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Abstract	
	
In	this	extension	of	our	previous	discussions,	on	the	limits	of	measurement,	we	present	three	inductive	proofs	of	
Fermat's	final	theorem	–	using	the	geometric	limits	of	Thales,	Euclid,	Apollonius	of	Perga,	and	Euler.	We	finish	with	
a	brief	discussion	of	how	these	geometric	limits	compare	to	Andrew	Wiles	proof	of	the	Taniyama-Shimura	
conjecture	and	Fermat's	final	theorem.	
	
1.0	Introduction	-	A	"point"	in	the	history	of	analytic	geometry.	
	
Fermat	straddled	a	formative	time	in	the	history	of	natural	sciences	and	mathematics.	By	the	17th	century,		
geometric	proofs	were	shown	to	be	limited	in	describing	certain	mathematical	constructs.	The	squaring	of	a	
circle	and	the	conics	of	Apollonius	of	Perga	could	not	be	proven	using	only	a	compass	and	straightedge.	A	quote	
from	Descartes	,		(in	a	letter	to	Beekman	1619	[5],	displays	the	unease	he	and	many	of	his	contemporaries	felt	
regarding	the	transition	away	from	geometric	proofs	and	towards	analytic	and	inductive	mathematical	proofs:	
	
..."[In	this	new	science]	each	problem	will	be	solved	according	to	its	own	nature	as	for	example,	in	arithmetic	some	
questions	are	resolved	by	rational	numbers,	others	only	by	surd	[irrational]	numbers,	and	others	finally	can	be	
imagined	but	not	solved.	So	also	I	hope	to	show	for	continuous	quantities	that	some	problems	can	be	solved	by	
straight	lines	and	circles	alone;	others	only	by	other	curved	lines,	which,	however,	result	from	a	single	motion	and	
can	therefore	be	drawn	with	new	types	of	compasses,	which	are	no	less	exact	and	geometrical,	I	think,	than	the	
common	ones	used	to	draw	circles;	and	finally	others	that	can	be	solved	by	curved	lines	generated	by	diverse	
motions	not	subordinated	to	one	another,	which	curves	are	certainly	only	imaginary	such	as	the	rather	well-known	
quadratrix.	I	cannot	imagine	anything	that	could	not	be	solved	by	such	lines	at	least,	though	I	hope	to	show	which	
questions	can	be	solved	in	this	or	that	way	and	not	any	other,	so	that	almost	nothing	will	remain	to	be	found	in	
geometry...."	Rene	Descartes[5].	
	
Descartes	would	have	considered	a	geometric	length	to	be	the	minimum	measure	for	any	algebraic	sentence.	For	
him,	algebraic	notation	would	have	been	a	translation	of	geometric	lengths,	lines	and	planes.	Descartes	invented	
the	use	of	the	"ordinate"	and	"coordinate"	to	set	a	line.	Points	along	the	line	or	a	plane	were	called	"loci".	Loci	
often	indicated	points	of	intersection	of	lines	with	other	lines,	or	planes.	Loci,	unlike	points	in	space,	cannot	exist	
without	the	finite	boundaries	established	by	the	line	or	plane.	Our	modern	concept	of	point	functions	and	
functions	in	Hilbert	space,		would	seem	quite	alien	to	any	mathematician	of	this	era.	We	must	always	think	of	
Fermat	as	a	student	of	Euclid	and	Apollonius	as	well	as	a	being	one	of	the	founders	of	modern	analytic	geometry	
probability	and	number	theory.	By	the	year	1637,	when	he	wrote	his	taunting	note	from	the	margins	of	
Diophantus,	Fermat	had	already	completed	a	number	of	treatises	on	plane	geometry	and	the	conic	sections	of	
Apollonius[1]	For	Fermat,	Euclidian	theory	and	geometry	would	still	have	been	the	most	predominant	form	of	
accepted	mathematical	proof.	Even	while	he	was	developing	the	basis	for	analytic	geometry,	he	would	still	have	
been	still	deeply	rooted	in	classical	geometric	principles.	Therefore,	in	this	investigation,	the	variables			𝑥!,	
𝑦! 𝑎𝑛𝑑 𝑧! should	be	thought	of	as	geometric	lengths	and	not	exponential	variations	or	algebraic	functions.	On	
our	journey,	back	into	the	17th	century,	we	will	attempt	to	walk	three	possible	paths	that	Fermat	may	have	
taken	towards	a	proof	of	his	final	theorem	–	using	only	the	geometric	limits	of	line	and	plane.		
	
