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Abstract

Knowledge Tracing is a machine learning technique that aids in monitoring
a learner’s knowledge in a given learning environment. This thesis introduces
a unified approach to adaptive learning, specifically with the use of Knowl-
edge Tracing (KT) and other relevant machine learning models, that can aid
in creating a personalized learning environment for a learner on an Intelligent
Tutoring System (ITS). While contemporary ITS exemplars, such as Knew-
ton and Adaptemy, strive to provide seamless adaptive learning experience,
most such ITS platforms do so by employing individualized models, each tai-
lored to distinct tasks, for example, some models may predict correctness
of students’ next responses, while others track progress in skill attainment
by tracing interactions within the ITS. However, the development of these
models necessitates extensive experimentation to optimize input attributes
for practical application, alongside the exploration of optimal model architec-
tures. In addition, certain Knowledge Tracing (KT) models, such as RA-BKT
and RA-ANN, incorporate metacognitive inputs to enhance the prediction ac-
curacy of student responses. Conversely, models like Deep knowledge tracing
with transformers (DKTT) emphasize treating data as a sequence-to-sequence
problem and prioritize attributes such as time to improve correctness predic-
tion. However, the multitude of available models underscores the challenge
of determining the optimal model for specific use cases, particularly regarding
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input attributes availability/requirements posed by ITS. To address this issue,
this thesis examines the development of a comprehensive framework named:
”BERT-Boosted Knowledge Tracing”, which will be able to deal with mul-
titude of KT datasets and spawn off KT or other relevant adaptive learning
models as output through its unified architecture. This framework could be
imagined as a tool that an ITS can use to readily train required KT models
and the framework could be set to train models that would be most relevant
to a specific ITS use. The focus in this study would be to explore the power
of BERT to create such models and to be at the core of such a framework.
All experiments set would be through an example framework which would
warrant the use of metacognitive inputs to train KT models. This is done to
help in assessing the model’s performance against other such existing models
(RA-BKT and RA-ANN) and also to emulate few of the scenarios where hav-
ing such a framework at disposal could be of great help to create an ensemble
of relevant models that can aid in creating an Adaptive Learning experience
in an ITS.

Creating such a framework and the resultant models poses the challenge of
establishing robust evaluation criteria, given the scarcity of comparable works.
To address this, several models are trained based on three distinct datasets,
with an aim to showcase such a framework’s capabilities in: being able to
handle different kind of input attributes, training models based on uniquely
specified target attributes, creating models that can be trained on very less
training data and also to create models that are domain adaptive.

Through rigorous experimentation and evaluation, this thesis showcases
the efficacy of the proposed framework in revolutionizing KT model devel-
opment. By providing a comprehensive solution that seamlessly integrates
BERT-based contextual learning with adaptable training methodologies and
the incorporation of metacognitive insights, this research significantly advances
the field of Knowledge Tracing.
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Chapter 1

Introduction

Knowledge tracing, a pivotal concept in the realm of educational technol-
ogy, holds the key to unlocking personalized learning experiences and opti-
mizing educational outcomes. As we traverse the digital landscape, where
vast amounts of data are generated and processed each day, the ability to
accurately gauge and guide an individual’s learning journey becomes increas-
ingly imperative. In this context, the advent of sophisticated machine learning
techniques, such as BERT, has ushered in a new era of knowledge tracing,
promising enhanced adaptability and efficacy [12].

The fundamental question arises: why is knowledge tracing useful? The
answer lies in its potential to revolutionize education by tailoring instruction
to the unique needs and capabilities of each learner. Traditional educational
approaches often rely on standardized assessments and one-size-fits-all curric-
ula, which may inadvertently overlook individual differences in learning pace,
style, and comprehension. Knowledge tracing offers a paradigm shift by lever-
aging data-driven insights to construct personalized learning pathways, thus
maximizing student engagement, retention, and mastery.

Furthermore, in an era characterized by rapid technological advancements
and evolving pedagogical paradigms, the ability to adapt to diverse learning
domains and modalities is paramount. The flexibility inherent in novel frame-
works, such as the one developed using BERT in this study, underscores the
potential of knowledge tracing to transcend disciplinary boundaries and ac-
commodate diverse educational contexts. Whether in traditional classroom
settings, online courses, or immersive learning environments, the ability to
accurately assess and monitor an individual’s knowledge acquisition journey
empowers educators to make informed instructional decisions and foster con-
tinuous improvement.
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CHAPTER 1. INTRODUCTION 2

In this report, a novel framework for knowledge tracing is presented that
harnesses the power of BERT, a state-of-the-art natural language process-
ing model, to enhance adaptability and effectiveness of Knowledge Tracing
(KT) and to take a step towards a generalized KT framework which is flexible
over various input features. Through empirical validation and real-world ap-
plication, the utility of the approach is demonstrated in facilitating domain-
adaptive and flexible knowledge tracing. By elucidating the significance of
knowledge tracing and showcasing its practical implications, this report en-
deavors to contribute to the ongoing discourse on leveraging technology to
optimize learning experiences and nurture the next generation of learners.

1.1 Introduction to ITS and Knowledge Tracing

1.1.1 Intelligent Tutoring System (ITS)

An ITS is essentially a system that is meant to imitate human tutors. Unlike
traditional classroom settings, where a single instructor caters to many stu-
dents with diverse learning needs, ITS offer a tailored learning experience by
adapting to individual students’ abilities, preferences, and progress. This per-
sonalization is achieved through the integration of artificial intelligence (AI),
cognitive psychology, and educational theory.

ITS are designed to emulate the one-on-one interaction between a student
and a human tutor. They typically incorporate several key components: a do-
main model, which contains the subject matter to be taught; a student model,
which tracks the learner’s knowledge, skills, and attributes; a tutoring model,
which determines the pedagogical strategies to be used; and an interface, which
facilitates interaction between the system and the user. By continuously an-
alyzing student responses and behavior, ITS can diagnose misconceptions,
provide immediate feedback, and adjust the difficulty level of tasks to match
the learner’s current understanding.

The benefits of ITS are manifold. They can offer scalable and cost-effective
educational support, making high-quality tutoring accessible to a wider audi-
ence. Moreover, use of ITS in convectional educational institutions have shown
promising methodologies through which it can collaborate with instructors to
provide personalized learning experience and knowledge monitoring for learn-
ers.
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1.1.2 Knowledge Tracing (KT)

Knowledge Tracing (KT) is a task of modeling student knowledge over time.
At its core, knowledge tracing essentially uses either mathematical formulas,
machine learning algorithms, or AI algorithms, to trace learners’ interactions
in an ITS. The Knowledge Tracing models serve as an integral part of an ITS,
as through KT, an ITS identifies the knowledge state of a learner in a given
learning environment.

Ever since the introduction of Bayesian Knowledge Tracing (BKT) [3],
which is a hidden Markov Model (HMM), the field of KT has seen significant
enhancements. The recent innovations around KT involve the use of trans-
former models and LLMs to identify the mastery of a knowledge component
shown by a learner in a ITS learning environment. The evolution of the KT
models begs a question about the factors that urges researchers to develop
new KT models. The few key prompts that motivate the development of new
KT models are discussed below:

• Improved Prediction Accuracy:

– Enhanced Algorithms: Advances in machine learning and deep
learning techniques often lead to more accurate models. Researchers
explore these advancements to create more sophisticated KT mod-
els that can better predict learner performance.

– Handling Complexity: New models may better handle the complex-
ity of learning processes, including factors like the interdependence
of skills, varying difficulty of questions, and learner-specific traits.

• Generalization and Robustness:

– Different Contexts: Educational settings vary widely, and a model
that works well in one context may not perform as well in another.
New models are developed to ensure robustness and generalizability
across different subjects, age groups, and learning environments.

– Adaptability: Some models are designed to be more adaptable to
individual learner profiles, thus providing personalized predictions
and interventions.

• Incorporation of New Data Types and Features:

– Multimodal Data: With the increasing availability of diverse data
types (e.g., eye-tracking, interaction logs, physiological data), new
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models are developed to incorporate these additional features, po-
tentially leading to better predictions.

– Contextual Factors: New models might incorporate contextual fac-
tors such as time of day, learner’s emotional state, or even social
interactions, which can influence learning outcomes.

• Explainability and Interpretability:

– Transparent Models: There is a growing demand for models that are
not just accurate but also interpretable. Researchers are motivated
to develop models that provide insights into the learning process
and can explain why a particular prediction was made.

– Actionable Insights: Teachers and educators benefit from models
that offer actionable insights, helping them understand and support
learners more effectively.

• Scalability and Efficiency:

– Computational Efficiency: Some new models aim to reduce com-
putational requirements, making them more feasible for real-time
applications in large-scale educational settings.

– Scalability: Models that can scale effectively to handle large datasets
or be deployed across various platforms and institutions are highly
sought after.

• Addressing Limitations of Existing Models:

– Overfitting and Underfitting: Researchers develop new models to
address issues of overfitting (where a model performs well on train-
ing data but poorly on new data) and underfitting (where a model
fails to capture the underlying trends in the data).

– Bias and Fairness: Ensuring that models are fair and unbiased
across different demographics is a critical area of research. New
models might be designed to mitigate biases found in previous ap-
proaches.

• User and Stakeholder Feedback:

– Practical Utility: Feedback from educators, learners, and other
stakeholders can drive the development of new models that bet-
ter meet the practical needs of users.
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– User Experience: Enhancing the usability and integration of KT
models within existing educational technologies can prompt the de-
velopment of more user-friendly models.

