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 Abstract: 

 

In this model, we establish rules for the measurement of Lorentz invariant potential using the separation of Markovian 

and Bayesian boundary conditions. By establishing a symmetry between Markovian and Bayesian measurements, we 

create relative states limited by quantum potential or quantum states limited by relative potential. We use the collapse 

of the wave function, and our rules for measurement, to define the boundary between Markovian and Bayesian least-

time operators and demonstrate that quantum least-time operators can act as an uncharged binary boundaries for 

charged, Lorentz invariant potential.  Because we implement rules for the measurement of these potentials, we can 

measure them without the need for an observer, closing any loopholes in violations of Bell's inequalities based on 

observed measurement.  This results in a model that is capable of measuring both wave-based and entangled states, 

while still maintaining adherence to Lorentz invariance. 
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1.00 - Introduction 

 

In this investigation into boundary conditions for Lorentz invariant coherencies, we employ rules for measurement 

which create a hard line between quantum and relative measurements. In effect, we create a symmetry between 

quantum and relative boundaries by separating Markovian and Bayesian time operators. Because rules for measurement 

hold for all measurements, they do not require an observer. As we will attempt to demonstrate, the separation of 

Markovian from Bayesian potential allows us to describe both local and non-local boundary conditions for 

measurement; allowing us to satisfy violations of Bell's inequality[3,4] and to model actions beyond the collapse of the 

wave function – like entanglement. It has become increasingly clear that any accurate modeling of our universe must 

include any violations of Bell's inequalities, as well as incorporating Lorentz invariant descriptions of space time[5,6,7] 

and light speed boundaries. We must also be able to describe the small world of quantum mechanics[8,9,11,12,13] 

using the same principles. While these seem to be incompatible and often competing ideas, there is one language that 

they all share – that is the language of statistics. Statistical measurements are not limited by the speed of light and can 

be used to model both local and non-local actions[3,4]. Quite often, objects, (or particles) can be so far apart that the 

probability for their interaction is almost non-existent but, in a purely statistical model, their potential for interaction 

can never be zero. Therefore, all particles in our universe can be said to be connected through their unmeasured 

statistical potential.  Even if that potential is infinitely small, it can never be zero in a statistical model. As we will 

attempt to demonstrate; in a system determined by measurement there are no zero states or infinities to renormalize 

because both zero and infinity are not measurable states. Therefore, in this investigation into the boundaries for 

statistical potential, we will always establish quantum minimums for the measurement of thermodynamic, 

electrodynamic and classic potentials. It is the parameters of the measurement that will determine the quantum scalar 

for all unmeasured potential. We apply the principle of minimum time and action[14,15,18] to help us define rules for 

the measurement, and interaction, of quantum and relative time operations. The separation of Markovian and Bayesian 

statistical boundaries will allow us to describe quantum states with relative potential or relative states with quantum 

potential.  The basic difference between the two potentials is the boundary condition created by distinct differences in 

the way we measure quantum or relative time operations. Bayesian time is how we experience time. Bayesian time is 

the time of Einstein and is held to all the boundaries created by general relativity[3,4]. It flows based on the concept of 

cause and effect. All wave functions operate using this time operator and are bounded by the speed of light.  This 

includes all the Bob and Alice scenarios used to describe the relative measurements taken by different observers. In this 

investigation we treat Lorentz invariance as a set of coherencies that we translate between boundaries created between 

Bayesian and Markovian requirements. Markovian time operators have very different boundaries and are not limited by 

the speed of light. Markovian time operators are quantum in nature and carry specific rules for time transition 

operators[16].  Entanglement is best described using Markovian time operators.  These are the basic rules for the 

measurement and interaction of time operators that we will employ for this discussion: 

 

- Two or more simultaneous measurements constitute a single relative measurement1 

- Quantum measurements require a quantum time operator 

- Quantum measurements cannot be simultaneous  

- Simultaneous measurements that combine two or more different quantum time operators must use a shared relative 

time operator. 
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1(Einstein places limits on simultaneous measurement based on the limits of relative observation. In this model, all simultaneous measurements must 

establish a common relative time operator. This is essentially a re-statement of the same principle. We are bounded by the same limits established by 