1.1	Fermat's	concept	of	maxima	and	minima	
	
One	of	the	reasons	I	chose	to	write	this	paper	is	the	affinity	I	have	for	Fermat's	concepts	of	minima	and	maxima.	
In	all	of	my	papers[10-17]	you	will	find	boundaries	for	measurement	that	reflect	Fermat's	least	time	principles.	
The	concepts	of	minimum	and	maximum	values	of	a	function	on	a	curve	were	the	precursor	to	Newton	and	
Leibnitz's	development	of	integral	calculus.	Establishing	mathematical	maxima	and	minima	would	set	Fermat	on	
the	path	towards	the	development	of	probability	theory.	However,	Fermat	would	be	the	first	to	tell	you	that	his	



concepts	of	minima	and	maxima	of	any	function	are	rooted	in	geometry	and	the	establishment	of	a	line	on	a		
coordinate	plane[2,3,4]	In	this,	purely	geometric,	context,	maxima	and	minima	establish	points	of	change	on	the	
function	𝑓(𝑐)	which	can	be	interpreted	as	0	points	but	only	as	they	relate	to	f(c)	as	a	boundary	to	that	function.		
When	we	convert	Fermat's	maxima	and	minima	into	our	modern	mathematical	view	of	fuctions	in	Hilbert	space,	
we	allow	for	the	creation	of	zero	points	–	which	were	not	part	of	Fermat's	geometric	toolkit.	Maxima	and	
minima	are	always	established	by	two	other	points	which	form	an	interval	or	line.	In	Fermat's	theorem,	(c)	exists	
only	because	of	the	limits	provided	by	the	line	(ab)	and	the	plane	(x,y)	(Figure1).	It	is	our	belief	that	Fermat's	great	
insight	may	have	come	from	an	innate	understanding	of	this	basic	principle	of	maxima	and	minima	on	a	
coordinate	plane.	
	
(Figure	1)		Fermat's	theorem	establishing	maxima	and	minima	of	functions:	
	
𝑆𝑢𝑝𝑝𝑜𝑠𝑒 𝑡ℎ𝑎𝑡 𝑎 < 𝑐 < 𝑏. 𝐼𝑓 𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓𝑖𝑠 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑜𝑛 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑎, 𝑏 , 𝑎𝑛𝑑 	
𝑖𝑡 ℎ𝑎𝑠 𝑎 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑜𝑟 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑎𝑡 𝑐, 𝑡ℎ𝑒𝑛 𝑒𝑖𝑡ℎ𝑒𝑟 𝑓′ 𝑑𝑜𝑒𝑠𝑛′𝑡 𝑒𝑥𝑖𝑠𝑡 𝑎𝑡 𝑐, 𝑜𝑟 𝑓(𝑐) = 0	
	

	
	
1.2	-	Fermat's	insight	limiting	maxima	and	minima	on	the	coordinate	plane		
	
Fermat	spent	much	of	his	time	devoted	to	re-creating	lost	ancient	Greek	texts.	While	he	may	be	famous	for	his	
ability	to	"think	outside	of	the	box",	his	roots	were	always	inside	the	box.	He	wrote	a	number	of	texts	on	plane	
geometry	and	the	conics	of	Apollonius	of	Perga	[2,3,4].	When	Fermat	thought	of	infinity	it	would	have	been	on	the	
infinite	2-dimensional	plane.	Fermat	considered	the	technique	of	proof	through	infinite	regression	to	be	one	of	
his	greatest	discoveries	and	he	relied	on	it	for	most	of	his	arguments.	His	solution	to	his	final	theorem,	where	
n=4,	was	based	on	creating	limitations	to	proof	using	infinite	regression	to	a	square.	Fermat	used	a	geometric	
argument	to	prove	that	roots	have	a	limit.	This	technique	allows	the	establishing	of	common	roots	of	functions	
in	Galois	set	theory.	Andrew	Wiles	and	Ken	Ribet	used	many	of	the	same	techniques	to	align	zero-points	using	
the	zeta	function	for	modular	forms	and	ellptic	curves.	Although	modular	forms	and	elliptic	curves	didn't	exist	as	
mathematical	tools	in	the	17th	century,	the	idea	of	geometric	symmetry	had	been	well	established	since	the	
early	beginnings	of	math	and	number	theory	in	India.	The	question	of	how	to	divide	something	into	equal,	(or	
unequal),	shares	has	been	around	human	beings	as	long	as	fire.	In	fact,	the	need	to	find	equal	shares	was	the	
basis	for	Fermat	and	Blasé	Pascal's	later	development	of	probability	theory.	Fermat	would	have	been	an	expert	
in	spotting	symmetries	based	on	his	years	working	with	geometry	and	limits	to	algebraic	notation.	When	he	first	
wrote	down	his	note	from	the	margins	of	Diophantus,	Fermat	may	have	understood	that	the	basic	geometric	
symmetry	of	this	equation	could	equate	to	limits	on	an	infinite	coordinate	plane:	
	

