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Abstract	
	
In	this	extension	of	our	previous	discussions,	on	the	limits	of	measurement,	we	define	the	measurement	minimums	
within	the	Yang-Mills	mass	gap	problem,	The	Hodge	Conjecture,	The	Riemann	Hypothesis,	The	Poincare	Conjecture,	
The	Navier-Stokes	Equations,	P	vs	NP,	and	the	Birch	Swinnerton-Dyer	Conjecture.	We	introduce	a	theorem	of	
geometric	completeness	and	the	Millennium	problems	are	used	as	lemmas	to	support	our	proof.	
	
1.0-	Introduction	
	
As	we	have	discussed	in	all	of	our	previous	papers,	zero	and	infinity	are	not	measurable.		This	has	the	effect	of	
eliminating	any	smooth	approaches	to	zero	for	any	real	number	probability	bounded	by	measurement	and	
relative	set	theory.	In	this	discussion,	we	establish	a	minimum	measurement	for	any	relative	number	set,	
effectively	aligning	all	measurable	Riemann	non-trivial	zeros	along	the	circumference	of	a	circle	with	a	real	
radius	of	 𝑟 = !

!
  and	restricting	all	Hilbert	zero	points	to	the	boundaries	of	a	circle.	The	Clay	Mathematics	

Millennium	Problems	are	used	as	lemmas	to	demonstrate	that	the	minimum	real	or	complex	measure	in	any	
complete	system	of	geometry	is	a	simple,	closed,	curve.	
	
1	.1	A	complete	system	of	geometry	
	
In	our	last	paper	,	we	demonstrated	how	Fermat's		definition	of	maxima	or	minima	requires	a	real	length	with	
real	endpoints	(Figure	1).		
	
"𝑆𝑢𝑝𝑝𝑜𝑠𝑒 𝑡ℎ𝑎𝑡 𝑎 < 𝑐 < 𝑏. 𝐼𝑓 𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓𝑖𝑠 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑜𝑛 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑎, 𝑏 , 𝑎𝑛𝑑 	
𝑖𝑡 ℎ𝑎𝑠 𝑎 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑜𝑟 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑎𝑡 𝑐, 𝑡ℎ𝑒𝑛 𝑒𝑖𝑡ℎ𝑒𝑟 𝑓′ 𝑑𝑜𝑒𝑠𝑛′𝑡 𝑒𝑥𝑖𝑠𝑡 𝑎𝑡 𝑐, 𝑜𝑟 𝑓(𝑐) = 0"	
	

	
	
	

(Figure	1)		Fermat's	theorem	establishing	maxima	and	minima	of	functions.	
	
The	premise	of	this	proof	is	that	any	complete	system	of	geometry	does	not	include	points	that	are	not	
established	by	a	real	length.	We	demonstrate	that	any	real	length,	in	any	complete	system	of	geometry,	contains	
the	minimum	measurement	of  2𝜋𝑖 	and	must	be	able	to	establish	a	real	vertex	on	a	cone	to	establish	a	
probability	for	a	genus	=0	in	real	space.	In	our	paper	on	Fermat's	theorem,	we	discussed	how	projecting	Euler's	
primary	identity	onto	the	vertex	of	a	cone	could	define	the	limits	to	the	upper	half	of	the	coordinate	plane.		In	
(Figure	2)	we	demonstrate	how	the	projection	of	zeta	function	limits	onto	the	coordinate	plane,	oriented	on	the	
base	of	a	cone,	can	establish	real	minima	for	the	measurement	of	any	genus	(or	"point")	in	all	quadrants	of	the	
coordinate	plane.			
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(Figure	2)		Any	complete	system	of	geometry	must	be	able	to	represent	both	the	vertex	of	a	cone	in	real	space,	and	a	genus	one	
modular	form	(torus)	in	the	upper	half	of	the	coordinate	plane.	All	modular	forms	and	homolographic	groups,	in	any	complete	
system	of	geometry,	have	a	minimum	real	length	= 2𝜋𝑖.	
	