1.2 The Problem Statement

The goal of this thesis is to develop a unified framework that can train Knowl-
edge Tracing (KT) models using BERT on any balanced KT dataset, regardless
of the specific attributes in the dataset. This framework aims to predict not
only traditional targets such as the correctness of a learner’s response but also
additional meaningful targets, such as a learner’s confidence level, to enhance
the functionality of an Intelligent Tutoring Systems (ITS). By addressing the
complexities of learning processes and incorporating multimodal data, this
framework seeks to create robust KT models. Generalizing KT model train-
ing methods can help improve the adaptability and scalability of educational
technologies, allowing them to perform well across diverse subjects, age groups,
and learning environments. The effectiveness of the framework will be demon-
strated using a Reflection Assistant-like ITS environment, which is designed to
address shallow learning by considering students’ metacognitive levels. This
will prove the framework’s proficiency in predicting a student’s response cor-
rectness and their confidence before answering a question. These predictions
will help evaluate the learner’s awareness (KMA) and outlook (KMB), al-
though this evaluation is not the focus of this study and is derived from how
Reflection Assistant functions. KMA and KMB are calculated to showcase
how the framework supports an ITS, specifically Reflection Assistant, which
aims to train learners in metacognition while acquiring cognitive abilities. Suc-
cess will be measured by the framework’s adaptability to various datasets and
accuracy in making predictions, showcasing its potential to improve various
ITS environments and generalize across diverse educational contexts.

1.3 The need for a generalized knowledge tracing
framework

The pressing need for a generalized knowledge tracing framework stems from
the inherent challenges posed by the diversity of input features and the evolv-
ing nature of educational data. Traditional approaches often necessitate mod-
ifying model architectures to accommodate changes in input features, turning
each adaptation into a new experimental endeavor. Recent advances, partic-
ularly in KT utilizing transformers and Large Language Models (LLMs) like
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BERT, have demonstrated state-of-the-art performance by treating KT data
as sequential information, thereby offering a promising avenue for comprehen-
sive knowledge assessment.

However, one critical aspect that deserves attention is the adaptability
and efficiency of the knowledge tracing framework, especially concerning shifts
in learners’ subjects or academic years. Traditional models may struggle to
adapt seamlessly to such changes, often requiring extensive retraining or fine-
tuning to maintain performance levels. This is where the incorporation of
BERT (Bidirectional Encoder Representations from Transformers) into the
framework offers a transformative solution.

A generalized framework becomes imperative to streamline the process of
knowledge tracing across diverse input feature sequences. By abstracting away
from specific model architectures and focusing on the underlying principles of
sequential analysis, such a framework enables adaptability to any input feature
sequence, thus obviating the need for extensive model reconfigurations with
each new attribute exploration. This adaptability not only enhances efficiency,
but also facilitates the integration of emerging attributes into the KT process
seamlessly.

Moreover, the development of a generalized framework fosters a holistic
approach to knowledge tracing, allowing educators and researchers to explore
new attributes and dimensions of learning without being constrained by the
limitations of existing models. By providing a standardized methodology for
incorporating diverse input features into the KT process, the framework em-
powers practitioners to conduct future experiments with greater ease and con-
fidence, thereby advancing the field of educational technology.

In this report, we advocate for the development and adoption of a general-
ized knowledge tracing framework that embraces the diversity of input features
and accommodates the evolving landscape of educational data. By leveraging
the insights gleaned from recent experiments and advancements, we aim to
catalyze efforts towards creating a unified approach to knowledge tracing that
transcends disciplinary boundaries and fosters innovation in education.

1.4 Meta-cognitive inputs for knowledge tracing.

Metacognition is the practice of being aware of one’s own thinking. Imagine
reaching the bottom of a page and realizing, “I’m not sure what I just read”.
In that moment, we become aware of something we don’t know, prompting us
to reread or re-scan the content. This awareness of what we know or don’t
know is metacognition. Metacognition involves three vital aspects to learn:
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1. Planning: Thinking ahead and strategizing. 2. Monitoring: Reflect-
ing on one’s learning or problem-solving processes. 3. Evaluation: Assessing
the effectiveness of one’s thinking strategies.

This study relies on the inputs from the evaluation phase of metacognition,
specifically on the confidence rating a learner gives themselves Confident (C),
Partially-Confident (P), Not-Confident (I)) before they get into the problem-
solving phase. Metacognitive inputs for knowledge tracing represent a com-
pelling avenue for enhancing the adaptability and effectiveness of educational
models. In exploring this facet within the context of knowledge tracing frame-
works, one delves into a realm where learners’ self-awareness and monitoring
of their own cognition play pivotal roles in shaping their learning trajectories.
The integration of metacognitive inputs into the framework not only enriches
the predictive capabilities but also fosters metacognitive skill development,
offering multifaceted benefits to both learners and educators [4].

The choice to explore metacognition within the framework of knowledge
tracing was motivated by a desire to demonstrate the flexibility and versatility
of the developed framework. While it’s evident that incorporating metacogni-
tive inputs improves knowledge tracing, the prospect of adding metacognitive
training on top of cognitive training may present challenges for some learn-
ers. Recognizing this, the exploration aimed to showcase how the framework
seamlessly adapts to different input modalities, thereby accommodating vari-
ous learning preferences and needs.

In some scenarios, where capturing explicit metacognitive inputs from
learners might prove burdensome, the framework allows for an alternative ap-
proach. By leveraging correctness as an input to predict learners’ confidence
levels, the model circumvents the need for additional metacognitive data col-
lection while still providing valuable insights into learners’ self-assessment pro-
cesses. This approach exemplifies the framework’s adaptability and versatility
in accommodating different input paradigms.

Conversely, in instances where explicit metacognitive inputs are readily
available and desirable, the framework incorporates them seamlessly into the
knowledge tracing process. By predicting correctness based on learners’ con-
fidence levels, the model not only assesses learners’ knowledge states but also
evaluates their metacognitive awareness. This dual approach enables edu-
cators to gain deeper insights into learners’ cognitive and metacognitive pro-
cesses, thereby informing targeted interventions to support their learning jour-
ney.

At the core of both approaches lies the framework’s ability to seamlessly
integrate diverse input modalities, whether cognitive or metacognitive, and
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adapt to new kinds of inputs with ease. By leveraging the framework’s flexibil-
ity, educators can assess learners’ awareness (KMA) and outlook (KMB) [13],
informed by both correctness and confidence predictions, to tailor interven-
tions that address both cognitive and metacognitive aspects of learning. This
holistic approach to knowledge tracing underscores the framework’s potential
to advance personalized learning experiences and foster metacognitive skill
development in learners.

1.5 Proposed Framework and its Motivation

The framework established in this study serves as a versatile example, designed
to be adaptable based on specific requirements. This framework demonstrates
the capabilities of BERT and its potential to support adaptive learning en-
vironments. As previously discussed, adaptive learning models, particularly
Knowledge Tracing (KT) models, operate in various ways depending on their
architecture and input attributes. Therefore, to establish a benchmark and
evaluate the robustness of this framework, the model architecture is fixed to
use BERT, and the input attributes focus on metacognition. This choice is
made to explore the relatively uncharted domain of training KT models with
metacognitive inputs.

For the purposes of experimentation, the framework is designed to ac-
cept any dataset containing metacognitive inputs from learners, irrespective
of other attributes. It utilizes these datasets and relevant defined targets to
train models suitable for adaptive learning environments. It is important to
note that the emphasis on metacognitive inputs pertains only to the experi-
ments conducted in this study. In practice, this framework can be modified
to explore various directions for training adaptive learning models.

The framework provides users with the flexibility to define hyper-parameters
for each KT model they wish to produce or retrain. Additionally, users can
specify which attributes from the dataset should be used for training and iden-
tify the target variable. By empowering users to tailor the framework to their
specific needs, adaptability across various KT scenarios is ensured.

The Proposed Framework (as loosely illustrated in Figure 1.1)operates
under the assumption that: 1. Pre-processed and Balanced Datasets:
It is assumed that all KT datasets passed to the framework are pre-processed
and balanced. This assumption streamlines the training process and ensures
consistent performance across different datasets. 2. Sequence Problem:
Regardless of the specific requirement KT model, our framework treats all KT
data as a sequence problem. This approach leverages the inherent temporal
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dependencies in student interactions.
At the heart of the architecture lies BERT. BERT is employed for sequence

classification on the KT dataset, and in the experiments conducted, the KT
task of predicting learner’s correctness to a response were examined.

The framework’s versatility makes it an efficient tool for Intelligent Tutor-
ing Systems (ITS). The motivation behind having such a framework was to
have a robust model training framework that could be used as a tool for an
ITS to train different models for different scenarios/use-cases and something
which also gives way to make quick experimentation to introduce potential
new features to the ITS.

Imagine an ITS that leverages metacognitive inputs to guide learners ef-
fectively. Several scenarios arise:

• Active Metacognitive Learning: Learners actively engage in metacog-
nitive processes alongside cognitive learning. In this case, the ITS re-
ceives metacognitive data about the student, including evaluation as-
pects and the KT model can predict correctness based on this rich in-
formation.

• Metacognition-Optional Setup: Alternatively, we consider scenar-
ios where metacognitive inputs are not explicitly requested. Under cer-
tain circumstances, learners may find metacognitive training burden-
some when done in a cognitive learning environment [1]. In such a
case, the framework should be able to accommodate this by excluding
metacognitive inputs from the input sequence. However, we also explore
an experimental avenue: Predictive Metacognition: Can we predict
learner confidence without directly asking for metacognitive inputs? Our
study investigates this approach, aiming to design personalized interven-
tion strategies.