Lorentz invariance and Minkowski space. This is discussed further in Sections-1.01 and 1.02) 

 

These simple rules will help us to define boundary conditions for unmeasured vector potential which establish the 

boundaries for measured potential.  In this model, based purely on measured statistical states, there are no zero states 

or infinities to renormalize, because both zero and infinity are unmeasurable states. Discreet Markovian fundamental 

states are then defined by how we measure their time operations. This mirrors the basic requirement of any Markovian 

transition matrix[11,16] or wave-packet[12,13,18]. Combining statistical states to describe both wave and quantum 

potential is, of course, the essence of Quantum Statistical Mechanics (QSM) and the use of Feynman path integrals[10]: 

 

𝜓(𝑡!)  =  ⋃(𝑡!, 𝑡!) 𝜓(𝑡!)        (01) 

 

The time evolution operator  ⋃(t!, t!) satisfies the equation of motion: 

 

ℏ𝑖 !
!!!

⋃(𝑡!, 𝑡!)   =  ℋ⋃(𝑡!, 𝑡!)      (02) 

 

In our investigation, using the rules for measurement, we establish a hard line between quantum Markovian discreet 

states and relative, and wave-based, Bayesian potentials. This requires us to fulfill the discrete requirements of any 

Markov chain and balance them against the continuous cause and effect time represented by Bayesian wave functions. 

This will allow us to model any violations of Bell's inequalities as Lorentz invariant potentials that exist both in and 

outside the collapse of the wave function. 

 

1.01 - Defining Markovian and Bayesian time operators 

 

General relativity tells us that there are no simultaneous measurements and the relative velocity of observers limits the 

context of the measurement.  Our first rule for measurement seems to conflict directly with this basic limit to any 

simultaneous measurement imposed by general relativity. In fact, our first rule states that any simultaneous 

measurements must take into account the relative time operators of each measurement.  This is actually in agreement 

with Einstein's principles regarding simultaneous measurement. In this discussion, we preserve individual 

measurements of for both Bob and Alice, but any interaction between them requires the establishment of a shared 

relative time operator. We constrain Lorentz invariant measurements to the same boundaries established by general 

relativity and constrain Lorentz invariant quantities to the same boundary conditions that are established by Minkowski 

space or de Sitter space[5,6,7] .  However, in this model, fundamental quantum states of potential are determined by the 

measuring of unmeasured potential. Each measurement of "unmeasured" potential determines the minimum quantum 

scalar for each type of potential energy. In effect, we create quanta that respond to measurement to determine quantum 

states. Quantum measurements simply require a quantum time operator. This single requirement serves to separate 

quantum and relative time operations and implies the need for a discrete Markov chain in balance with a Bayesian 

wave function. We then draw a hard line between these two time functions and the center of least time through the use 

of a Nambu-Poisson symmetry and phased Hamiltonians representing the center of least time for measured potential. 

Generalized Nambu-Hamilton equations of motion involve two Hamiltonians and an evolutionary time operator[8,9]. It 
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will establish how the system evolves using the principle of least time represented by the Hamiltonians within the 

equation: 

 
!"
!"
=  ℋ!,ℋ!, 𝑓(𝑡! → 𝑡!)        (03) 

 

Where,  𝑓(𝑡! → 𝑡!) represents the least-time evolution operator of the two symmetric Hamiltonians. 

 

− ℋ!,ℋ!, 𝑓(𝑡!)  = ℋ!,ℋ!, 𝑓(𝑡!)      (04) 

 

We establish Markovian boundaries to the quantum (left) side of the Nambu-Poisson symmetry by equating an identity 

matrix to a time operator. Markovian transition matrices allow us to create boundaries for least-time potential based on 

the restrictions of the matrix. One of the primary advantages of working with unmeasured potential is that it allows us 

to maintain positive boundaries for measured potentials in Markovian transition matrices. Unmeasured potential can 

also placed in the complex plane as an asymptotic boundary condition for measured potential. We can represent the 

boundaries for unmeasured potential using the set of complex numbers and Hermitian matrices[11]. We start with a 

transition matrix using real complex numbers representing the opposite potentials needed to reflect conservation 

boundaries:   

 

1 𝑖
𝑖 1        (05) 

 

