	measured	
probability	in	the	real	and	complex	planes.		
	
Relative	set	theory	requires	that	any	set	contain	both	real	and	complex	potentials	in	a	single	relative	
measurement.	To	be	able	to	combine	quantum	and	classical	probabilities	into	a	single	measurement	
requires	that	all	potentials	exist	simultaneously.	For	our	model,	an	inverse	curve	can	provide	the	ideal	
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platform	for	the	simultaneous	relative	measurements	that	define	the	boundaries	associated	with	
gravity,	DM	and	DE	(Figure-3).		

	
(Figure	3)		To	be	able	to	combine	quantum	and	classical	probabilities	into	a	single	measurement	requires	that	all	potentials	exist	
simultaneously.	
	
To	be	able	to	combine	quantum	and	classical	probabilities	into	a	single	measurement	requires	that	
all	potentials	exist	simultaneously.	In	our	illustration,	the	parabola	is	the	inverse	curve	of	the	
complete	circle.	Equivalent	elliptic	curves	contain	a	complex	point	at	the	origin	of	the	coordinate	
plane.	All	three	boundaries	intersect	at	the	poles	and	can	be	equated	to	boundaries	associated	with	
polarity	and	charge.	Curve	and	inverse	curve	can	provide	the	MFR	for	gravity,	dark	matter	and	dark	
energy	independent	of	“mass”.	Let	us	review	how	these	potentials	can	model	the	actions	of	force	and	
mass	in	the	standard	model:	
	
Gravity	and	Quantum	Gravity	-	General	relativity	and	Lorentz	invariance	define	the	limits	of	
gravity.	Gravity	is	measured	using	mass,	gravitational	waves,	and	gravitational	lensing.	Polarity	also	
conforms	to	gravimetric	distortions	of	space-time	and	can	be	measured	using	gravitational	waves.	
Quantum	gravity	must	also	adhere	to	a	number	of	additional	boundaries	that	can	only	be	measured	
using	statistics.	This	is	equivalent	to	the	principle	applied	by	Richard	Feynman	to	describe	the	
statistics	of	the	EM	field,	using	Quantum	Statistical	Dynamics	(QSD).	In	order	to	operate	in	quantum	
time	any	model	for	quantum	gravity	must	also	include	uncertainty.	Our	model	achieves	this	by	
classifying	gravity,	and	all	other	"forces",	as	probabilities.	It	is	also	how	we	are	able	to	describe	
quantum	mechanics	without	violating	the	rules	of	Lorentz	invariance.	
	
Dark	Matter	-	DM	can	be	measured	using	gravitational	waves		and	gravitational	lensing.	DM	exists	in	
the	complex	2-dimensional	plane	as	Lorentz	invariant	potential.	Like	quantum	gravity,	DM	is	only	
measurable	in	real	space	as	a	relative	statistical	sum	of	complex	frames	of	reference.	In	our	model	DM	
is	measured	as	simultaneous	complex	potential	that	is	measured	using	gravitational	lensing.	
	
Dark	Energy	-	DE	represents	the	sum	of	all	measured	probabilities,	and	observer	frames	of	
reference	limited	by	the	speed	of	light.	In	our	model,	we	will	demonstrate	how	to	equate	DE	potential	
to	the	finite	curvature	of	the	universe	and	to	the	boundaries	established	by	a	statistical	black	body.	
DE	is	currently	measured	using	the	Friedman	equations,	the	expansion	of	the	Cosmic	Microwave	
Background	(CMB),	and	the	Hubble	constant.		
	
These	simultaneous,	and	relative,	measurement	frames	of	reference	(MFR)	will	allow	us	to	combine	
quantum	and	relative	equivalencies	into	a	cohesive	model	that	maintains	Lorentz	invariance	for	all	
measurements	limited,	or	not	limited,	by	the	speed	of	light.	Each	MFR	contains	both	real	and	
imaginary	potentials	that	are	based	in	relative	set	theory.		Mathematical	and	geometric	requirements	
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in	real	space	then	can	be	equated	to	statistical	potential	for	the	measurements	of	DM	and	DE	using	
gravitational	wave	measurements.	The	advantage	we	have,	in	our	statistically	based	model,	is	that	we	
can	also	generate	equivalencies	between	quantum	(complex),	and	relative	measurement	frames	of	
reference	using	the	limits	of	set	theory.	In	our	paper,	“Viewing	paradox	through	the	lens	of	general	
relativity”,		we	demonstrated	that	relative	set	theory	can	satisfy	geometric	completeness	and	as	well	
as	fulfilling	quantum	requirements	of	simultaneous	measurement	and	uncertainty.	In	our	next	
section,	we	will	demonstrate	how	relative	frames	of	reference	can	resolve	the	current	tension	
between	local	and	Planck	measurements	of	the	Hubble	constant.	
	