1.6 Evaluation of Performance

The framework is designed to facilitate knowledge tracing (KT) tasks, lever-
aging metacognitive inputs. While this study focuses on metacognitive data,
the framework is versatile and can handle various types of KT data. As a part
of this study, in retrospect, there are essentially two types of models being
trained, over different KT datasets.

• Traditional KT Model (Correctness Prediction): This model pre-
dicts the correctness of a learner’s response.
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• Confidence Prediction Model: In addition to correctness, and as an
attempt to showcase the framework’s usefulness in experimenting new
avenues of adaptive learning, models that predict the learner’s confi-
dence in solving a problem were also trained. This aspect aligns with
enabling ITS to design learner specific interventions, and other uses of
such predictions could also be explored in future work.

Evaluating the models posed a challenge due to the scarcity of literature
on metacognitive inputs for KT. For the traditional KT task (correctness pre-
diction), the model is compared against existing metacognition-based models:
RA-BKT and RA-ANN. These models were originally proposed in the paper
titled “Knowledge Tracing for Adaptive Learning in a Metacognitive Tutor.”
To ensure robust comparison, we create a synthetic dataset that mimics the
one used by the authors, steps for which are detailed in the paper.

Unfortunately, no existing benchmark exists for models predicting confi-
dence levels. Therefore, an analysis of key metrics such as AUC (Area Under
the Curve), ACC (Accuracy), and RMSE (Root Mean Square Error) for the
confidence prediction models was done. The exploration of the practical signif-
icance and applications of confidence prediction remains an avenue for future
research.

Figure 1.1: BERT Boosted KT



Chapter 2

Background

In the realm of educational technology, the quest for improving learning ex-
periences has led to the exploration of various methodologies and tools. One
notable example is the use of Intelligent Tutoring Systems (ITS), such as the
Reflection Assistant (RA) [5], which emerged as a pioneering approach to in-
tegrating meta-cognitive awareness into the learning process. Developed by
Gamma in 2004, the RA revolutionized the way educators evaluate learners’
self-awareness and outlook by incorporating meta-cognitive inputs, particu-
larly learners’ confidence and correctness judgments.

In parallel, advancements in machine learning have paved the way for novel
approaches to knowledge tracing, particularly through sequence classification
techniques. By treating knowledge tracing data as sequential information,
these techniques offer a more nuanced understanding of learners’ knowledge
acquisition processes. One such methodology involves the utilization of BERT
(Bidirectional Encoder Representations from Transformers) for sequence clas-
sification, leveraging pre-trained language representations to capture rich se-
mantic information and improve predictive performance.

2.1 Evolution of KT models

2.1.1 Bayesian KT model

Bayesian Knowledge Tracing (BKT) is a dynamic Bayesian network model
that has been widely used in the field of intelligent tutoring systems. It is
a probabilistic model that aims to estimate a student’s knowledge state, i.e.,
what a student knows and doesn’t know, based on their interaction history.

The BKT model is based on two fundamental assumptions:

11
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• Binary Knowledge State: The student’s knowledge state for a specific
skill is binary, i.e., the student either knows the skill or doesn’t know it.

• No Forgetting: Once a student has learned a skill, they do not forget
it.

The BKT model uses four parameters:

• Initial Knowledge (L0): The probability that the student knows the
skill before interacting with the system.

• Learning Rate (T): The probability that the student transitions from
a state of not knowing to knowing the skill after an opportunity to
practice.

• Guessing (G): The probability that the student answers correctly de-
spite not knowing the skill.

• Slipping (S): The probability that the student answers incorrectly de-
spite knowing the skill.

The BKT model updates the estimate of the student’s knowledge state
after each interaction, using the evidence from the student’s correctness on
the exercises. The updated knowledge state is then used to predict the stu-
dent’s performance on the next exercise. A comprehensive overview of BKT’s
working as HMM is demonstrated in figure 2.1.

Figure 2.1: Representation of BKT as HMM [4]
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2.1.2 Use of Large Language Models in KT

Large Language Models (LLMs) have been increasingly used in the field of
Knowledge Tracing (KT) due to their ability to handle complex data and pro-
vide user-friendly access to information. LLMs simplify information retrieval
from knowledge graphs and allow anyone to directly ask questions and get
summaries instead of searching databases through traditional programming
languages.

One of the key applications of LLMs in KT is in the area of sequence clas-
sification. Sequence classification is a predictive modeling problem where you
have some sequence of inputs over space or time and the task is to predict a
category for the sequence. What differentiates this from standard classification
tasks is that the independence of observations cannot be assumed [9]. One such
example work includes BiDKT: Deep Knowledge Tracing With BERT [12].
BiDKT uses the BERT model, a transformer-style bidirectional model, which
has outperformed numerous Recurrent Neural Network (RNN) models on sev-
eral Natural Language Processing (NLP) tasks. The model is trained under a
masked correctness recovery task where the model predicts the correctness of
a small percentage of randomly masked responses based on their bidirectional
context in the sequences. The model architecture of BiDKT can be viewed in
figure 2.2. The BiDKT’s architecture is developed such that it considers two
types of tokens: correctness and subject. The correctness token range from
0 to 3, where 0 serves as the padding token, 1 serves as the masked token, 2
serves as ’incorrect’ token and 3 serves as the ’correct’ token. Much like the
pre-training of native BERT, authors of BiDKT randomly mask the correct-
ness tokens for the model to recover and mix some sequences with only the
last token being masked to simulate fine-tuning.

Experiments on several real-world knowledge tracing datasets show that
BiDKT can outperform some of the state-of-the-art approaches on predicting
the correctness of future student responses for some of the datasets. The
detailed transition analyses by BiDKT could illuminate weaknesses in existing
LLMs’ knowledge mastery and guide the development of refinement.

In conclusion, the use of LLMs in KT, particularly in sequence classifica-
tion, has shown promising results. The development of models like BiDKT
represents a significant step forward in the field, providing more accurate and
personalized learning experiences.
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2.2 Use of Reflection Assistant (RA)

The Reflection Assistant (RA) represents a pioneering approach in the inte-
gration of metacognitive skills within cognitive tutoring environments, aiming
to foster metacognitive development alongside cognitive learning [5]. Unlike a
traditional Knowledge Tracing model which essentially serves as a prediction
model, RA model is targeted to be situated within a cognitive learning con-
text. The RA seeks to establish a connection between learners’ metacognitive
and cognitive performance, making it an ideal candidate for investigation in
educational research.

Central to the RA’s design is the hierarchical model of metacognition,
which delineates various metacognitive skills essential for effective learning.
These skills, including planning, selecting strategies, evaluating learning, knowl-
edge monitoring, and control, form a hierarchical structure that guides learners
in monitoring and regulating their cognitive processes [13]. Additionally, the
RA draws inspiration from the conceptual stages of problem-solving, which
suggest that problem-solving sessions typically involve preparation, actual
problem-solving, and verification stages [7].

The RA incorporates strategically placed questions within these stages to
elicit the metacognitive participation of the learners. In the preparation stage,
learners are prompted to provide free-form short answers, thereby invoking
Planning and Selecting Strategies metacognitive skills. Subsequently, prompts
in the verification stage target Evaluating Learning and Knowledge Monitoring
skills, encouraging learners to reflect on their problem-solving process and

Figure 2.2: BiDKT: Model Architecture [12]
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monitor their comprehension. Furthermore, the verification stage also presents
learners with a Learner Profile, providing feedback on their metacognitive
performance.

Figure 2.3 illustrates the user interface of a web-based tutor developed
following the RA model, offering a simplified version of the RA’s metacogni-
tive prompts and learner feedback mechanisms. By embedding metacognitive
prompts within the cognitive learning context, the RA aims not only to equip
learners with metacognitive skills but also to enhance their cognitive learning
processes. This integration of metacognition within educational environments
underscores the importance of fostering self-awareness and self-regulation to

Figure 2.3: Web-based interface following RA model. [4]
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promote effective learning strategies and improve overall learning outcomes.
Given that this research centers on the use of metacognitive inputs to

train the required models, the Reflection Assistant (RA) setup is assumed to
be an integral component of the Intelligent Tutoring System that the proposed
framework will support. This setup or assumption of the setup is crucial for
collecting the necessary datasets (real-world and synthetic) to train the models
in subsequent stages.
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2.3 Learner’s Awareness and Outlook (KMA and
KMB)

A crucial aspect of the background in educational technology research involves
understanding learners’ metacognitive skills and tendencies. One widely used
metric for this purpose is the Learner Profile, which incorporates two key indi-
cators: Knowledge Monitoring Accuracy (KMA) and Knowledge Monitoring
Bias (KMB).

2.3.1 Knowledge Monitoring Accuracy (KMA)

KMA, a metric developed by Tobias and Everson [13], measures a learner’s
ability to monitor their own knowledge effectively. This metric is calculated
based on learners’ self-reported confidence levels in their ability to answer
exercises during the preparation stage, compared to their actual performance.
The KMA computation involves updating cumulative metrics for correct (FC),
partially correct (PC), and fully incorrect (FI) predictions, according to the
following matrix represented in Table 2.1:

Score Confidence
Self-Report
Confident (C) Partially Confi-

dent (P)
Not Confident (I)

Correct FC PC FI

Partially Correct PC FC PC

Wrong FI PC FC

Table 2.1: KMA Values Matrix

KMA is then computed using the formula in Equation 2.1:

KMA =
FC − 0.5× PC − FI

FC + PC + FI
(2.1)

Where FC is the Fully Correct predictions, PC is the Partially Correct
predictions, and FI is the Fully Incorrect predictions. Fully correct predictions
receive full positive credit, while fully incorrect predictions receive full negative
credit. Partially correct predictions receive negative half credit instead of
positive half credit to prevent incentivizing not taking a stance. The resulting
KMA has values ranging from -1 to 1. The closer the value to 1 is, the better
is the learner’s performance in terms of KMA. The learners are classified from
the computed KMA scores, whether they have low, average, or high KMA. In
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the case where only a single partially correct prediction is recorded, the KMA
is -0.5, indicating low awareness.