This transition matrix establishes boundary conditions for all measured binary potential. We can associate this basic 

binary requirement to uncharged Markovian transition probability matrices: 

 

𝑓 1 𝑖
𝑖 1 = 𝑓 1 𝑖

𝑖 1
!
= 𝑓 +1 −1

−1 +1 =  𝑓(𝑡!)     (06)  

 

Where the value 𝑓 +1 −1
−1 +1  represents the least-time boundaries for unmeasured Markovian potential and 𝑓(𝑡!) is the 

quantum evolutionary time operator. In our separation of quantum and relative operations, required by our rules for 

measurement, any Markovian binary boundary condition requires this basic identity as a time operator: 

  

− ℋ!,ℋ!, 𝑓(𝑡!) = − ℋ!,ℋ!, 𝑓
1 𝑖
𝑖 1       (07) 

 

Using this matrix as the Markovian transition time operator allows us to create asymptotic boundaries for unmeasured 

potential that will set the positive boundaries for measured potential.  We use an integer-based Markovian operator as 

our quantum time operator and a Bayesian wave packet as the relative time operator:  

 

− ℋ!,ℋ!, 𝑓(𝑡!)  = ℋ!,ℋ!, 𝑓(𝑡!)      (08) 

 

Where the value (𝑡!) represents a discrete Markovian time operator and (𝑡!) represents a wave-based Bayesian time  

operator. In our model, quantum time operators, act as uncharged, and asymptotic, binary boundaries for Bayesian 
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charge and wave-based potentials. Charged potentials combine separate quantum measurements into a single 

measurement and, therefore, based on our rules, we must use a Bayesian wave function as the time operator for any 

charged potential. This means that all charges, positive, negative and neutral must be contained on the Bayesian side of 

the NP symmetry. We can show this best by returning to Markovian transition matrices representing charged and wave-

based potential. If we include all three charges of the standard model on the Bayesian side of our symmetry we create a 

transition identity for the wave packet.   We can now use the set of complex numbers to represent neutral charge 

potential: 

 

𝑡! =
1! 𝑖 1!
𝑖 𝑖 𝑖
1! 𝑖 1!

=
1! 𝑖 1!
𝑖 𝑖 𝑖
1! 𝑖 1!

     (09) 

 

In our model we use (1!, 1!, 1) to represent positive, negative and neutral currents. We use a quantum fundamental 

state as the carrier for neutral currents, because it carries electrodynamic unmeasured potential without the boundaries 

set by Coulomb rules and charges. Vector potential works as a quantum operator. By assigning the appropriate 

quantum or wave-based time operations we can tie these equations to our Nambu-Poisson symmetry. This can be 

related back to the measured quantum vector potential for the Aharanov-Bohm effect[1, 2] : 

 

𝐴(𝑥, 𝑡!) = ℋ!!"# ,ℋ!!"# , 𝑓(𝑡!)  = ℋ!!"# ,ℋ!!"# , 𝑓(𝑡!) = 𝜓(𝑟, 𝑡!)   (10) 

 

If we examine the diagonal representing this time operator as a position vector (𝑟) then the wave function represents 

the boundary conditions for the general Schrodinger equation[13,18]: 

 

ℏ𝑖 !
!"
|𝜓(𝑟, 𝑡)   =  ℋ|𝜓(𝑟, 𝑡)       (11) 

 

ℏ𝑖 !
!"
|𝜓(𝑟, 𝑡)   =   ℋ|𝑡!       (12) 

 

𝑡! =
1! 1 1!
1 1 1
1! 1 1!

= 𝜓(𝑟, 𝑡)      (13) 

 

ℋ|𝑡! = ℋ!,ℋ!, 𝑓(𝑡!) = − ℋ!,ℋ!, 𝑓(𝑡!)      (14) 

 

𝑓(𝑡!) = 𝑓 1 𝑖
𝑖 1       (15) 

 

𝑓(𝑡!) = 𝑓
1! 𝑖 1!
𝑖 𝑖 𝑖
1! 𝑖 1!

      (16) 

 

− ℋ!,ℋ!, 𝑓
1 𝑖
𝑖 1   = ℋ!,ℋ!, 𝑓

1! 𝑖 1!
𝑖 𝑖 𝑖
1! 𝑖 1!