The	limits	of	the	zeta	function	are	projected	in	all	quadrants	to	demonstrate	the	establishment	of	4	real	minima.		
Because	any	diameter	contains	a	real	measurable	radius,		𝑟 = !

!
,	the	establishment	of	real	minima	in	all	

quadrants	of	the	coordinate	plane	also	creates	a	real	radius	in	all	quadrants.	Any	real	length	or	radius,	with	
either	real	and	complex	endpoints,	can	be	held	to	the	minimum	measure	of	a	simple	closed	curve,	 2𝜋𝑖 ,	in	any	
complete	system	of	geometry	(Figure	3).		

	
(Figure	3)		Any	real	length	or	radius,	with	either	real	and	complex	endpoints,	can	be	held	to	the	minimum	measure	of	a	simple	
closed	curve	
	
Our	resolution	of	Riemann	is	accomplished	by	limiting	all	non-trivial	zeros	to	a	simple	closed	curve	with	real	
part	!

!
.	The	Clay	Mathematics	Millennium	Problems	are	used	as	lemmas	to	demonstrate	the	proof	of	our	theorem.	

	
	
2.0-Theorem	of	geometric	completeness		
	
Theorem:			
	
The	minimum	real,	or	complex,	measure,	in	any	complete	system	of	geometry,	is	a	simple	closed	curve.	
	
	
We	will	begin	our	proof	with	two	definitions:	
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Complete	system	of	geometry-	Any	complete	system	of	geometry	must	be	able	to	satisfy	all	the	requirements	
of	Riemannian	geometry	as	well	as	clearly	defining	the	boundary	between	the	real	and	complex	planes.	
	
Minimum	measurement-	Any	complete	system	of	geometry	is	able	to	be	oriented	on	a	coordinate	plane	and	
contains	the	same	minimum	real	lengths	required	of	any	modular	form,	elliptic	curve	or	non-trivial	zero.		
	
Lemmas:	
	
2.1	Lemma	-	The	Birch	Swinnerton-Dyer	Conjecture:			
	
"If	the	genus	of	𝐶!	is	greater	than	or	equal	to	2,	then	𝐶!𝑄	is	finite".	
	
Proof	:	
	
Every	compact	connected	two-dimensional	manifold	is	homeomorphic	to	a	sphere,	the	connected	sum	of	tori,	or	the	
connected	sum	of	real	projective	planes.	
	
All	genera,	real	and	complex,	have	the	minimum	measurement	of	a	simple	closed	curve	(2𝜋𝑖).	
	
Conclusion:		
	
The	minimum	real,	or	complex,	measure,	in	any	complete	system	of	geometry,	is	a	simple	closed	curve.	
	
	
2.2	Lemma-	The	Riemann	Hypothesis:	
	
"The	non-trivial	zeros	of	𝜁 𝑠 	have	real	part	equal	to	!

!
."	

	
Proof	:	
	
The	minimum	measure	for	the	surface	of	any	complete	Riemannian	manifold,	real	or	complex,	is	a	curve	with	real	
length,	imaginary	endpoints	and	a	minimum	real		measure	of	 !

!!"
		

	
Any	complete	Riemannian	geometry	has	a	minimum	least-time	connected	measure	of	genus=0	(surface	of	a	sphere)	
	
Conclusion:		
	
The	minimum	real,	or	complex,	measure,	in	any	complete	system	of	geometry,	is	a	simple	closed	curve.	
	
	
2.3	Lemma	-The	Poincare	conjecture	
	
Thurston	resolves	Poincare	(this	was	proven	by	Perelman):	
	
"Every	oriented	prime	closed	3-manifold	can	be	cut	along	tori,	so	that	the	interior	of	each	of	the	resulting	manifolds	
has	a	geometric	structure	with	finite	volume."	
	
Proof	:		
	
-Every	real	torus	is	the	product	of	three	circles.	
	
