

The Analysis of Residual Solvents by Headspace Sampling and GC According to USP 467: Procedure A

Application Note

AN0022

INTRODUCTION

In the pharmaceutical industry, residual solvents are defined as organic volatile chemicals that are produced during the manufacturing of active pharmaceutical ingredients or derived directly from the packaging of the pharmaceuticals. Residual solvents do not provide any therapeutic benefits and should be removed where possible.

Quality assurance laboratories routinely test products for the presence of residual solvents. The United States Pharmacopeia (USP) method 467 is the harmonised test method for the identification and quantification of the organic volatile impurities by gas chromatography. USP 467 details three classes of solvents, in accordance to their health hazards. Additionally, the analytical method is split into two procedures; procedure A is for the identification of the residual solvents at the limit of detection whereas procedure B is for the confirmation of the analyte identity.

This application note details procedure A of USP 467; the identification of residual solvents at the limit of detection using a SCION 456 GC with FID coupled to the Teledyne Tekmar HT3 headspace autosampler (HS).

EXPERIMENTAL

Standards containing the residual solvents at the USP limit were prepared in accordance to method USP 467 (ppm=mg/kg). Stock solutions were prepared in DMSO with the actual samples prepared in water. The total sample volume was constant at 6mL in 20mL headspace vials, with the final residual solvent concentrations corresponding to the USP concentration limits, as detailed in Table 1. The three classes of solvents were prepared and analysed separately, each with six replicates prepared and analysed.

Procedure A of USP 467 was performed on a SCION 456 with FID coupled to the Teledyne Tekmar HT3 headspace autosampler. The HS mode was static. The analytical parameters of the instrumentation can be found in Table 2.

Peak Number	Identity	USP Limit (ppm)		
Class 1				
1	1,1-dichloroethene	8		
2	1,1,1-trichloroethane	1500		
3	Carbon Tetrachloride	4		
4	Benzene	2		
5	1,2-dichloroethane	5		
Class 2A				
1	Methanol	3000		
2	Acetonitrile	410		
3	Dichloromethane	600		
4	t-1,2-dichloroethene	1870		
5	c-1,2-dichloroethane	1870		
6	Tetrahydrofuran	720		
7	Cyclohexane	3880		
8	Methylcyclohexane	1180		
9	1,4-dioxane	380		
10	Toluene	890		
11	Chlorobenzene	360		
12	Ethylbenzene	2170		
13,14	m-xylene, p-xylene*	2170		
15	o-xylene	2170		
Class 2B				
1	Hexane	290		
2	Nitromethane	50		
3	Chloroform	60		
4	1,2-dimethoxyethane	100		
5	Trichloroethene	80		
6	Pyridine	200		
7	2-hexanone	50		
8	Tetralin	100		

*m-xylene and p-xylene co-elute

Table 2. Analytical instrumentation conditions

Conditions	
S/SL	260°C, 50:1
Column	SCION 624 30m x 0.25mm x 1.4μm
Oven Programme	40°C (hold 10 min), 10°C/min to 240°C (3 min)
Carrier Gas	Helium 2.2mL/min
FID	250°C
Incubation	80°C for 45 minutes
Transfer Line	105°C

RESULTS

Identification of all sample components can be found by referring to the specific class sections of Table 1. Figures 1-3 detail the overlay chromatogram obtained for Class 1, Class 2A and Class 2B residual solvents whilst Tables 3-5 show the repeatability of the instrumentation when six replicates of each residual solvent class were analysed.

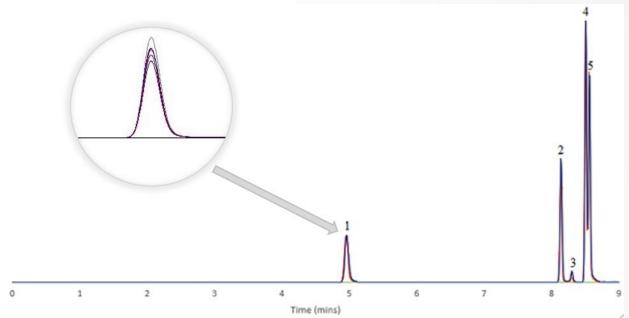
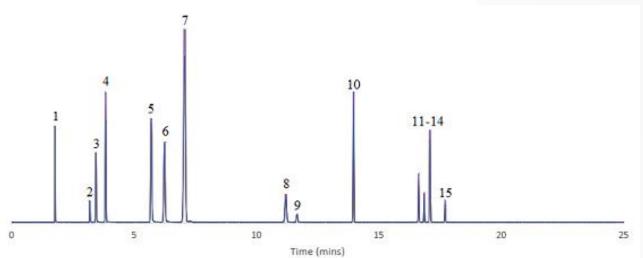
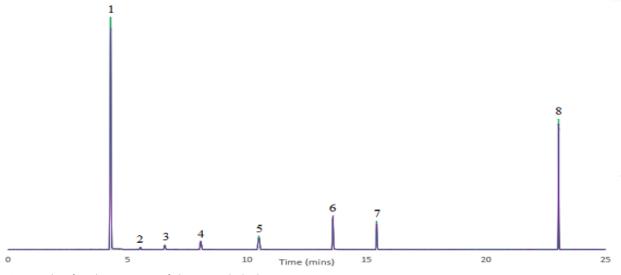