2.3.2 Knowledge Monitoring Bias (KMB)

Knowledge Monitoring Bias (KMB) is a metric that, like Knowledge Monitor-
ing Accuracy (KMA), is derived from learners’ confidence self-reports. The
computation of KMB involves updating cumulative metrics for each problem-
solving opportunity. These metrics include No Bias (NB), Partial Pessimistic
Bias (PPB), Full Pessimistic Bias (FPB), Partial Optimistic Bias (POB), and
Full Optimistic Bias (FOB). The updating process is guided by the matrix of
values shown in Table 2.2.

Score Confidence Self-Report
Confident (C) Partially Confident (P) Not Confident (I)

Correct NB PPB FPB

Partially Correct POB NB PPB

Wrong FOB POB NB

Table 2.2: KMB Values Matrix

The KMB is then computed using the formula given in Equation 2.2.

KMB =
FOB + 0.5 ∗ (POB − PPB)− FPB

FOB + POB +NB + PPB + FPB
(2.2)

The KMB, like the KMA, ranges from -1 to 1. However, unlike KMA,
a value closer to 0 indicates better performance in terms of KMB. Positive
values are associated with optimism, while negative scores are associated with
pessimism. Therefore, values closer to 0 indicate less bias. When the KMA
is not high, learners are further classified as having a pessimistic, random, or
optimistic outlook. The score ranges used for this classification are detailed
in Table 2.3.

The RA-ANN model [4], utilized as a benchmark in this study, employs
KMA and KMB as inputs. However, a detailed examination of this training
method reveals a significant limitation: these inputs are impractical in a real-
world setting. The KMA and KMB attributes require both correctness and
confidence inputs from the learner. For a model tasked with predicting the
correctness of a learner’s response, these attributes would not be available prior
to making the prediction. This is because correctness, which the model aims to
predict, is a necessary component for generating the KMA and KMB inputs.
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Therefore, using KMA and KMB as inputs for model training is not feasible
since they depend on information that is not available before prediction.

In this study the KMA and KMB is used to showcase the utility of models
which is trained on metacognitive and other relevant input attributes, exclud-
ing KMA and KMB themselves, within an Intelligent Tutoring System (ITS)
setup. The models trained as a part of this study using the BERT-Boosted
KT framework are of mainly two types one that predicts learner’s response’s
correctness and other that predicts the learner’s confidence. In either of these
cases, both correctness and confidence are going to be present once the re-
quired prediction is made, allowing for the evaluation of KMA and KMB for
the given problem the learner was attempting to solve. The projection of
KMA and KMB could be particularly useful in an ITS setup, as it may help
identify intervention strategies for students exhibiting shallow learning. Fu-
ture research can explore the interventions that can be devised with the use
of KMA and KMB. For example, if a learner’s evaluated KMA (awareness)
and KMB (outlook) are low, the instructor could be alerted to this shallow
learning experience. Alternatively, if the ITS allows, automated interventions
using Large Language Models could be implemented.

Score Range Classification
KMA KMB

[−1,−0.25) Low Pessimistic

[−0.25, 0.25) Average Random

[0.25, 0.5) Average Optimistic

[0.5, 1] High Optimistic

Table 2.3: Classification Based on KMA and KMB values

2.4 Sequence classification for knowledge tracing

Knowledge Tracing (KT) is a fundamental problem in the field of intelligent
tutoring systems, which involves modeling the knowledge state of a learner over
time. Traditional KT models, such as Bayesian Knowledge Tracing (BKT),
treat this problem as a binary classification task, where the goal is to predict
whether a learner will answer a question correctly or not based on their past
performance.

However, recent advances in the field have led to a paradigm shift, with
researchers now treating KT as a sequence classification problem. This ap-
proach views a learner’s interaction with an educational system as a sequence
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of events, each event representing the learner’s interaction with a particular
educational item (e.g., a question or a learning resource). The goal is then
to classify each event in the sequence (i.e., predict the learner’s performance)
based on the history of past events.

This sequence classification approach to KT has several advantages over
traditional methods:

• Modeling temporal dependencies: Sequence classification models
can capture the temporal dependencies between different events in a
learner’s interaction sequence. This is crucial for KT, as a learner’s
performance on a particular item is often dependent on their past inter-
actions.

• Handling variable-length sequences: Unlike traditional KT models,
which often require a fixed-length input, sequence classification models
can handle variable-length sequences. This makes them more flexible
and better suited to real-world educational data, which often consists of
interaction sequences of varying lengths.

• Leveraging powerful sequence models: Treating KT as a sequence
classification problem allows us to leverage powerful sequence models
developed in the field of machine learning, such as Recurrent Neural
Networks (RNNs) and Transformer models. These models have shown
state-of-the-art performance on a variety of sequence classification tasks
and are well-suited to the KT problem.

One of the most promising sequence classification models for KT is the
Transformer model, which uses a mechanism called self-attention to capture
dependencies between events in a sequence. The Transformer model has been
used to develop several state-of-the-art KT models, such as the Deep Knowl-
edge Tracing with Transformers (DKTT) [10] model.

The DKTT model uses a Transformer to encode a learner’s interaction
sequence into a set of continuous representations, which capture both the
learner’s current knowledge state and the temporal dependencies between dif-
ferent interactions. These representations are then used to predict the learner’s
performance on future interactions.

The use of self-attention allows the DKTT model to focus on the most
relevant past interactions when making a prediction, which can lead to more
accurate and interpretable KT models. Furthermore, the DKTT model can be
trained end-to-end using standard backpropagation, making it easy to optimize
and scale to large datasets.
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In conclusion, treating KT as a sequence classification problem is a promis-
ing new direction in the field, which leverages powerful sequence models and
provides a more flexible and accurate approach to modeling learner knowledge.

This study will explore and examine the use of sequence classification and
its benefits for training the required models.

2.5 BERT for Sequence Classification in Knowledge
Tracing

Bidirectional Encoder Representations from Transformers (BERT), a power-
ful machine learning technique for natural language processing (NLP) pre-
training, has garnered significant attention in recent years. Its ability to cap-
ture intricate context dependencies within text data has made it a valuable
asset across various NLP tasks. One such area where BERT is being explored
is Knowledge Tracing (KT).

Traditionally, KT models have relied on diverse approaches to tackle the
challenge of assessing learners’ skill mastery. However, recent work, such as
BiDKT, has specifically delved into BERT’s sequence classification capabili-
ties for KT. BiDKT leverages relevant attributes (rather than metacognition-
based inputs) to trace learners’ skill acquisition. Notably, BiDKT trains under
a masked correctness recovery task, where the model predicts the correctness
of a small percentage of randomly masked responses based on their bidirec-
tional context within the sequences. The BiDKT architecture is inspired by
BERT’s pre-training strategy as described in the paper ”Contrastive Bidirec-
tional Transformer for Temporal Representation Learning” [11], and it does
not require a fine-tuning step on downstream data. In contrast, this study uses
the existing BERT architecture and fine-tunes it on downstream data (KT
dataset). The results produced by BiDKT, which closely rival state-of-the-art
KT models, support the idea that using a BERT architecture and treating
Knowledge Tracing data as a sequence problem is a promising approach for
KT tasks.

With the evolution of more managed implementations of BERT, it becomes
even more efficient to focus on dealing with KT problems as sequence tasks
and abstract away the implementation details of BERT. This approach allows
for quicker experimentation and framework development. Unlike traditional
KT models, which often require heavy experimentation to determine the op-
timal input data format, leveraging BERT’s inherent capabilities for solving
sequence-based tasks streamlines the process.

The ‘BERTForSequenceClassification‘ class from the Hugging Face library
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is particularly useful for this task. This class is a variant of the standard
BERT model with an added linear layer for classification. The model takes a
sequence of learner interactions as input and outputs a probability distribution
over the possible outcomes (e.g., correct or incorrect) for the next interaction.

Here is a high-level overview of how to use ‘BERTForSequenceClassifica-
tion‘ for Knowledge Tracing:

1. Preprocessing: The learner interaction sequences are preprocessed into
a format suitable for BERT. Each interaction is tokenized, and special
tokens (‘[CLS]‘ and ‘[SEP]‘) are added at the beginning and end of each
sequence, respectively.

2. Model Training: The ‘BERTForSequenceClassification‘ model is trained
on the preprocessed data. The model learns to predict the outcome of
the next interaction based on the history of past interactions.

3. Prediction: Once the model is trained, it can be used to predict the
outcome of future interactions. Given a sequence of past interactions,
the model outputs a probability distribution over the possible outcomes
for the next interaction.

The use of BERT for Knowledge Tracing offers several advantages. First,
BERT’s ability to capture complex context dependencies makes it well-suited
to modeling the temporal dependencies in learner interaction data. Second,
the ‘BERTForSequenceClassification‘ class provides a flexible and powerful
tool for sequence classification, which can be easily adapted to the Knowledge
Tracing task.