1.1	Relative	frames	of	reference	for	the	Hubble	constant.	
	
In	the	last	section	we	demonstrated	how	frames	of	reference	and	measurement	minimums	within	
that	frame	of	reference,	can	establish	a	common	basis	between	classical	and	quantum	measurements.	
To	create	an	equivalent	model	to	the	big	bang	(BB),	we	will	treat	statistical	equivalencies	as	relative	
observer	frames	of	reference	and	explore	how	statistical	measurement	frames	of	reference	influence	
how	we	measure	the	Hubble	constant.		
	
The	Planck	measurements	of	the	Hubble	constant	and	the	measurement	of	the	Hubble	constant	using	
type	1A-SN	are	currently	in	tension.	(Figure-4)	shows	us	the	current	range	of	recent	published	values	
of	the	Hubble	constant.	
	

	
(Figure	4)	This	illustration	from	Wendy	Freedman's	recent	paper	"	Hubble	tensions	in	perspective"	shows	the	range	of	recent	
published	values	of	the	Hubble	constant.	Her	team's	measurements	of	the	tip	the	red	giant	branch	support	a	Hubble	value	
matching	the	predictions	of	our	theory.	(Wendy	L.Freedman		ApJ	919	16-	2021)	
	
We	can	demonstrate	how	these	seemingly	different	measurements	are	actually	in	agreement.	The	
reason	each	experiment	are	getting	different	measurements	for	the	acceleration	of	the	universe	is	
that	they	are	using	different	fundamental	constants	as	a	basis	for	their	MFR.	If	we	consider	each	MFR	
as	a	prime	measurement,	using	a	different	fundamental	MFR,	then	any	measurement	in-between	
must	use	a	combination	of	both	fundamental	constants	to	achieve	a	common	relative	measurement.		
	
The	Planck	experiment	uses	an	acoustic	scale	to	measure	micro-fluctuations	in	the	Cosmic	
Microwave	Background	(CMB)	temperature	to	establish	measurement	boundaries.	Cepheid's	are	
measured	using	the	speed	of	light	as	a	boundary.	From	our	paper	on	the	resolution	of	the	Hubble	
tension,	we	use	the	following	values	for	the	fundamental	constants.	
	
𝐾! =1.38064852	𝐸 − 23 𝑚! kgs!! K!! 	
	



𝑐 = 2.99792458 E8 m 𝑠	
	

ℎ = 4.135667696 𝐸 − 15 𝑒𝑉 Hz!! 	
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𝑖 ! = 𝑐 ! = (1.113 𝑥 2.99792458)! = 3.33686 ! = 11.134	 	 	 	 (4)	
	
We	can	now	establish	a	minimum	measurement	for	the	equation	of	state	parameter,	using	the	speed	
of	sound	multiplied	by	the	speed	of	light:	
	

𝐻! =
 ! !

 !!
= !!! !!!

 !!
= !!! !

!!
	 	 	 	 	 	 	 	 	 (5)	

	
	

𝐻! =
!!! ! 
!!

=  .6990(𝑖!) 	 	 	 	 	 	 	 	 	 (6)	

	 	 	 	 	 	 	

𝑐!! =
!".!!!

!!
=  1	 	 	 	 	 	 	 	 	 	 (7)	

	

if,	𝑖 ! = !
!!

!
,	then:	 	 	 	 	 	 	 	 	 (8)	

	

𝐻! =
!!!! 
!!

= !! 
!!! !	 	 	 	 	 	 	 	 	 (9)	

	
This	will	allow	us	to	measure,	the	universe	as	a	finite,	and	curved,	statistical	black	body	for	all	
Lorentz	invariant	probabilities.	In	a	recent	paper	[3],	researchers	used	RAISIN	data	in	combination	
with	local	measurements	of	SN-1A	super	nova	and	TRGB,	tip	of	the	red	giant	branch,	measurements	
to	create	a	reverse	distance	ladder	using	the	relationship	between	the	fundamental	constants.	
(Figure	5)	is	an	example	of	how	these	measurements	result	in	a	positive	curvature	and,	therefore,	
closed	universe. 
	



