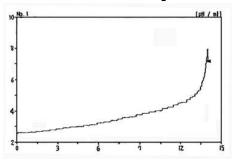
AQUACOUNTER Application Sheet		COM series	OM series DATA No. F7	
Electronics	Quantification of oxalic acid in lead frame			
	treatment solution for IC			

1. Measurement outline

The surface treatment solution for IC lead frames contain trace amounts of copper, iron, and nickel in addition to the main components of oxalic acid, etc. This section introduces an example of measurement and quantification of oxalic acid by neutralization titration.

2. Reagents and Electrodes

(1) Reagents	Titrant	0.01mol/L NaOH titrant	
(2) Electrodes	Indicator electrode	*Glass electrode GE-101B to IE jack	
*standard accessories	Reference electrode	*Reference electrode RE-201 to RE jack	


3. Measurement conditions example (for COM-1600S)

Master File No.1				
Condition file: 1				
Method	AUTO			
Amp No.	1			
Buret No.	1			
Meas Unit	рН			
S-Timer	10 sec			
CP	0 mL			
DP	0 mL			
End Sens	500			
Over mL	0 mL			
Max Vol	20 mL			
Mode No.	4			
Unit	g/L			
Blank	0			
Factor	Titer of the titrant			
Molarity	0.01			
K	63.035			
Formula	(D-B)×F×K×M/S			

Mode No.4				
Pre Int	0 sec			
Del K	9			
Del Sens	0 mV			
Int Time	3 sec			
Int Sens	3 mV			
Brt Speed	2			
Pulse	40			

AQUA COUNTER

4. Measurement example

Measurement results on oxalic acid

Sample No.	Sample volume (mL)	Titration value (mL)	Concentra- tion (%)
1	10.0	13.976	0.8863
2	10.0	13.949	0.8845
3	10.0	13.861	0.8790
4	10.0	13.862	0.8790
	Avg.		0.8822 %
	Std. Dev.		0.0038 %
	C.V.		0.43 %

5. Outline

(1) Effect of interfering components

In this measurement, oxalic acid was measured by neutralization titration. Since Fe³⁺ which is an interfering component forms a complex salt with oxalic acid, it does not affect the measurement on oxalic acid. In addition, Cu and Ni are not titrated at pH of 7 and below and do not affect the measurement on oxalic acid.

(2) Titration method other than neutralization titration

Since oxalic acid reacts quantitatively with KMnO₄ as an reducing agent, oxidation-reduction method with KMnO₄ is generally used. However, caution is required since titration may be interfered if there are compounds that are oxidized by KMnO₄ in the sample. In addition, it needs to be titrated by heating to $60 - 70^{\circ}$ C since the reaction between oxalic acid and KMnO₄ is slow under room temperature.

Key words

Oxalic acid, neutralization titration, lead frame

Hitachi High-Technologies Corporation

Head Office 1-24-14, Nishishinbashi, Minato-Ku, Tokyo 105-8717, Japan

Tel: 81-3-3504-7239 Fax: 81-3-3835-7302

http://www.hitachi-hitech.com

Hiranuma Sangyo Co.,Ltd.

1739, Motoyoshidacho, Mito-City, Ibaraki 310-0836, Japan

Tel: 81-29-247-6411 Fax: 81-29-247-6942

http://www.hiranuma.com