However, it’s important to note that while BERT represents a promising
approach to Knowledge Tracing, it also comes with its own set of challenges.
For instance, BERT models can be computationally intensive to train and
require large amounts of data to perform well. Therefore, careful consideration
must be given to these factors when deciding to use BERT for Knowledge
Tracing.

2.6 Introduction to bert-base-uncased

The bert-base-uncasedmodel is a widely utilized variant of the Bidirectional
Encoder Representations from Transformers (BERT) architecture, developed
by Google. The bert-base-uncased model is specifically designed for English
language text, employing a lowercased vocabulary, which means that all the
text is converted to lowercase before tokenization.
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2.6.1 Architecture

The bert-base-uncased model comprises 12 layers (transformer blocks), 768
hidden units, and 12 attention heads, amounting to a total of 110 million pa-
rameters. This configuration enables the model to capture complex linguistic
patterns and relationships within text. Each transformer block consists of
multi-head self-attention mechanisms and feed-forward neural networks, al-
lowing the model to attend to different parts of a sentence simultaneously and
capture diverse contextual information.

2.6.2 Pre-training and Fine-tuning

BERT’s power lies in its two-stage training process: pre-training and fine-
tuning. During pre-training, the model is exposed to a large corpus of text,
such as Wikipedia and BooksCorpus, and learns to predict missing words in a
sentence (Masked Language Modeling) and the next sentence in a pair (Next
Sentence Prediction). This extensive training equips BERT with a robust
understanding of language nuances and contexts.

Fine-tuning involves adapting the pre-trained BERT model to specific
downstream tasks by training it on task-specific datasets. For bert-base-uncased,
this means leveraging the pre-trained knowledge and adjusting the model
weights according to the target task, which, in this study, is sequence clas-
sification for Knowledge Tracing (KT) datasets.

2.7 Tokenization and Encoding

2.7.1 Tokenization

Tokenizers perform two essential functions:

1. Splitting the raw text into smaller units—referred to as tokens—at the
word, subword, or character level (Figure 2.4).

2. Converting these tokens into a numerical format that a machine learning
model can interpret.

The BERT tokenizer employs a subword tokenization algorithm, which
divides the text into subword units. This approach strikes an optimal bal-
ance between vocabulary size and sequence length, and it effectively handles
rare and out-of-vocabulary words, thereby minimizing the necessity of treating
them as unknown tokens.
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The specific subword tokenization algorithm used in the BERT tokenizer is
called WordPiece. WordPiece is designed to construct a vocabulary of tokens
of a predetermined size by iteratively selecting and merging the highest scoring
character pairs within the text dataset.

The scoring mechanism for selecting these pairs is based on the ratio of
the frequency of the pair to the product of the frequencies of the individual
characters, formulated as follows:

Figure 2.4: Tokenization



CHAPTER 2. BACKGROUND 25

score =
freq of pair

freq of first element× freq of second element
(2.3)

This method ensures that the most frequently co-occurring character pairs
are merged first, thereby optimizing the tokenization process for efficiency and
effectiveness.

The figure 2.5 illustrates a batch of two raw text samples being processed
by a tokenizer. The tokenizer generates the processed text (string tokens)
along with three distinct integer encodings.

The processed text includes three special tokens:

• Classification token: The [CLS] token is positioned at the very start
of a sequence. It can serve as a summary representation for the entire
sequence.

• Separation token: The [SEP] token is placed at the end of each sen-
tence within a sequence. This helps BERT to distinguish between sen-
tences and recognize sentence boundaries.

• Padding token: The [PAD] token is appended at the end of the se-
quence — as many as necessary — to extend the sequence length so
that all sequences in a batch have uniform length. This is required for
matrix operations to process multiple samples (a batch) in parallel.

The three types of integer encodings derived from the processed text are
as follows:

Figure 2.5: Diagram of BERT Tokenizer Inputs and Outputs. Created by
George Mihaila.
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• Input IDs: The BERT base model has a vocabulary of 30,522 tokens.
Each unique string token maps to a unique integer ID. These IDs repre-
sent each token in a sequence.

• Attention Mask: Sequences shorter than the maximum defined length
are extended with padding tokens. These padding tokens are placehold-
ers and should not influence the model’s output. The attention mask
differentiates padding tokens from other tokens. Non-padding tokens
have a value of one, while padding tokens have a value of zero.

• Token Type IDs: In the task of next-sentence prediction during BERT
pretraining, sequences are composed of two sentences. The second sen-
tence is either the immediate successor of the first sentence from the
source text or a random sentence from the source text. The goal is to
predict whether the second sentence is the actual next sentence or a ran-
dom one. Token type IDs label tokens in the sequence as belonging to
the first or second sentence by assigning zeros and ones, respectively. In
sequence classification, however, all tokens are treated equally and en-
coded with zeros. Thus, token type IDs do not affect the model’s output
in sequence classification.

2.7.2 Embedding

Embeddings are vector representations of tokens that enable their spatial or-
ganization. The dimensionality of the embedding vector is a design decision,
determining the space in which the embeddings are arranged. A larger em-
bedding space provides more capacity for token organization.

In practice, embedding dimensions are typically set high to handle exten-
sive vocabularies and the complexities of contextual semantics. For instance,
the BERT base model employs an embedding dimension of 768.

Each token is assigned three types of embeddings, which are subsequently
summed:

• Word Embeddings: Each input ID is mapped to its corresponding
row vector in the word embedding lookup table, which contains one row
for each unique token in the vocabulary. BERT base has a vocabulary
of 30,522 tokens.

• Token Type Embeddings: Similar to word embeddings, this lookup
table consists of only two rows, corresponding to the sentence (first or
second) in which the token appears. This is pertinent primarily during



CHAPTER 2. BACKGROUND 27

the pretraining task of next-sentence prediction and does not affect the
model output in other tasks.

• Positional Embeddings: These embeddings provide the model with
a sense of the order of tokens within a sequence. The positional IDs
are sequential integers from 0 to n, where n is the maximum sequence
length. For BERT base, the maximum sequence length is 512.

Summing these three types of embeddings encapsulates various facets of
information into a single embedding. This combined embedding reflects the
semantic meaning of the tokens, their positions within the sequence, and the
sentence context (relevant only for next-sentence prediction).

These embeddings are learned during the pretraining phase on large text
corpora and can be fine-tuned for specific downstream tasks.

2.7.3 Encoder

Unlike traditional sequential models, BERT employs a transformer-based ar-
chitecture, enabling parallel processing of input tokens and facilitating more
efficient learning of contextual representations.

At its core, the BERT encoder comprises multiple layers of self-attention
mechanisms and feed-forward neural networks. These layers iteratively refine
token representations by considering both the left and right context of each
token in the input sequence. Through self-attention, BERT can dynamically
weigh the importance of each token’s context, enabling the model to capture
intricate semantic relationships and contextual nuances within the text.

During fine-tuning, the BERT encoder can be adapted to various down-
stream tasks, such as text classification, named entity recognition, and ques-
tion answering, by adding task-specific output layers while keeping the encoder
weights fixed or partially updating them. This adaptability, coupled with its
superior performance on diverse NLP tasks, has made the BERT encoder a
cornerstone in modern natural language understanding systems.

2.8 Leveraging BertForSequenceClassification

BERTForSequenceClassification is a model variant of the BERT architecture
tailored for sequence classification and regression tasks. It incorporates a linear
layer atop the pooled output, facilitating tasks such as those in the General
Language Understanding Evaluation (GLUE) benchmark suite.
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This class inherits from the PreTrainedModel class in HuggingFace, inher-
iting various generic methods for model manipulation. Referencing the super-
class documentation provides insights into methods like model downloading,
saving, embedding resizing, and head pruning.

Additionally, BERTForSequenceClassification is a PyTorch torch.nn.Module
subclass, allowing its utilization as a conventional PyTorch Module.

The forward method of this class accepts various parameters:

• input ids: Indices representing input sequence tokens in the vocabulary.

• attention mask: Mask to avoid attention on padding token indices.

• token type ids: Segment token indices distinguishing between sen-
tence A and sentence B tokens.

• position ids: Indices of input sequence token positions in position em-
beddings.

• head mask: Mask to nullify selected heads of the self-attention mod-
ules.

• inputs embeds: Optionally, embedded representations instead of in-
put ids for more control over vector association.

• output attentions: Whether to return attention tensors of all atten-
tion layers.

• output hidden states: Whether to return hidden states of all layers.

• return dict: Whether to return a ModelOutput instead of a tuple.

• labels: Labels for computing the sequence classification/regression loss.

The output of the forward method returns either a SequenceClassifierOut-
put object or a tuple of torch.FloatTensor.
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Design Goal and Mechanisms

The primary design goal of this study is to develop a unified Knowledge Trac-
ing (KT) model training framework. This framework aims to demonstrate a
proof of concept capable of handling any balanced KT dataset with a defined
target, and generating a KT model, or potentially another type of model ben-
eficial to an Intelligent Tutoring System (ITS). Examples of such alternative
models will be discussed in subsequent chapters. The efforts to develop a
unified framework stems from the need to have flexibility when dealing with
disparate KT datasets and to also have adaptability to serve various educa-
tional context.

It is important to emphasize that the framework developed in this study
serves as a proof of concept and can be restructured as needed. For instance,
unlike the framework created here, one could design a framework that does
not rely on the KT dataset being balanced, with the pipeline itself handling
the balancing.

To achieve the framework’s objective, BERT (Bidirectional Encoder Rep-
resentations from Transformers) is employed for sequence classification on the
given dataset.