= 𝑖 !
!"
|𝜓(𝑟, 𝑡) = ℋ|𝜓(𝑟, 𝑡)  (17) 
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In the next sections we will explore how measurement of unmeasured potential, (electrodynamic, thermodynamic and 

classical), determines the boundary conditions for the interaction of quantum and relative measured potential . We will 

examine how the measurement of quantum potential defines relative boundary conditions and the measurement of  

Bayesian relative potential is bounded by least-time Markovian limits. We will then quickly explore how a quantum 

center of least time establishes boundaries in relative space for thermodynamic, electrodynamic and classical potentials. 

 

1.02 - Measuring statistical potential 

 

In the standard model, photons are the carriers of electromagnetic force, but can only be described using statistics due 

to Heisenberg's uncertainty principle. Electromagnetic potentials are also limited by the Planck constant, Berry circuits, 

and Josephson potentials.  In contrast, thermodynamic boundaries are defined purely within the context of Boltzmann 

limits. In this model, we use measurement to define the context for all statistical potential. However, each type of 

potential requires a different type of measurement. We can demonstrate how each different variation of potential is 

determined by measurement using Hermitian identity matrices[11,16] to represent the unmeasured vector potential for 

each type of statistical measurement.  Returning to the NP symmetry and the Hermitian identity matrices for both 

uncharged and charged boundaries we get: 

 

− ℋ!,ℋ!, 𝑓
1 𝑖
𝑖 1   = ℋ!,ℋ!, 𝑓

1! 𝑖 1!
𝑖 𝑖 𝑖
1! 𝑖 1!

    (18) 

 

By associating the set of complex numbers and arguments in the complex plane with unmeasured potential we can 

satisfy the requirements of any Markovian probability transition matrices as well as supplying the structure for 

measurement of that potential. We introduce three variables to the matrix on the right of our equation: 

 
𝑝!
𝑝!
𝑝!

1! 𝑖 1!
𝑖 𝑖 𝑖
1! 𝑖 1!

      (19) 

 

Where 𝑝! , 𝑝! , 𝑝!   represent electrodynamic, thermodynamic and classic potentials and the boundaries for that 

measured potential required by least-time conservation laws. This allows us to represent imaginary squared values in 

the complex plane as vector potential measurement. Take for example the measurement of electro dynamic potential: 

 

 
1! 1 1!
1 1 1
1! 1 1!

=
1! 𝑝! 1!
𝑝! 𝑝! 𝑝!
1! 𝑝! 1!

     (20) 

 

When measuring electrodynamic potential, the top row represents all three charges as well as Coulomb rules: 

 

−1|p!| + 1        (24) 
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The diagonal of each matrix represents the time operation for that measurement of potential as well as incorporating it 

into a wave packet. For example; when measuring electrodynamic potential we need to be able to represent all three 

charges in the standard model, (positive, negative, neutral). In our matrix we represent statistical potential using the 

neutral charge:  

 
𝑝!
𝑝!
𝑝!

1!
𝑝!

1!
 𝑜𝑟 

1!
𝑝!

1!
     (21) 

 

Returning to the NP symmetry, we can represent both phases of the wave function with the Hamiltonians using sin and 

cos values: 

 

− ℋ!"#,ℋ!"#, 𝑓(𝑡!)  = ℋ!"#,ℋ!"#, 𝑓(𝑡!)      (22) 

 

All charged electrodynamic potential can be divided by ℏ, therefore electromagnetic measurement adds another 

boundary condition for both sides of the equation: 

 

− ℋ!"#,ℋ!"#, 𝑓 ℏ 𝑡!  = ℋ!"#,ℋ!"#, 𝑓 ℏ 𝑡!     (23) 

 

− ℋ!"#,ℋ!"#, 𝑓(ℏ)
1 𝑖
𝑖 1  = ℋ!"#,ℋ!"#, 𝑓(ℏ)

1! 𝑝! 1!
𝑝! 𝑝! 𝑝!
1! 𝑝! 1!

   (24) 

 

Returning us again to the general Schrodinger equation[18] : 

 

− ℋ!"#,ℋ!"#, 𝑓(ℏ)
1 𝑖
𝑖 1  = −ℏ !