	 	
(Figure	5)	Cosmological	parameter	measurements	from	oCDM	(a	CDM	model	allowing	non-zero	curvature)	with	SNe	alone.	Open	
contours	show	the	Riess	et	al.	(1998)	discovery	sample,	red	contours	show	the	Pantheon	constraints	from	Scolnic	et	al.	(2018),	and	
the	results	from	RAISIN	SNe	are	in	orange.	All	contours	show	the	68%	and	95%	confidence	intervals(Jones	et	al.	eprint	
arXiv:2201.07801,	Jan	2022)	
	
For	this	paper,	the	team	built	a	reverse	Hubble	distance	ladder	tying	luminosity	to	the	simultaneous,	
and	relative,	measurements	of	 "cosmic matter density Ω! , dark energy density Ω!  and spatial 
curvature Ω! ,." using the following equations:	
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Inserting our value for the Hubble constant gives: 
 

𝑑! 𝑧,𝜔,Ω!,Ω! ,Ω! = 1 + 𝑧 !!

!!!!
!!
! !

!
!        (13) 

And if, 
 
𝐸 𝑧 ! = 𝑖!          (14) 
 
Then a prime measurement for a reverse distance ladder is, 
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1.2	The	universe	as	a	perfect	blackbody	
 
The	measurement	of	Baryonic	Acoustic	Oscillations	(BAO)	frozen	into	the	CMB	can	be	considered	the	
gold	standard	of	measurement	for	any	modeling	of	the	evolution	of	the	universe.	(Figure	6)	shows	
the	extreme	accuracy	obtained	from	the	Planck	measurements	[4].	The	standard	set	by	the	Planck	
measurements	can	be	considered	a	prime	measurement	because	it	depends	on	the	establishment	of	a	
linier	scale	with	the	fundamental	constants.	In	the	case	of	the	Planck	results,	this	constant	is	the	
speed	of	sound	as	established	by	the	measurement	of	BAO	at	small	angular	scales.	Any	model,	hoping	
to	explain	the	nature	of	the	expansion	of	the	universe,	must	be	able	to	match	the	Planck	acoustic	
scale.		
	



	
(Figure	6)	Any	model,	hoping	to	explain	the	nature	of	the	expansion	of	the	universe,	must	be	able	to	match	the	Planck	acoustic	
scale.	(The	Planck	Collaboration		A&A	641,	A7	2020)	
 
There	is	a	growing	consensus	among	astrophysicists	[5]	that	the	Planck	data	points	to	a	closed	
universe	resonating	as	a	perfect	blackbody	[4].	As	we	discussed,	in	our	paper	regarding	the	nature	of	
the	Planck	constant	and	the	limits	to	a	perfect	blackbody,	any	perfect	blackbody	has	a	finite	geometric	
limit.	Because	our	model	is	based	in	geometric	completeness,	we	can	tie	the	geometric	potentials	of	a	
perfect	black	body	to	Lorentz	invariance.	
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The	principles	that	we	established	earlier	in	both	set	theory	and	probability	theory,	can	be	tied	
directly	to	the	to	the	curvature	of	the	universe	as	defined	by	the	Friedman	equations:	
	

𝑞𝑢𝑎𝑛𝑡𝑢𝑚 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑠𝑐𝑎𝑙𝑎𝑟 (𝑓𝑙𝑎𝑡 𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑒) = !!!!

!!
= !

!
= .111111	 	 	 (18)	

	

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑠𝑐𝑎𝑙𝑎𝑟 (𝑐𝑙𝑜𝑠𝑒𝑑 𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑒) = !!!!

!!
= !

!!
= .1112 = !

!

!
	 	 (19)	

	
Defining	the	closed	nature	of	the	universe	allows	us	to	define	Dark	Energy	as	the	geometric	complex	
potential	for	all	Lorentz-invariant	probabilities	limited	by	the	speed	of	light	and	thermodynamic	
probability:		
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The	statistical	equivalencies	we	established	using	the	RAISIN	luminosity	distance	ladder	will	allow	us	
to	match	the	accuracy	the	Planck	measurements	based	on	the	relationship	between	the	fundamental	
constants.	To	do	this	we	include	the	speed	of	sound	as	established	by	Planck	measurements	of	BAO	
using	the	speed	of	sound:				
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Based	on	the	recent	released	papers	by	the	Event	Horizon	Collaboration	(Paper	VI	May,	2022).	We	
can	also	use	the	Kerr	metric	as	a	measurement	of	ideal	General	Relativistic	Magnetic	Hydrodynamic	
(GRMHD}	potential	as	well	as	Lorentz	invariance	the	Kerr	metric	into	an	inverse	distance	ladder	
gives:	
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These	equivalencies	will	allow	us	to	satisfy	the	measurement	requirements	of	a	statistically	evolving	
black	body	that	fits	both	early	and	local	measurements	of	the	fundamental	constants,	without	the	
need	for	zero-point	vacuum.	A	closed	universe	is	a	closed	simple	curve.	We	have	also	discussed	how	
the	simultaneous	measurement	of	curve,	inverse	curve	and	elliptical	curve,	can	be	equated	to	the	
gravitational	lensing	measurements	associated	Gravity,	Dark	Matter	and	Dark	Energy.			
	