More specifically, a model capable of performing sequence classification on
a KT dataset is trained through the following steps:

1. The bert-base-uncased model from the BERT family is used for this
task.

2. The input data is tokenized, embedded and encoded using the tokenizer
of the bert-base-uncased model.

3. The BertForSequenceClassification class from the Hugging Face li-
brary is utilized. This class works with BERT models and adds a linear

29



CHAPTER 3. DESIGN GOAL AND MECHANISMS 30

layer on top of the specified BERT model to perform classification tasks.

4. The model training (fine-tuning) process is initiated.

5. The trained model is saved for future use.

The intention is to ensure that these steps are consistently followed, re-
gardless of the specific KT dataset used, provided it is balanced and the target
is defined.

3.1 Tokenization and encoding application

The tokenization and encoding processes outlined in chapter 2 will be applied
in the context of the KT dataset. In this study, the target variable, represent-
ing either the correctness of a learner’s response or the learner’s confidence
level before answering a question, will be treated as the subsequent token in
the sequence to be predicted. All other dataset attributes, such as student
ID, skill, and question number, are condensed into a single column within
the dataset. These attributes are represented as a unified string, separated
by spaces (e.g., student id skill question number, etc.), which ensures that re-
gardless of the input attribute sequence of the KT dataset, the preprocessing
of the input data is done through an unified approach. During both training
and inference stages, this single column containing all attribute data in string
format serves as the input sequence to the BERT model, which is then to-
kenized, embedded and ecncoded using BERT’s tokenizer and encoder. The
model is then tasked with predicting the subsequent token in the sequence,
which corresponds to the defined target variable in this case.

3.2 BertForSequenceClassification application

As a part of this study, the BERTForSequenceClassification class is used
with its forward method accepting three parameters, the input ids, the atten-
tion mask and the labels, and a SequenceClassifierOutput object is received
as an output.

3.3 Model Training

During the training phase, several steps are involved to optimize the model’s
parameters and improve its performance. The process includes the use of an
optimizer, a custom dataset loader, and the model’s input data (figure 3.3).
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3.3.1 Optimizer Usage

An optimizer, in this case, AdamW, is utilized to update the model’s param-
eters based on the computed gradients during backpropagation. The learning
rate (lr) is set to 1× 10−5 to control the size of parameter updates.

3.3.2 Data Loader

A custom dataset, represented by the LearnerDataset class, is defined to orga-
nize and preprocess the input data for training. This dataset utilizes encodings
to facilitate the retrieval of input ids, attention mask, and labels. DataLoader
is then employed to batch and shuffle the dataset, enabling efficient data load-
ing during training iterations.

3.3.3 Model Input

The model takes three inputs during each training iteration:

• input ids: Representing the indices of input sequence tokens in the
vocabulary.

• attention mask: Indicating which tokens should be attended to and
which should be ignored.

• labels: Providing the ground truth values for the model’s predictions,
facilitating the computation of the loss function.

3.3.4 Training Loop

The model is set to training mode using the model.train() method to en-
able gradient computation and parameter updates. The training process spans
multiple epochs, with each epoch iterating through batches of data loaded by
the DataLoader. Within each iteration, the optimizer’s gradients are reset us-
ing optimizer.zero grad(), followed by the forward pass through the model
to compute predictions and the corresponding loss. The backward pass com-
putes gradients of the loss with respect to the model’s parameters, facilitating
parameter updates via the optimizer’s step() method. This process iterates
until convergence or a predefined number of epochs.
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Figure 3.1: Model training



Chapter 4

Methodology

In the pursuit of developing the BERT Boosted KT Framework, a generalized
knowledge tracing framework, the utilization of advanced machine learning
techniques, particularly leveraging pre-trained language models (LLMs), be-
comes imperative. To this end, the framework capitalizes on the capabilities
offered by BertForSequenceClassification from the Hugging Face Transformers
library.

4.1 Data Curation and Preprocessing

The Data Curation and Pre-processing phase is pivotal to the experiments con-
ducted as it provides variety of datasets that vary from each other in terms
of setup, amount of data and the overall distribution of the data, making it
efficient to test the domain-adaptability and flexibility of the framework devel-
oped. In the attempt to do so, three separate datasets were created/prepared,
each of which are discussed in detail below. The datasets created in the process
are ensured to contain metacognitive inputs (Confidence ratings of learners)
which is not typical in open source KT datasets like: ASSISTments and Ge-
ometry Angles.

This data curation and pre-processing stage does not serve as a part of
the framework itself, as the framework assumes that the input data is pre-
processed and balanced, but to make the framework more comprehensive, a
future attempt could be made to integrate the said phase in the framework.

33
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4.1.1 Synthetic dataset preparation

To address the challenge of obtaining educational data for knowledge tracing
experiments, a synthetic dataset was curated as part of the methodology.
Drawing inspiration from previous work on knowledge tracing for adaptive
learning in a metacognitive tutor [4], the dataset creation process is aimed at
simulating various learner behaviors and performance scenarios.

The dataset was crafted by defining learner personas, with possible be-
haviors classified based on both performance and confidence reports. These
behaviors were combined, resulting in an initial data set that contained infor-
mation for 104 (8 performance behaviors and 13 confidence behaviors) unique
learners. Each synthesized learner was provided with ten opportunities to
answer quiz items or demonstrate learning components, aligning with the as-
sumption of Bayesian Knowledge Tracing (BKT) that learners accumulate
knowledge over repeated attempts.

To ensure the robustness of the dataset and prevent degeneracy of the
model, several conditions were introduced. For example, performance behav-
iors where learners progressively improved were simulated, with data generated
to reflect instances where learners initially answered incorrectly but consis-
tently improved over subsequent attempts. Similar conditions were applied
to confidence reports, allowing for partially correct predictions and reflecting
varying degrees of learner confidence.

The dataset was further enriched by combining performance and confidence
behaviors, resulting in a total of 391 learner data points.

In total, the synthetic dataset comprised 3910 (391 learners with 10 op-
portunities each) observation records, each capturing the nuances of learner
behavior and performance across multiple knowledge tracing opportunities.

Table 4.2 breaks down the assumed learner’s behaviours considered for the
dataset curation.

Calculating KMA and KMB

After the synthetic dataset is created, each synthesized learner’s Knowledge
Monitoring Accuracy (KMA) and Knowledge Monitoring Bias (KMB) are cal-
culated based on their performance (correctness) and confidence reports. This
step is crucial as it allows us to assess the similarity of the synthetic dataset
to real-world knowledge tracing datasets, providing insights into the efficacy
of the explored approach.

The formulas mentioned in equations 2.1 and 2.2 are utilized for com-
puting KMA and KMB, respectively. These formulas take into account the
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Description Training Validation

Data count 3120 (79.79%) 790 (20.20%)

Answer
- 0 1553 (49.77%) 366 (46.32%)
- 1 1567 (50.22%) 424 (53.67%)

Confidence
- C 1391 (44.58%) 279 (35.31%)
- P 770 (24.67%) 275 (34.81%)
- I 959 (30.73%) 246 (31.13%)

Table 4.1: Balanced Synthetic Dataset Split

learner’s self-reported confidence levels and actual performance on the knowl-
edge tracing tasks. By quantifying the learner’s accuracy in monitoring their
own knowledge acquisition process (KMA) and their bias towards optimistic
or pessimistic predictions (KMB), we gain valuable insights into the dataset’s
fidelity and its alignment with established knowledge tracing methodologies.

Evaluation of Dataset Realism

To assess the realism of the synthetic dataset and its alignment with real-world
educational data, trends between opportunities and correctness, awareness,
and outlook were analyzed using generalized linear modeling techniques. This
approach allowed to visualize how closely the synthetic data mirrored patterns
observed in authentic educational contexts.

To ensure comparability, awareness and outlook values were adjusted to a
standardized range of [0, 1], mirroring the scale used for correctness. Aware-
ness values were normalized to the range [0, 1], while the outlook values were
corrected to reflect their distance from the optimal value of 1. The resulting
trends were then compared with student data obtained from ASSISTments
(2015) and the Geometry Angles dataset, both widely recognized sources in
the field of learning research.

The ASSISTments platform, known for its extensive use in educational
research, provided valuable insights into student performance and behavior [8].
Similarly, the Geometry Angles dataset, stemming from rigorous research on
metacognition, offered additional perspectives on learner cognition [2].

To facilitate a meaningful comparison, an ”Opportunity” attribute was
introduced to both datasets, ensuring consistency in tracking learning oppor-
tunities across student-problem combinations. Only student-problem combi-
nations with exactly ten opportunities were included for analysis, maintaining



CHAPTER 4. METHODOLOGY 36

uniformity across datasets.
Upon analysis, both the ASSISTments and Geometry Angles datasets ex-

hibited trends consistent with the synthetic dataset, validating the realism and
fidelity of the synthetic data generation process. The observed upward trends
in performance, awareness, and outlook mirrored patterns observed in real-
world educational settings, underscoring the efficacy of the synthetic dataset
in capturing authentic learner behaviors.

Balancing synthetic dataset

To ensure model training and validation integrity, the dataset was randomly
divided into five groups, with four groups designated for model training and
the remaining group reserved for validation purposes. This division ensured
relatively even distributions across key factors, mitigating concerns related to
unbalanced data commonly encountered in machine learning research.

Table 4.1 provides a detailed breakdown of the training and validation set
division, illustrating that the distributions of key attributes are fairly balanced.

4.1.2 Real-world data collection

In addition to synthesizing datasets, real-world data collection was conducted
to further validate the proposed framework and evaluate its applicability in
authentic learning environments. A mathematics quiz was administered to
a group of 11 students from the Rochester Institute of Technology (RIT),
each tasked with answering 50 questions encompassing five skill components
of mathematics, with ten questions dedicated to each skill component. This
structure ensured a comprehensive assessment of learners’ proficiency across
various mathematical concepts, resulting in a total of 550 unique learner data
points.