!"
|𝜓(𝑟, 𝑡) = −ℋ|𝜓(𝑟, 𝑡)    (25) 

 

In the next section, we will discuss how measurement creates Markovian and Bayesian boundaries for quantum and 

wave-based electrodynamic potentials.  

 

1.03 -  Electrodynamic potential  

 

In the standard model, photons are described as force carriers for electrodynamic potential. Photons exhibit particle and 

wave duality and can operate in quantum time or relative time depending on measurement. By equating the rules of 

measurement to the interaction of Markovian and Bayesian time operators; we can demonstrate how measurement  

determines the observation of particle or wave phenomenon. The original two-slit experiment[12] demonstrates, quite 

clearly, how probability waves can describe the interference patterns generated by either photons or electrons: 

 

𝑆 = 𝜓!
! → 𝜓!

! + 𝜓!
! +  2 𝜓!  𝜓!𝑐𝑜𝑠𝛿 =  𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒    (26) 

 

Where 𝜓!! describes the source of electrons or photons, and the quantity  (𝜓!!) and (𝜓!
!)  describe the probabilities 

generated at slits (a,b). 𝛿 is the phase difference between 𝜓! 𝑎𝑛𝑑 𝜓!. We get an interference pattern, because the single 
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measurement at detector screen has combined two quantum time operators into a relative measurement. Assigning 

separate time operators to each component of the experiment allows us to move between quantum and relative 

measurements. When we remove the single measurement at the detector screen and replace it with two separate, and 

sequential, measurements at the slits; we are adding the quantum operators without interference. These measurements 

never occur simultaneously, because the two probabilities operate in sequential and additive time. When detectors at 

each slit count single photons or electrons as they pass through, they effectively create Markovian quantum 

measurements which result in a "particle".  The result of the time measurements being additive, and not relative, is that 

it does not generate an interference pattern at the detector screen.  

 

𝜓!
!(𝑡!) → 𝜓!

!(𝑡!) =  𝑛𝑜 𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒     (27) 

 

𝜓!
!(𝑡!) → 𝜓!

!(𝑡!) = 𝑛𝑜 𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒     (28) 

 

Boundary conditions for measured potential are really no different than the path integrals associated with QED or the 

vector potential of the (AB) effect. In fact, we can relate this idea of statistical potential directly to the electrodynamic 

vector potential represented by the Aharonov-Bohm effect or the quantum actions represented by Berry circuits[17] and 

Josephson energy[24]. Electrodynamic potential in our model is no different than the standard model. The advantage 

we have is the ability of unmeasured potential to exceed light speed limits and to model violations of Bell's inequalities 

– like entanglement. We describe the boundary between quantum and wave based phenomenon much like Dr. Julian 

Schwinger describes the use of boundary conditions for electromagnetic waves[21]: 

  

“We have, therefore, the boundary condition that the Green’s function, in its dependence upon the latest of all times, 

contains only positive frequencies, and in its dependence upon the earliest of all times, contains only negative 

frequencies. In effect we have a description in terms of waves which can be considered as moving in the space-time 

region in such a way that if we have a number of such points in space-time, the waves are moving always out of the 

region in question. When we are on the boundary of the region in the sense of considering the time coordinate that is 

later than all the others, the frequencies are positive and the waves move out; if it is the earliest of all times, the 

frequencies are negative, and the waves move out again. In short, we are dealing with a generalization of the Green’s 

function originally introduced by Feynman which corresponds precisely to the boundary condition of outgoing waves. 

The waves are in a time sense, running out of the region in question.”  Julian Schwinger, Nobel Lecture [21] 

 

At the line between Dr. Schwinger's latest and earliest times, he uses a wave operator that is always running out of a 

region of negative potential. We see this as a representation of our separation of quantum and relative states at the 

collapse of the wave function. In our model, quantum time operations exist outside of the collapse of the wave function 

and represent boundaries established by the center for least time for each measurement.  The Green's functions will 

allow us to represent the center of least time as a geometric boundary condition representing the spherically symmetric 

nature of electro dynamic potential: 

 

−∇!𝐺 ℋ!"#,ℋ!"#, 𝑓 𝑡!  ⟵ ∇!𝐺 ℋ!"#,ℋ!"#, 𝑓 𝑡!     (29) 
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−∇!𝐺(𝑡!)𝑓!
1 𝑖
𝑖 1  ← ∇!𝐺 𝑡! 𝑓!