𝑥! + 𝑦! = 𝑧!	
	
The	basic	symmetry	of	this	equation	may	have	triggered	an	instant	recognition	of	a	connection	to	the	
symmetries	and	geometric	proofs	of	Euclid	and	Apollonius.	Fermat	may	have	realized	that	what	seems	like	an	
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infinite	equation	is	actually	a	finite	equation	and	that	both	minima	and	maxima	are	built	into	this	same	infinite	
equation.	He	has	seen	that	he	can	count	primes	on	a	line	and	limit	them	to	a	plane	–	giving	him	a	geometric	
coordinate	system,	based	on	right	angles	and	minima,	that	he	can	use	to	prove	his	final	theorem!	
	
	The	only	question	that	remained,	for	Fermat,	was		"which	path	to	take?".	
	
1.3	-	Fermat	takes	the	path	through	ancient	Greece	
	
Every	mathematician	of	this	era	would	have	had	Euclid's	thirteen	books	on	the	Elements	of	Geometry	drilled	into	
them	since	childhood.	Euclid's	Elements		was,	for	centuries,	the	second	best	selling	book	behind	the	Bible.	It	is	
likely	that	Fermat	would	have	known	all	thirteen	books	by	heart.	He	would	have	remembered	that	Euclid's	
Elements,	Book	1,	proposition	13;	proves	that	connecting	any	two	lines	can	force	a	symmetry	of	right	angles	on	a	
semi-circle(Figure	2).	One	of	Fermat's	greatest	gifts	was	the	ability	to	"see"	maxima	and	minima	of	functions.	I	
believe	he	may	have	glimpsed	this	minimum	measurement	of	the	interaction	of	any	two	lines	as	a	way	to	limit	
functions	to	the	coordinate	plane.	This	would	have	almost	immediately	brought	to	mind	Thales	theorem[1],	
(also	from	Euclid:	Book	3	proposition	31)[1]	which	places	all	right	angles	on	the	circumference	of	a	circle.	It	has	
been	reported	through	the,	somewhat	suspect,	annals	of	Greek	mathematical	legend,	that	Thales	sacrificed	an	ox	
after	he	discovered	the	forcing	of	right	angles	on	curve.	The	beauty	of	Thales	theorem	is	it	allows	us	to	"count"	
right	angles	along	a	line	that	serves	as	the	diameter	of	the	circle.	As	you	can	see	from	our	version	of	Euclid's	
proof	(Figure	3)	,	all	right	triangles	can	be	counted	along	the	line	𝑧!		because	all	right	angles	are	held	to	the	
circumference	of	a	semicircle	or	circle	with	a	diameter	defined	by	𝑧!.	Remember,	in	our	17th	century	context,		
𝑧! is	still	a	measurement	of	the	length	of	a	line.	This	line,	held	to	a	plane,	can	become	a	square,	a	circle	or	any	
number	of	2-dimensioal	geometric	shapes	–	including	a	right	triangle.	The	forced	right	angle,	in	Thales	theorem,	
is	always	limited	to	the	semicircle	 𝜋𝑧! ⁄ 2 .	It	allows	us	to	set	intervals	on	the	line	𝑧!.	In	effect,	this	allows	us	to	
create	defined	intervals	for	a	minima	of	"right	triangle"	along	a	line	of	any	integer	length	which	fulfills	the	
Pythagorean	theorem.	By	counting	Pythagorean	triples	on	a	line,	we	have	created	a	prime	number	system	based	
on	geometric	limits	to	minima	on	the	coordinate	plane.	As	we	have	shown,	Fermat	had	to	travel	no	further	than	
his	copy	of	Euclid's	Elements	[1]	to	see	this	path	towards	a	final	proof	of	his	theorem.		
	