To maintain anonymity and confidentiality, each student’s identity was
kept anonymous throughout the data collection process. The quiz was pre-
sented in a Reflection Assistant (RA) model format, where students first eval-
uated their confidence level in solving the given problem, by visually seeing
the problem, and rating their confidence between, Confident (C), Partially
Confident (PC) or Not Confident (NC). Students provided self-assessments
of their confidence levels before proceeding to attempt the problem, enabling
the collection of valuable data on learners’ confidence levels alongside their
performance outcomes.

The quiz was hosted on the MyCourses platform provided by RIT, en-
suring seamless access and participation for the enrolled students. Following
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data collection, the curated dataset underwent a balancing process focused
primarily on correctness, representing the learner’s performance. To address
class imbalance, oversampling and undersampling techniques were employed.
Figures 4.1 and 4.2 illustrate the test setting presented to learners.

Balancing real-world dataset

The dataset curated after the conducted test, provided a multitude of at-
tributes which could have been used for the study, but instead, only the most
relevant attributes serving to create a KT dataset were used, namely: stu-

Figure 4.1: Confidence self-report

Figure 4.2: Performance report
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dent id, knowledgecomponent id, question id, Correctness and Confidence.
Using oversampling, the dataset was balanced to have an equal count of

correctness values, resulting in 340 instances each for correctness values of 0
and 1. Conversely, undersampling was applied to balance the dataset, resulting
in 159 instances each for correctness values of 0 and 1.

While it is possible to balance the dataset around both correctness and con-
fidence to prepare for various prediction tasks, the limited size of the dataset
necessitated a strategic decision to focus on balancing around a single target
variable. This approach ensured the dataset’s readiness for predicting correct-
ness while maximizing the available data resources effectively.

Hence, the same dataset was balanced again, but this time around Confi-
dence, using both under and over sampling techniques. The original count of
Confident (C), Partially Confident (PC) and Not Confident (NC), classes in
Confidence target attribute were:

• C: 291

• PC: 105

• NC: 103

After applying the oversampling strategy, each class was evenly distributed,
with 291 records per class, aligning with the highest class count. Conversely,
after utilizing the undersampling technique, each class contained 103 records.

With the oversampling and undersampling techniques being utilized to
address class imbalance, the dataset remained representative of real-world
learning scenarios, providing valuable insights into learners’ performance and
confidence levels in solving mathematical problems.

4.1.3 Open-source KT datasets

In this study, the real-world dataset utilized is the Database Exercises for
Knowledge Tracing (DBE-KT22) dataset. This dataset was introduced in a
paper titled ”DBE-KT22: A Knowledge Tracing Dataset Based on Online
Student Evaluation” [6]. The paper highlights the increasing importance of
online education in providing affordable high-quality education to students
worldwide, particularly accentuated during the global pandemic as more stu-
dents transitioned to online learning environments.

The DBE-KT22 dataset was collected from an online student exercise sys-
tem used in a course taught at the Australian National University in Australia.
It was specifically curated to address the Knowledge Tracing problem, which
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involves tracking students’ knowledge progress over time. This dataset serves
as a valuable resource for tasks such as course recommendation, exercise rec-
ommendation, and automated evaluation in the domain of online education.

The paper discussing the DBE-KT22 dataset provides insights into its
characteristics and contrasts it with existing datasets in the knowledge trac-
ing literature. Notably, the dataset is made publicly accessible through the
Australian Data Archive platform, facilitating its use and exploration by re-
searchers and educators alike.

Utilizing the DBE-KT22 dataset in this study adds additional real-world
dimension to the research, enabling the evaluation and validation of the pro-
posed framework in a practical educational setting. By leveraging this rich
source of data, the study aims to contribute to the advancement of knowledge
tracing techniques and their application in online education contexts.

Balancing the Open-Source KT Dataset

Following the processing of the DBE-K22 dataset to resemble a KT dataset
(as discussed in the next chapter), it was observed that the DBE-K22 dataset
contained a total of 305,794 records. Of these, 70% were allocated for training
and the remaining 30% were reserved for validation. The open-source dataset
was balanced in a manner similar to the real-world dataset, focusing on both
Correctness and Confidence, resulting in two balanced datasets.

Initially, the distribution of correctness in the DBE-K22 dataset was:

• 0: 71,021

• 1: 234,773

The initial distribution of confidence in the dataset was:

• C: 236,258

• PC: 46,933

• NC: 22,603

4.2 Model Choice and Framework

In this study, the choice of model for knowledge tracing is critical, influencing
the performance and adaptability of the framework. The selected model not
only needs to exhibit robust performance but also accommodate the dynamic
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nature of educational data effectively. The framework leverages BertForSe-
quenceClassification, a state-of-the-art model from Hugging Face Transformers
library, for its powerful capabilities in sequence classification tasks.

4.2.1 Model Size and Hyper-parameters

As discussed earlier, the BertForSequenceClassification model utilized in this
study is initialized with the ’bert-base-uncased’ configuration, which repre-
sents a pre-trained BERT model with 12 transformer layers, 768 hidden di-
mensions, and 12 attention heads (illustrated in Figure 4.3). This configura-
tion strikes a balance between model complexity and computational efficiency,
making it suitable for the knowledge tracing task.

Hyper-parameters, including the learning rate, batch size, and number of
training epochs, are carefully chosen to optimize the model’s performance. For
instance, the AdamW optimizer with a learning rate of 1e-5 is employed for
efficient gradient descent optimization. AdamW incorporates weight decay
regularization, which helps prevent overfitting by penalizing large parameter
values. The choice of a batch size of 32 balances computational efficiency with
model convergence during training.

Figure 4.3: BERT’s architectural breakdown. [14]
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4.2.2 General Framework

The framework encompasses a comprehensive pipeline for data preprocessing,
model training, and evaluation. The preprocessing step involves encoding the
input data using the BertTokenizer, which tokenizes the textual input and
converts it into numerical representations compatible with the BERT model.
Additionally, a custom dataset class, LearnerDataset, is defined to facilitate
efficient data loading and batching during training.

The data preprocessing phase is adaptable to accommodate varying input
attributes dynamically. The preprocess data function combines different input
columns into a single text string and tokenizes it using the tokenizer. This
dynamic handling of input attributes ensures flexibility in incorporating new
kinds of input features into the knowledge tracing framework seamlessly.

During model training, the encoded data is fed into the BertForSequence-
Classification model through DataLoader objects, which enable efficient batch
processing. The model is trained using the AdamW optimizer, which updates
the model parameters based on the computed gradients. The training pro-
cess iterates over multiple epochs, allowing the model to learn the underlying
patterns in the data and improve its performance over time.

The equation 4.1 encapsulates the model training process:

[M,T
Initialize−−−−−→ Denc = Preprocess(D,L)

Preprocess−−−−−−→ DataLoader(Denc)

Load Data−−−−−−→ O(M.parameters)

Optimize−−−−−→ for e in range(E) : M.train(Denc, O)

Train−−−→ Model Trained]

(4.1)

In equation 4.1: M and T represent the BERT model and tokenizer respectively.
D represents the data and L represents the labels column.
D enc represents the preprocessed data.
E represents the number of epochs.
O represents the optimizer.

4.3 Prediction Process

As previously mentioned, a key aspect of the framework’s architecture that
ensures insensitivity to input data lies in the preprocessing step (Figure 4.6).
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This step involves consolidating all the input attributes of the KT dataset into
a single column, which is then encoded using BERT’s native tokenizer (Figure
4.4).

Once the encodings are obtained, the input IDs and attention mask for each
tokenized row sequence are extracted (Figure 4.5). These are subsequently
provided to the BERTForSequenceClassification class from HuggingFace
for processing.

Let’s consider the example inputs provided to the BertForSequenceClassification
model:

• Input IDs: [101, 1023, 1017, 17442, 102, 0]

• Attention Mask: [1, 1, 1, 1, 1, 0]

These inputs represent a sequence of tokens and a corresponding attention
mask. Here’s a step-by-step explanation of how the prediction happens:

Figure 4.4: Preprocessing step for RIT dataset with Confidence as target.

Figure 4.5: Example input ids and attention mask for training and validation.

Figure 4.6: An example pre-processing step on dataset.
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1. Model Initialization: The BertForSequenceClassification class is
initialized with the configuration. This setup includes:

• self.bert - The BERT model configured as per the specifications.

• self.dropout - A dropout layer with a specified dropout rate.

• self.classifier - A linear layer for classification.

2. Input Preparation: The input IDs and attention mask are prepared
for the forward pass:

• input ids: [101, 1023, 1017, 17442, 102, 0]

• attention mask: [1, 1, 1, 1, 1, 0]

3. Forward Pass:

• The forwardmethod is called with input ids and attention mask.

• The self.bert method processes these inputs, generating hidden
states and a pooled output. The hidden states capture the contex-
tual information for each token, while the pooled output represents
the entire input sequence, typically corresponding to the [CLS] to-
ken (101).

• For this example, let’s assume the pooled output generated by
BERT is a vector representation: pooled out.

4. Dropout Layer:

• The pooled output (pooled out) is passed through the dropout
layer to reduce overfitting: pooled out = self.dropout(pooled out).

5. Classification Layer:

• The output from the dropout layer is fed into the linear classifier
to produce logits: logits = self.classifier(pooled out).

• These logits represent the raw, unnormalized scores for each class.