1! 𝑝! 1!
𝑝! 𝑝! 𝑝!
1! 𝑝! 1!

    (30) 

 

Our geometric boundaries for electrodynamic potential also reflect the statistical probabilities associated with the two-

state system described by Dr. Feynman[12], as well as, the two-state EM field operator described by Roy Glauber in his 

work regarding electromagnetic field coherence and quantification[23].  Quantum electrodynamic potential,  

representing the concept of least time, can also be defined by Josephson energy and Josephson currents[24].  Tunneling 

works because the Josephson current passes a barrier using a quantum phase jump. This is a quantum effect based on 

the potential of Josephson energy to make the jump as current with zero voltage and with the least definable time. The 

relationship between Josephson phase and Josephson current can be stated as: 

 

𝐽!  = 𝐽! 𝑠𝑖𝑛(𝜃! − 𝜃! )           (31) 

 

The potential energy at a Josephson junction can be stated as:  

 

𝐽!  = !!  !! 

!!
(1 − 𝑐𝑜𝑠𝜑)      (32) 

 

𝐽! = Josephson phase  

𝐽! = Josephson potential 

𝜃!   = quantum flux 

𝐼!  = critical current  
 

The ability of a Josephson current to jump the tunneling barrier can directly related to its quantum potential. We can 

use it to define a quantum time limit for electrodynamic wave-based potential.  

 

−∇!𝐺 ℋ!"#,ℋ!"#, 𝑓 𝑡!  ⟵ ∇!𝐺 ℋ!"#,ℋ!"#, 𝑓 𝑡!     (33) 

 

−∇!𝐺 ℋ!"#,ℋ!"#, 𝑓! 𝐽!  ⟵ ∇!𝐺 ℋ!"#,ℋ!"#, 𝑓!
1! 𝑝! 1!
𝑝! 𝑝! 𝑝!
1! 𝑝! 1!

   (34) 

 

Therefore, the Josephson effect  and the Aharanov-Bohm Effect are the minimum measured potentials for unmeasured 

electrodynamic vector potential. Just as in our model, these effects do not require a field to represent electrodynamic 

potential. The difference is our ability to create a hard line between Markovian and Bayesian boundaries and to 

describe actions beyond the collapse of the wave function – like entanglement. These vector potentials are two of the 

clearest examples of a quantum effect that can also be described using a wave function. In the next section we shall 

discuss Markovian and Bayesian thermodynamic potential defined by quantum thermal microstates which are also 

based on the principle of least time and action. 

 

1.04 -  Thermodynamic potential 

 

Thermodynamic quantum states, defined by a center of least time, can be described by thermal microstates and Eigen 

state thermalization[25].  Thermodynamic microstates represent the minimum time for any thermodynamic state in 
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equilibrium. Thermodynamic potential and Maxwell-Boltzmann statistics can therefore, operate using quantum or 

wave-based boundaries. Each microstate is a quantum snapshot of thermal equilibrium and, therefore, it acts as an 

uncharged boundary based on conservation limits. This fits well with the laws of thermodynamic equilibrium and the 

description of thermal microstates given by Goldstein, Lebowitz, and Lieb[26,27]:  

 

𝜓|P!"|𝜓  ≈  1        (35) 

 

"...Let μ(𝑑𝜓) be the uniform measure on the unit sphere in ℋ (13,14*). It follows from 

(7*) that most  𝜓 relative to 𝜇 are in thermal equilibrium. Indeed, 

 

𝜓|P!"|𝜓 μ(𝑑𝜓)   = !
!

TrP!" =  !!"
!

 ≈  1      (36) 

 

Since the quantity 𝜓|P!"|𝜓  is bounded from above by 1, most  𝜓  must satisfy (8)!." 

 
(7*)T. Kato: A short introduction to perturbation theory for linear operators. New York:Springer-Verlag, 1982.[13*] M. Rigol, V. Dunjko, M. Olshanii: Thermalization and its 

mechanism for generic isolated quantum systems. Nature 452, 854–858, 2008. 