Conclusion:		



	
The	minimum	real,	or	complex,	measure,	in	any	complete	system	of	geometry,	is	a	simple	closed	curve.	
	
	
2.4	Lemma	-	The	Hodge	Conjecture:		
	
"On	a	projective	non-singular	algebraic	variety	over	C,	any	Hodge	class	is	a	rational	linear	combination	of	classes	
cl(Z)	of	algebraic	cycles."	
	
Proof	:		
	
-	On	any	projective	non-singular	algebraic	variety	over	C,	there	is	a	minimum,	positive	and	real,		geometric	length	
(basis)	defined	by	complex	cycle	endpoints.	
	
-any	connected	and	oriented	manifold	has	a	minimum	measure	of	4	real	points	and	two	axis	of	symmetry,		one	real	
and	the	other	imaginary	(	Poincare	duality	and	Abel's	Theorem)	
	
-any	homology	group,	with	genus	greater	than	zero,	is	held	to	the	minimum	measurement	of	a	circle	(2𝜋𝑖)	
	
Conclusion:		
	
The	minimum	real,	or	complex,	measure,	in	any	complete	system	of	geometry,	is	a	simple	closed	curve.	
	
	
2.5	Lemma	-	The	Navier-Stokes	equations:		
	
(A)	Let	u	be	a	weak	solution	of	the	Navier–Stokes	equations,	satisfying	suitable	growth	conditions.	Let	E	be	the	
singular	set	of	u.	Then	P1(E)	=	0.	(B)	Given	a	divergence-free	vector	field	u	◦	(x)	and	a	force	f(x,	t)	satisfying	(4)	and	
(5),	there	exists	a	weak	solution	of	Navier–Stokes	(1),	(2),	(3)	satisfying	the	growth	conditions	in	(A)	
	
(A)	Existence	and	smoothness	of	Navier–Stokes	solutions	on	R	3	.	Take	ν	>	0	and	n	=	3.	Let	u	◦	(x)	be	any	smooth,	
divergence-free	vector	field	satisfying	(4).	Take	f(x,	t)	to	be	identically	zero.	Then	there	exist	smooth	functions	p(x,	
t),	ui(x,	t)	on	R	3	×	[0,∞)	that	satisfy	(1),	(2),	(3),	(6),	(7).	
	
	(B)	Existence	and	smoothness	of	Navier–Stokes	solutions	in	R	3/Z	3	.	Take	ν	>	0	and	n	=	3.	Let	u	◦	(x)	be	any	smooth,	
divergence-free	vector	field	satisfying	(8);	we	take	f(x,	t)	to	be	identically	zero.	Then	there	exist	smooth	functions	
p(x,	t),	ui(x,	t)	on	R	3	×	[0,∞)	that	satisfy	(1),	(2),	(3),	(10),	(11).		
	
(C)	Breakdown	of	Navier–Stokes	solutions	on	R	3	.	Take	ν	>	0	and	n	=	3.	Then	there	exist	a	smooth,	divergence-free	
vector	field	u	◦	(x)	on	R	3	and	a	smooth	f(x,	t)	on	R	3	×	[0,∞),	satisfying	(4),	(5),	for	which	there	exist	no	solutions	(p,	
u)	of	(1),	(2),	(3),	(6),	(7)	on	R	3	×	[0,∞).		
	
(D)	Breakdown	of	Navier–Stokes	Solutions	on	R	3/Z	3	.	Take	ν	>	0	and	n	=	3.	Then	there	exist	a	smooth,	divergence-
free	vector	field	u	◦	(x)	on	R	3	and	a	smooth	f(x,	t)	on	R	3	×	[0,∞),	satisfying	(8),	(9),	for	which	there	exist	no	
solutions	(p,	u)	of	(1),	(2),	(3),	(10),	(11)	on	R	3	×	[0,∞).	
	