		(Figure	2)	Euclid	-Book	1	Proposition	13:	
	
	𝐼𝑓 𝑎 𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 𝑙𝑖𝑛𝑒 𝑠𝑡𝑎𝑛𝑑𝑠 𝑜𝑛 𝑎 𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 𝑙𝑖𝑛𝑒, 𝑡ℎ𝑒𝑛 𝑖𝑡 𝑚𝑎𝑘𝑒𝑠 𝑒𝑖𝑡ℎ𝑒𝑟 𝑡𝑤𝑜 𝑟𝑖𝑔ℎ𝑡 𝑎𝑛𝑔𝑙𝑒𝑠 	
𝑜𝑟 𝑎𝑛𝑔𝑙𝑒𝑠 𝑤ℎ𝑜𝑠𝑒 𝑠𝑢𝑚 𝑒𝑞𝑢𝑎𝑙𝑠 𝑡𝑤𝑜 𝑟𝑖𝑔ℎ𝑡 𝑎𝑛𝑔𝑙𝑒𝑠.		
	

	
	
	
(Figure	3)		Euclid	-Book	3	Proposition	31:	
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In	a	circle	the	angle	in	the	semicircle	is	right,	that	in	a	greater	segment	less	than	a	right	angle,	and	that	in	a	less	
segment	greater	than	a	right	angle;	further	the	angle	of	the	greater	segment	is	greater	than	a	right	angle,	and	the	
angle	of	the	less	segment	is	less	than	a	right	angle.	
	

	
	
1.4-	Fermat	discovers	Euler's	primary	identity	
	
Although	Leonhard	Euler	wouldn't	be	born	for	another	100	years,	Fermat	was,	clearly,	clever	enough	to	
anticipate	the	development	of	Euler's	primary	identity.	I	believe	that	he	may	have	seen	the	ability	to	count	
Pythagorean	triples	along	the	line		𝑧! as	a	way	to	limit	the	coordinate	plane.	Using	𝑧!as	the	radius	of	a	circle	
allows	Fermat	to	limit	the	coordinate	plane	to	the	suface	area	of	a	circle.	Our,	17th	century,	version	of	Euler's	
identity	(Figure	4),	is	what	might	have	been	conceived	by	Fermat	without	the	use	of	the	imaginary	plane.	Fermat	
could	have	easily	seen	that	the	basic	relation	between	sine	and	cosine	angles	force	a	minimum	of	a	right	triangle	
on	the	coordinate	plane	 𝑥!, 𝑦! 	defined	by	the	counting	of	an	infinite	number	of	Pythagorean	triples	along	(z).	
This	allows	him	to	also	confine	any	solutions	to	his	final	theorem	to	the	coordinate	plane	represented	by	the	
limits	placed	on	the	intersection	of	the	forced	ordinate	of	the	right	triangle	 𝑥!, 𝑦! .	I	have	included	a	reference	
to	the	imaginary	plane,	but	it	is	not	an	equation	that	would	have	been	used	by	Fermat,	at	this	time.	His	
restriction	to	the	coordinate	plane,	in	this	example,	comes	from	the	counting	of	Pythagorean	triples	along	the	
line	(𝑧!) and	not	the	creation	of	Euler's	limit	to	the	complex	plane.	
	