1.3	The	Big	Flip		
	
	In	this	section,	we	shall	demonstrate	how	the	relative	measurements	of	gravity,	DM	and	DE	evolve	
within	the	boundaries	a	statistical	black	body.	We	will,	essentially,	replace	the	Big	Bang(BB)	with	the	
big	flip(BF).	We	discuss	how	local	bifurcation	boundaries	generate	global	bifurcation	phase	spaces	
and	then	apply	the	principles	of	phase	space	bifurcation	to	an	evolving	set	of	relative	frames	of	
reference.	The	mathematical	requirements	of	phase	space	transitions	can	be	used	to	explain	the	
relative	homogeneity	of	the	universe	as	well	as	providing	an	explanation	for	the	probabilities	we	
associate	with	both	DM	and	DE.		Evidence	for	this	equivalency	can	be	found	in	the	Sloan	Digital	Sky	
Survey	of	over	12,000,000,000	galaxies	using	gravitational	lensing.	As	we	have	stressed	in	each	
section,	any	measurements	using	gravitational	lensing	can	be	equated	to	our	limits	on	geometric	
completeness.	We	will	extend	the	equivalencies	we	established	in	previous	sections	to	statistical	
bifurcation	nodes.	Because	we	work	with	the	fundamental	constants,	we	can	apply	quantum	
principles	to	any	global	phase	space	transition.	This	allows	us	to	establish	the	global	phase	changes	
while	preserving	Lorentz	invariance.	(Figure	7)	summarizes	the	mathematical	and	statistical	
boundaries	that	lead	to	different	phase	space	requirements.	On	the	left	are	the	relative	measurement		
boundaries	we	established	in	previous	sections.	On	the	right	are	the	two	types	of	bifurcation	used	in	
this	discussion:	

	
(Figure	7)	The	measurement	boundaries	we	equated	to	gravitational	lensing	can	be	used	as	bifurcation	nodes	in	phase	space	
transitions.	(a.)	Mathematical	potential	and	the	rules	of	geometric	completeness	establish	minimum	measurement	boundaries	in	
real	space.	(	b.)	Simultaneous	measurement	of	relative	geometric	potentials	can	be	used	to	model	DM	and	DE	(c.)	Pitchfork	
bifurcation	allows	the	translation	of	a	single	complex	potential	into	two	probabilities.	(d.)	Hopf	bifurcation	provides	acceleration	
potential	on	the	surface	of	a	cone	that	can	be	equated	to	the	boundaries	associated	with	DE.	

2Ɏr²

r=d/24 real minima

=2Ɏi²

=1/2

a. b. c. d.

DE= DM= 
 2Ɏ�2

c2 2Ɏ�2
c2

2Ɏ�2=G
mc2=G



	
The	measurement	boundaries	we	equated	to	gravitational	lensing	can	be	used	as	bifurcation	nodes	in	
phase	space	transitions.	In	our	illustration,	(a.)	Mathematical	potential	and	the	rules	of	geometric	
completeness	establish	minimum	measurement	boundaries	in	real	space.	(b.)	Simultaneous	
measurement	of	relative	geometric	potentials	can	be	used	to	model	DM	and	DE.	(c.)	Pitchfork	
bifurcation	allows	the	translation	of	a	single	complex	potential	into	two	probabilities.	(d.)	Hopf	
bifurcation	provides	acceleration	potential	on	the	surface	of	a	cone	that	can	be	equated	to	the	
boundaries	associated	with	DE.	We	can	use	the	equivalencies,	that	we	established	earlier,	between	
the	fundamental	constants	and	the	Hubble	constant	to	develop	local	bifurcation	nodes	for	our	global	
model:	
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We	will	use	these	equivalencies	to	set	relative	scalars	for	our	measurements,	of	the	curvature	of	the	
universe,	that	can	be	attached	to	any	power	law	measurements.	Because	all	Lorentz	invariant	
measurements	of	the	universe	are	relative,	we	can	also	establish	local	bifurcation	nodes	for	relative	
and	quantum	global	Markovian	and/or	Bayesian	statistical	phase	spaces:	
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𝑀𝑎𝑟𝑘𝑜𝑣𝑖𝑎𝑛 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑓𝑟𝑎𝑚𝑒 {𝑙𝑜𝑐𝑎𝑙 𝑏𝑖𝑓𝑢𝑟𝑐𝑎𝑡𝑖𝑜𝑛)  = !!!!