[14*] E. Schrodinger: Statistical Thermodynamics. Second Edition, Cambridge University Press, 1952. 

 

Thermodynamic equilibrium acts dynamically to restrain thermodynamic expansion. Thermodynamic microstates 

represent the center of least time for any thermodynamic potential. Thermodynamic potential moves from quantum to 

relative states using Maxwell-Boltzmann statistics. As we approach higher and higher temperatures we reduce the 

contributions from electrodynamic momentum and classical momentum and Maxwell-Boltzmann statistics become the 

primary measurement of statistical potential. The Boltzmann constant now drives all time operations:  

 

 𝜓!|P!"|𝜓! = ℋ!"#,ℋ!"#, 𝑓(𝑘)
1 𝑖
𝑖 1      (37) 

 

Where (𝑘) is the Boltzman constant. To represent the spherically symmetric boundary for thermodynamic equilibrium 

we can, again,  use the Green's functions and the equilibrium microstate as the quantum operator: 

 

𝜓!|P!"|𝜓! = ∇!𝐺 ℋ!"#,ℋ!"#, 𝑓!(𝑘)
1 P!"
P!" 1     (38) 

 

 In the final section we will discuss how the rules for measurement, the separation of Markovian and Bayesian 

requirements, and the concept of least time can dictate the asymptotic boundaries for gravitational potential. 

 

1.05 - Gravitational potential 

 

In this model, gravity is positioned as a quantum asymptotic boundary condition for classic relative potential. We 

establish the same asymptotic boundaries established by Lorentz invariance using the stress tensor and the gravitational 

constant as least-time boundaries. This seems like a departure from general relativity, but it actually is just a rephrasing 

of the boundaries without the need for fields. This is a direct reflection of the boundaries we associate with the vector 

potential of the AB effect. Gravimetric measured potential is defined using the same boundaries established by Einstein 
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and Minkowski and de Sitter[5,6,7]. In fact, if we think of classic potential in its most recognizable form we can turn to 

Einstein's famous equivalency of energy to mass: 

 

 𝐸 = 𝑚𝑐!        (39) 

 

This equivalency of energy to mass is basically a statement that equates energy to potential. Our use of NP symmetries 

allows us to translate Lorentz invariant potential between quantum and relative states. In effect, we treat Lorentz 

invariance as a quantity that we can translate between quantum and relative time operations using the hard line set by 

our rules for measurement. This allows us to fulfill the unique requirements of special relativity as well as working 

outside the collapse of the wave function and with quantum boundaries. Let's return to our original equivalency of 

charged potential and uncharged binary boundary conditions. In this instance we will measure the asymptotic boundary 

for classical potential momentum based on a quantum center of least time: 

 

−∇!𝐺𝑓!
1 𝑖
𝑖 1  ← ∇!𝐺𝑓!

1! 𝑖 1!
𝑖 𝑖 𝑖
1! 𝑖 1!

     (40) 

 

While relative gravitational potential, and the relative time operator, are always limited by the wave function and the 

speed of light, quantum gravitational potential is not. We define this quantum minimum for gravitational potential as an 

uncharged asymptotic boundary for classic potential. Lorentz invariant quantities define the minimum measurement for 

any classic potential. By attaching vectors to Lorentz invariant classic potential, we can portray the center for least time 

as an uncharged quantum binary boundary condition for relative potential based on conservation of momentum: 

 

−∇!𝐺𝑓!
1 𝑚𝑐!
𝑚𝑐! 1

 ← ∇!𝐺𝑓!
1! 𝑚𝑐! 1!
𝑚𝑐! 𝑚𝑐! 𝑚𝑐!
1! 𝑚𝑐! 1!

    (41) 

 

Beginning with our description of classic momentum, we can use our NP symmetry, and the gravitational constant, to 

define a center for least time for gravitational statistical potential[5,14,15]. We can use the Einstein's  momentum and 

energy stress tensor  to construct a minimum for quantum measurement of these momentum vectors and boundaries.  