Proof	:		
	
-	All	smooth,	divergence-free	vector	fields	indicated	in	the	problem	are	spherically	symmetric	
	
-	References	(1),	(2)	and	(3)	are	the	Euler	equations.	The	Euler	primary	identity	is	the	minimum	measurement	in	
any	of	the	Euler	equations	and	is	defined	by	a	simple	closed	curve	
	



Conclusion:		
	
The	minimum	real,	or	complex,	measure,	in	any	complete	system	of	geometry,	is	a	simple	closed	curve.	
	
	
2.6	Lemma	-	P	vs	NP:		
	
"P	=	NP	or	P	≠	NP	
	
Proof	:		
	
-All	relative	sets	of	P	and	NP	contain	a	real	part	and	imaginary	part	which	can	only	be	measured	as	a	sequential	
cycle	or	a	length	without	defined	endpoints.			
	
-Every	P	is	a	sequential	cycle	and	therefore	limited	to	the	minimum	measurement	of	a	simple	closed	curve.		
	
All	NP	have	length	but	no	defined	endpoints.	The	maximum	length	of	NP	is	equal	to	a	complete	P.	Because	NP	is	
always	a	subset	of	a	complete	P,	both	are	limited	to	the	minimum,	and	maximum,	of	a	simple	closed	curve		
	
Conclusion:		
	
The	minimum	real,	or	complex,	measure,	in	any	complete	system	of	geometry,	is	a	simple	closed	curve.	
	
	
2.7	Lemma	-	The	Yang	Mills	mass	gap:	
	
"Prove	that	for	any	compact	simple	gauge	group	G,	a	non-trivial	quantum	Yang–Mills	theory	exists	on	ℝ!	and	has	a	
mass	gap	∆ >  0.	Existence	includes	establishing	axiomatic	properties	at	least	as	strong	as	those	cited	in	[45,	35]	
	
(Authors	note	to	readers:	References[45,35]	are	from	the	original	problem.	Proof	of	this	particular	problem	requires	a	reworking	of	the	standard	
model	of	physics.	Our	model	is	based	on	the	same	Nambu-Poisson	dynamics	that	drive	Yang-Mills	symmetries	and	boundaries.	Any	proof	we	can	offer	
of	Yang	Mills	theory	is	the	eight	papers	we	have	written	on	this	subject	using	Nambu	Poisson	dynamics	and	a	complete	theory	of	mathematics.	We	
include	some	illustrations	from	our	paper	on	the	elimination	of	gluon	fields	to	demonstrate	that	Yang-Mills	symmetries	can	have	axiomatic	
properties	that	match	all	the	requirements	in	the	statement	of	the	problem.)	
	
Proof	:	
	
-Any	compact	simple	gauge	group	has	a	minimum	vector	length	with	imaginary	endpoints	
	
-Any	wave	based	particle	has	a	minimum	measure	of	both	frequency	and	amplitude.	Frequency	is	measured	in	
cycles	(Hertz).	In	addition,	the	minimum	measurement	for	any	electromagnetic	point	particle	is	2𝜋𝑖!	
	
-All	axiomatic	properties	cited	in	[45,	35]	are	spherically	symmetric	and	held	to	the	minimum	measurement	of	
"coupling"	(from	our	paper	on	the	elimination	of	gluon"	fields").		
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Fig.3`- Polarity, current, spin, angular momentum and Coulomb dynamics must be conserved for all charged particles. Conservation of these Lorentz 
invariant boundary conditions is accomplished through the coupling of quantum spherical potentials based on Yang-Mills symmetries and Nambu-
Poisson Dynamics. 
 
	

   
− ℋ!"#,ℋ!"#, 𝑓(𝑡!)  = ℋ!"#,ℋ!"#, 𝑓(𝑡!!)  
 
Fig.4- Geometric representation of Yang-Mills coupling dynamics  
  
	
Conclusion:		
	
The	minimum	real,	or	complex,	measure,	in	any	complete	system	of	geometry,	is	a	simple	closed	curve.	
	
	
3.0	-	Discussion		
	
The	theorem	is	proven.	
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