(Figure	4)		Fermat's	version	of	Euler's	primary	identity	

	
	
1.5	-	Fermat	travels	along	the	surface	of	a	cone	
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The	first	place	Fermat	would	go	to	limit	a	plane	would	be	it's	intersection	with	a	cone.	As	was	mentioned	earlier,	
Fermat	spent	a	great	deal	of	effort	to	rework	and	rediscover	the	lost	works	of	Apollonius	of	Perga.	Apollonius	
was	the	first	Greek	mathematician	to	work	with	conics	and	,	literally,	wrote	the	book	on	it.	The	problem	with	his	
work	is	that	the	notation	of	multiple	lengths	and	functions	was	cumbersome	and	difficult	to	follow	even	for	17th	
century	mathematicians.	Fermat's	work	on	conics[4]	is	based	on	converting	Apollonius's	notation	and	also	
rediscovering	some	of	the	proofs	that	had	been	lost	through	time.	One	of	the	clear	impressions	I	came	away	with	
while	reading	through	Fermat's	papers	is	his	desire	to	reach	for	all-encompassing	solutions.	His	writing	on	
conics	is	no	different	and	gives	a	clue	to	how	he	might	find	a	path	towards	a	solution	to	his	final	theorem	using	
the	works	of	Apollonius	of	Perga[1]	as	his	guide	.	The	coordinate	system	of	a	cone	allows	for	the	counting	of	
Pythagorean	triples	along	the	slope	of	z	while	limiting	all	right	triangles	to	the	surface	plane	(Figure	5).	
	
(Figure	5)	The	conics	of	Apollonius	and	Fermat	provide	a	coordinate	plane	based	on	the	limits	of	the	surface	of	a	cone.	

	
	
1.6	Discussion	
	
This	is	not	a	mathematics	paper.	It	is	intended	for	a	broader	audience	and	works	with	the	geometry	and	
symmetries	of	Pythagoras,	Thales,	Euler	and	Fermat.	Connecting	to	the	Wiles	proof	can	be	accomplished	in	a	
number	of	ways.	The	key	difference	between	what	we	are	presenting	here,	and	the	Wiles	proof,	is	that,	while	Sir	
Andrew	battles	imaginary	dragons	in	the	complex	upper	half	plane;	we	"exist",	humbly,	and	with	great	respect,	
far	below.	This	paper	is		a	continuance	of	our	discussion	regarding	the	limits	to	measurement	in	the	real	and	
complex	planes.	You	will	find,	upon	closer	examination,	that	we	are	in	total	agreement	with	Dr.	Wiles	when	we	
separate	real	from	complex	potential	using	the	maxima	and	minima.		As	we	have	stated,	in	all	of	our	papers	to	
date,		all	zero	point	functions	exist	in	the	complex	plane.	This	would	include	all	modular	forms	and	elliptic	curves,	
basically	aligning	the	Wiles	proof	to	our	theories	in	number	and	set	theory.	Here	are	a	few	more	direct	
connections	to	the	Wiles	proof:	
	
-	All	the	symmetries	we	presented	here	rely	on	creating	geometric	boundaries	for	points	in	real	space	and	in	the	
complex	plane.	The	Euler	primary	identity	projected	on	the	surface	of	a	cone	has	the	advantage	of	an	imaginary	
vertex.	The	vertex	of	a	cone	translates	directly	to	elliptic	curves	and	modular	forms	through	Abel's	theorem,	
regarding	the	establishment	of	real	and	imaginary	points.		
	
-	Andrew	Wiles	and	Ken	Ribet's	use	of	the	zeta	function	to	establish	contradiction	can	be	tied	directly	to	Fermat's	
development	of	proof	by	infinite	regression.		This	can	be	directly	tied	to	the	definition	of	minima	and	maxima	of	a	
geometric	function	on	a	coordinate	plane.		
	
-And	finally,	the	use	of	Galois	roots,	in	set	theory,	can	be	tied,	directly,	to	the	description	of	relative	sets	that	we	have	
employed	in	all	our	previous	papers.		
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Hopefully,	this	has	proven	to	be	another	fruitful	discussion,	regarding	the	establishment	of		boundaries	for	
measurement	based	on	Fermat's	concepts	of	maxima	and	minima	in	probability	and	number	theory.	In	our	next	
paper	we	will	discuss	how	the	real	measurement	of	zero-point	limits	to	mathematical	potential	lead	to	a	
geometric	proof	of	the	discreteness	of	the	Navier-Stokes	equations.	
	
1.7	References	
		
Note	to	readers:	(Euclid's	thirteen	books	of	Elementa	contain	many	of	the	ideas	of	other	noted	Greek	mathematicians	like	Thales	and	Pythagorous.	
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