Fig 1. Overlay of six chromatograms of Class 1 residual solvents with a magnified insert of 1,1-dichloroethene

Table 3. Repeatability values of Class 1 residual solvents

	Peak 1	Peak 2	Peak 3	Peak 4	Peak 5
1	78925	104198	8999	190192	154104
2	76167	103124	9310	195009	153474
3	78046	106987	9221	194101	158034
4	76923	104729	9110	196531	159432
5	75453	105827	9331	196019	153829
6	78892	103004	8997	190945	152325
Ave	77401	104644	9161	193800	155199
Std. Dev.	1450	1555	148	2649	2837
RSD %	1.9	1.5	1.6	1.4	1.8

Table 4. Repeatability values of Class 2a residual solvents

	Poak	Peak 1 Peak 2 Peak 3 Peak 4 Peak 5 Pea								Poak 6	Do	ak 7
1	37743	12 1323	88	54774	14	98038	9 13	783	59	1030152	414	9925
2	37343	38 1329	37	55004	12	97005	0 13	454	72	1040246	409	7583
3	37523	31 1339	42	55320)1	96410	2 13	832	94 :	1024021	400	1241
4	37294	41 1338	47	54998	32	97820	1 13	531	98	1056524	405	9120
5	37925	55 1328	97	55002	21	96102	8 13	705	82	1043352	413	5642
6	37898	37 1334	87	54995	53	97201	.3 13	749	12	1034884	413	8582
Ave	37622	10 1332	50	55015	57	97096	3 13	676	37	1038196	409	7015
Std. Dev	. 2747	7 60	9	1743	3	7601	. 1	497	7	11343	57	668
RSD %	0.7	0.5	5	0.3		0.8		1.1		1.1	1	.4
	Peak 8	Peak 9	Pea	k 10	Pe	ak 11	Peak	12	Pea	ks 13-14	Pea	k 15
1	567412	102388	118	9237	34	19181	2162	99	9	72278	150	725
2	560298	101154	114	6633	34	17889	2196	526	98	32785	149	070
3	575342	103425	118	7911	34	18314	2198	327	94	48291	147	284
4	574421	104551	115	9321	34	15726	2194	28	99	92819	143	717
5	568762	104092	116	9327	34	19121	2196	527	98	39721	148	402
6	555833	103241	118	5320	34	19172	2194	44	94	48293	151	.952
Ave	567011	103141	117	2958	34	18233	2190)41	9	72364	148	525
Std. Dev.	7714	1224	17	513	1	1340	135	1	1	9935	28	82
RSD %	1.4	1.2	1	.5		0.4	0.0	5		2.1	1	.9

Table 5. Repeatability values of Class 2b residual solvents

	Peak 1	Peak 2	Peak 3	Peak 4	Peak 5	Peak 6	Peak 7	Peak 8
1	1354879	15336	35370	75596	127646	164834	129982	439150
2	1457373	14936	34033	74957	123911	166594	126719	439764
3	1415244	15831	35277	74743	122417	168506	127210	455035
4	1417009	15494	35370	76975	124680	168853	126378	441902
5	1374230	14171	34749	73749	127582	163790	126582	447421
6	1419385	14872	34873	75312	128374	167652	129625	439939
Ave	1406363	15106	34945	75222	125768	166704	127749	443868
Std. Dev.	. 36460	580	519	1066	2427	2038	1619	6256
RSD %	2.6	3.9	1.5	1.4	1.9	1.2	1.3	1.4

The analysis of residual solvents following USP 467 procedure A was replicated six times. The overall RSD% average was 1.4% which is excellent for static headspace at the ppm concentrations.

The excellent repeatability demonstrates the robustness of the SCION 456 GC coupled to the Teledyne Tekmar HT3 headspace system. The varied concentrations and detector responses detailed throughout this application note required reliable integration and no detector saturation, which the SCION 456 and CompassCDS software offers with ease.

There is a concern regarding Class 1 solvents due to their toxicity. Therefore, USP 467 specifies that 1,1,1trichloroethane must have a S/N greater than five with all remaining Class 1 solvents having a S/N greater than three. All S/N requirements passed these requirements and were calculated through the CompassCDS software, from a selected region of noise close to the analyte of interest. In addition, system suitability for the method requires a resolution of greater than 1 between acetonitrile and methylene chloride; using the SCION-624 column. A resolution of 8 was achieved, clearly exceeding the specification of USP 467.

CONCLUSION

The SCION 456 GC with Teledyne Tekmar HT3 headspace autosampler exceeds the requirements for procedure A of USP 467 method, for the identification of residual solvents. Processing of the data and determining specific requirements of the method is made easy using CompassCDS software. The excellent sensitivity satisfies the S/N requirements of USP 467. Identifying residual solvents at the varying ppm concentrations specified in the method, is easily achievable without saturating the detector or loss of resolution.

SCION Instruments 1 Bain Square, Livingston EH54 7DQ, UK Tel: +44 1506 300 200 sales-eu@scioninstruments.com www.scioninstruments.com SCION Instruments NL BV Stanleyweg 4 4462GN, Goes, Netherlands Tel: +31 113 348926 sales-eu@scioninstruments.com www.scioninstruments.com