Einstein uses the energy stress tensor (𝑇!"  ) to represent the asymptotic source of gravitational potential. Because it 

represents the center of least time for any Lorentz-invariant momentum, we can use the energy-stress tensor as our 

quantum time operator for vectored momentum. We can also use it on the charged side of our symmetry, but we change 

to the opposite vector constrained by the binary uncharged boundary condition: 

 

−∇!𝐺𝑓!
1 𝑇!"  

𝑇!"  1
 = ∇!𝐺𝑓!

1! 𝑇!"  1!

𝑇!"  𝑇!"  𝑇!"  

1! 𝑇!"  1!
    (42) 

 

Returning to our original NP symmetry: 

 

−∇!𝐺 ℋ!"#,ℋ!"#, 𝑓! 𝑇!"  = ∇!𝐺 ℋ!"#,ℋ!"#, 𝑓! 𝑇!"      (43) 
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In our model we represent gravity as an uncharged boundary condition for vectored classic momentum. To set a hard 

line between quantum and relative time operators, let us return to the use of Einstein's gravitational constant[5]:  

 

−∇!𝐺 ℋ!"#,ℋ!"#, 𝑓!
!!!!
!!

 𝑇!"  = ∇!𝐺 ℋ!"#,ℋ!"#, 𝑓!
!!!!
!!

𝑇!"     (44) 

 

We can use the gravitational coupling constant (𝛼!) to help us move all charge to one side of our equation: 

 

𝐺! =
!!!!
!!!!!

       (45) 

 

Where (𝐺!) is the gravitational constant and 𝛼!  is the gravitational coupling constant: 

 

−∇!𝐺 ℋ!"#,ℋ!"#, 𝑓!
!!!!
!!

 𝑇!"  = ∇!𝐺 ℋ!"#,ℋ!"#, 𝑓!
!!!!!!
!!!!!!!

 𝑇!"     (46) 

 

−∇!𝐺 ℋ!"#,ℋ!"#, 𝑓!
!!!!
!!

 𝑇!"  = ∇!𝐺 ℋ!"#,ℋ!"#, 𝑓!
!!!!
!!!!!

 𝑇!"     (47) 

 

Moving all light speed and charge boundaries to the Bayesian side of the equation: 

 

−∇!𝐺 ℋ!"#,ℋ!"#, 𝑓! 8𝜋𝐺! 𝑇!"  = ∇!𝐺 ℋ!"#,ℋ!"#, 𝑓!
!!!!!
!!!

 𝑇!"     (48) 

 

−∇!𝐺 ℋ!"#,ℋ!"#, 𝑓! 2𝜋𝐺! 𝑇!"  = ∇!𝐺 ℋ!"#,ℋ!"#, 𝑓!
!!!!
!!!

 𝑇!"     (49) 

 

−∇!𝐺 ℋ!"#,ℋ!"#, 𝑓!  !!
!!

= ∇!𝐺 ℋ!"#,ℋ!"#, 𝑓!
!!!!

!

!!
     (50) 

 

Adding back the stress tensor allows us to establish a geometric center of least time and gravitational potential that also 

separates quantum Markovian and wave-based Bayesian boundaries and uncharged and charged potentials: 

 

𝑓!  !!
!!

𝑇!"  ⟵ 𝑓!
!!!!

!

!!
 𝑇!"       (51) 

 

Unfortunately, we must end this discussion of the quantum limits to gravity in order to draw some "boundary 

conditions" of our own for the length of this paper. We hope we have demonstrated that this model is not in conflict 

with special relativity, but has the advantage of working beyond light speed limits and beyond the collapse of the wave 

function.  

 

1.6-Discussion 
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Working with only our the rules for measurement, and the interaction of time operators, we have reduced many of the 

barriers between quantum theory and relativity.  We have demonstrated that this model can be used to measure the 

potential associated with the Standard Model with the additional advantage of being able to model actions beyond the 

collapse of the wave function –like entanglement. We have tied this model directly to the vector potentials associated 

with the Aharanov-Bohm effect and, therefore, original Schrodinger equations and demonstrated that least time  

principles can then be extended to thermodynamic microstates and the modeling of quantum gravitational potential. We 

are currently completing an investigation of charge and time symmetries at the event horizon of a black hole which will 

greatly expand on these basic concepts as well as providing recent astrophysical evidence to support this model.  
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