!!
	 	 	 	 (28)	

	

𝐵𝑎𝑦𝑒𝑠𝑖𝑎𝑛 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑓𝑟𝑎𝑚𝑒{𝑔𝑙𝑜𝑏𝑎𝑙 𝑏𝑖𝑓𝑢𝑟𝑐𝑎𝑡𝑖𝑜𝑛) =  !!!!!!
!!

= 𝐻! 	 	 	 (29)	

	
We	can	use	the	same	geometric	boundaries	to	represent	the	simultaneous	measurement	of	Bose-
Einstein,	Fermi	Dirac,	and	Maxwell-	Boltzmann	statistical	measurements	as	a	function	time	in	both	
the	real	and	complex	planes.	Bose-Einstein	and	Fermi-Dirac	statistical	measurement	frames	operate	
using	Markovian	time	and	they	preserve	the	principle	of	uncertainty.	Above	a	measureable	energy	
level,	Maxwell-	Boltzmann	statics	override	all	other	statistical	variations	and	the	laws	of	Bayesian	
thermodynamics	take	over.	The	measurement,	of	these	statistical	variations,	defines	most	aspects	of	
the	standard	model	of	high	energy	particle	physics	(HEP).	In	HEP,	as	in	this	model,	all	measurements	
are	probabilities.	Each	phase	space	is	Lorentz	invariant	and	follows	the	limits	of	geometric	
completeness	at	the	local	scale.	This	results	in	the	globalization	of	local	bifurcation	nodes	(Figure	8).		
	



	
(Figure	8)	In	the	evolution	of	statistical	phases	of	a	perfect	blackbody,	each	phase	space	is	Lorentz	invariant	and	follows	the	
limits	of	geometric	completeness.	This	results	in	the	globalization	of	local	bifurcation	nodes.	Era	1-	follows	the	rules	of	geometric	
completeness	and	symmetry.	Bose-Einstein	potentials	are	converted	to	polarity	and	coupling	potential	in	Fermi	Dirac	space.	Era	2	
is	currently	referred	to	as	"the	Dark	Ages".	Fermi-Dirac	statistics	hold	all	potentials	to	the	Lyman	line.	Era	3-	is	our	local	universe	
driven	by	Bayesian	cause	and	effect	statistics	and	limited	by	the	speed	of	light. 
	
	(Figure	9)	demonstrates	how	the	forces	we	associate	with	the	Standard	Model	of	Physics	are	the	
result	of	statistical	boundaries	in	phase	space.	(Era	1)	-	follows	the	rules	of	geometric	completeness	
and	symmetry.	Bose-Einstein	potentials	are	converted	to	polarity	and	coupling	potential	in	Fermi	
Dirac	space.	(Era	2)	-is	currently	referred	to	as	"the	Dark	Ages".	Fermi-Dirac	statistics	hold	all	
potentials	to	the	Lyman	line.	(Era	3)	-	is	our	local	universe	driven	by	Bayesian	cause	and	effect	
statistics	and	limited	by	the	speed	of	light.	As	the	universe	evolves	statistically	so	do	the	
requirements	of	each	phase-space.	 
	

	 	
(Figure	9	)	As	the	universe	expands	it	is	required	to	follow	phase	space	limitations.	Forces	in	this	model	are	equated	to	global	
phase	space	boundaries	required	by	geometric	completeness	and	the	rules	of	relative	measurement.	
	
As	we	mentioned	earlier,	phase	spaces	are	a	natural	explanation	for	the	relative	homogeneity	that	we	
observe	in	all	eras.		In	the	first	image	released	from	the	James	Webb	Space	Telescope,	(just	hours	
before	I	published	this	paper	on	July	11,	2022)	we	get	a	glimpse	further	back	in	than	ever	before	in	
human	history.	It	is	much	too	early	to	draw	any	conclusions,	but,	at	first	glimpse,	this	image	
demonstrates	the	same	relative	homogeneity	that	we	find	in	our	local	universe.	This	supports	our	
model	of	global	phase	space	bifurcation	boundaries	required	by	geometric	completeness,	the	rules	of	
relative	measurement	and	the	boundaries	of	Lorentz	invariance.	In	Part	II	of	Measuring	the	Universe,	
we	will	examine	how	these	phase	space	requirements,	and	relative	measurements,	result	in	the	all	
the	potentials	we	associate	with	galaxy	formation	and	the	development	of	the	galactic	web	and	
further	evidence	from	the	JWST.		
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