6. Output:

• The method returns the logits. If the configuration specifies
return pooler output, it also returns the pooled output.
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Example Output:
Given the input IDs [101, 1023, 1017, 17442, 102, 0] and attention mask

[1, 1, 1, 1, 1, 0], the model processes the input sequence, applies dropout, and
then classifies the pooled output to produce logits. These logits are then used
to predict the class of the input sequence.

For instance, if the model is performing binary classification (e.g., Correct-
ness prediction), the logits might be something like [-0.5, 1.2], indicating
that the model predicts the sequence belongs to the ”incorrect” class (the
second class) since the second logit has a higher value.

4.4 Evaluating KMA and KMB

The combination of correctness and confidence, obtained at each step for ev-
ery learner across various datasets, provides a rich source of information for
evaluating the Knowledge Mastery (KMA) and Knowledge Behavior (KMB)
of each learner.

After each response from a learner, and once the model completes its pre-
diction of either correctness or confidence, these KMA and KMB values can
be evaluated. This evaluation is not just a one-time process but a continuous
one, reflecting the dynamic nature of learning.

These KMA and KMB values are pivotal. They can be utilized by Intelli-
gent Tutoring Systems (ITS) or instructors to provide tailored instruction to
their students. This instruction is not generic but individualized, catering to
the unique cognitive and metacognitive improvements reflected by the KMA
and KMB values of each learner.

Therefore, these KMA and KMB values are not just evaluated but also
recorded. This allows for future exploration of these values to identify the
most effective interventions for a specific KMA-KMB pair for a learner. This
approach ensures that the instruction is not only personalized but also adap-
tive, responding to the evolving needs of the learner.

In this way, the use of correctness and confidence in evaluating KMA and
KMB values contributes to a more nuanced understanding of a learner’s knowl-
edge state, enabling more effective and personalized instruction.
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Performance Confidence Report

Always answers cor-
rectly

Always predicts to answer correctly

Always answers incor-
rectly

Always predicts to answer partially
correctly

Occasionally answers
correctly

Always predicts to answer incor-
rectly

Occasionally answers
incorrectly

Always predicts to answer correctly
but occasionally predicts to answer
partially correctly

Progressively performs
better

Always predicts to answer correctly
but occasionally predicts to answer
incorrectly

Regresses in perfor-
mance

Always predicts to answer partially
correctly but occasionally predicts
to answer correctly

Progressively performs
better then regresses

Always predicts to answer partially
correctly but occasionally predicts
to answer incorrectly

Regresses then progres-
sively performs better

Always predicts to answer incor-
rectly but occasionally predicts to
answer correctly

Always predicts to answer incor-
rectly but occasionally predicts to
answer partially correctly

Progressively improves in prediction

Regresses in prediction

Progressively improves then re-
gresses in prediction

Regresses then improves in predic-
tion

Table 4.2: Assumed Learner Behaviours - Performance Vs Confidence
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Experiments

In this section, we delve into the practical implementation and evaluation of
the proposed BERT-Boosted Knowledge Tracing (KT) framework. The ex-
periments are structured to assess the framework’s adaptability and efficacy
in predicting both correctness and confidence levels, thereby offering a com-
prehensive understanding of learners’ cognitive processes.

Each experiment revolves around three pivotal datasets: a Synthetic Dataset,
DBE-K22 Dataset (open-source) and RIT Dataset. Each of these datasets
have varying sizes (DBE-K22 being largest and RIT dataset being small-
est) and number of attributes. However, each of these dataset have com-
mon attributes: correctness and confidence as they serve to be primary tar-
get columns. These disparate datasets enables the KT framework to exhibit
flexibility in its predictive capabilities, flexibility in handling various kinds of
input attributes’ combination and to showcase domain adaptability, where the
model trains well on a very small number of training data points. Specifically,
experiments are conducted by either utilizing confidence and other input pa-
rameters to predict correctness or employing correctness alongside additional
input parameters to predict confidence.

This dual-pronged approach is essential to accommodate diverse educa-
tional settings. For instance, when integrated with Intelligent Tutoring Sys-
tems (ITSs) employing Reflection Assistant models aimed at fostering metacog-
nitive skills, the framework can adapt by predicting correctness from confi-
dence levels. Conversely, in scenarios where training for metacognition along-
side cognitive skills may pose challenges, the model can predict confidence
based on correctness and other input parameters. This strategic flexibility
ensures that the framework remains versatile, catering to the unique needs of
various educational contexts.

46
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At the core of these experiments lies the evaluation of Knowledge Mastery
Assessment (KMA) and Knowledge Mastery Benchmarking (KMB). KMA and
KMB are essential metrics to assess learners’ comprehension and guide per-
sonalized interventions. By being capable of either predicting correctness or
confidence, the framework ensures that at the end of the predictions, both cor-
rectness and confidence values for the learner are available, which can then be
used to evaluate the learner’s Awareness (KMA) and Outlook (KMB), thereby
enabling the formulation of targeted interventions tailored to individual learn-
ing trajectories.

5.0.1 Synthetic Dataset

The synthetic dataset curated for the study was first experimented with, as it
gives a good benchmark and indication of the direction we go and also pro-
vides significant help to tackle the restrictions around obtaining educational
data. In this subsection, we detail the experiments conducted using the Syn-
thetic dataset to evaluate the performance of the BERT-Boosted Knowledge
Tracing framework. Initially, two variants of BERT models, namely bert-base-
uncased and bert-large-uncased, were employed to assess their effectiveness in
predicting correctness and confidence levels.

Choice of BERT Models

The main distinction between bert-base-uncased and bert-large-uncased lies
in their scale and computational requirements. While both models utilize
the same architecture, bert-large-uncased incorporates a larger number of lay-
ers and parameters, allowing for potentially richer representations of text se-
quences. However, this enhancement comes at the cost of increased computa-
tional resources and inference time.

Experimental Findings

Upon conducting experiments, it was observed that both bert-base-uncased
and bert-large-uncased yielded comparable results in predicting correctness
when confidence levels were provided as input and vice versa. However, the
larger model, bert-large-uncased, incurred significantly longer processing times
because of its increased complexity.

Given that the performance gap between the two models was marginal
and considering the practical implications of computational efficiency, it was
deemed more pragmatic to proceed with bert-base-uncased for further exper-
iments.
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Uncased Notation Explanation
It is noteworthy to mention that the ”uncased” suffix in the model names

refers to the fact that these models are trained on uncased text, meaning
that the text input to the models is converted to lowercase before processing.
This design choice allows the models to generalize better across different cases
and makes them suitable for various text-related tasks without being case-
sensetive.

Model Training

Equation 3.1 provides an overview of the model training process, encompassing
data preprocessing, model initialization, and optimization.

The training process begins with data preprocessing, denoted by the func-
tion Preprocess(), where the dataset D is transformed into a suitable format
for training. Specifically, the columns relevant to the prediction task, namely
learner skill, opportunity, confidence, and answer, are preprocessed and bal-
anced around the target variable of interest, denoted by L. For instance, when
predicting confidence, the dataset is balanced around the confidence column,
and L is set to confidence in the preprocessing step.

Subsequently, the preprocessed data Denc is loaded into a DataLoader ob-
ject for efficient batch-wise processing. The BERT model M and its tokenizer
T are initialized, followed by the optimization step where the model parame-
ters are optimized using an optimizer O, which in this case is AdamW, with
a learning rate of 1e-5.

The training loop iterates over a predetermined number of epochs E (10
in the case of synthetic dataset experiments conducted), during which the
model is trained on the training dataset. For each epoch, the model is trained
batch-wise, where the optimizer is first zeroed to reset gradients, input data is
fed into the model, and the loss is computed based on the model’s predictions
compared to the ground truth labels. The loss is then backpropagated through
the network, updating the model parameters to minimize the loss. This process
iterates until convergence or until the specified number of epochs is reached.

Experimental Results

The training process was conducted on both CUDA and MPS platforms to
assess the model’s performance across different computing environments. The
performance metrics for predicting correctness and confidence is listed in table
5.1.
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Metric AUC RMSE Accuracy (ACC)

Correctness (CUDA) 0.8835 0.5843 0.8834
Correctness (MPS) 0.8693 0.6014 0.8692

Confidence (CUDA) 0.8828 0.7483 0.8459
Confidence (MPS) 0.7818 0.8912 0.7422

Table 5.1: Performance Metrics - Synthetic Dataset

These results indicate that the BERT-Boosted Knowledge Tracing frame-
work exhibits robust performance in predicting both correctness and confi-
dence levels across different computational platforms.

5.0.2 DBE-KT22 Dataset

The DBE-KT22 Dataset serves as the cornerstone of these experimental en-
deavors, providing a comprehensive repository of educational data tailored to
Knowledge Tracing (KT) tasks. The dataset architecture adheres to a re-
lational model, wherein each data aspect is assigned to a distinct entity or
table, thereby preserving relationships across entities through primary-foreign
key pairs. Figure 5.1 depicts the entity-relationship diagram (ERD) encap-
sulating the structural layout of the DBE-KT22 database and Table 5.2 lists
down and describes the entity types pertaining to DBE-K22 datasets.

The ERD is deconstructed into a series of CSV files, following the Comma
Separated Value (CSV) format for ease of data sharing and distribution. Addi-
tionally, a Python script accompanies the dataset files, facilitating the genera-
tion of training sequences for question answering tasks, incorporating relevant
meta-data to enrich the learning context.

Central Data Source:

The primary data source driving this analysis is the dbe transaction table,
which records question answering transactions, including answer states and
associated meta-data. This table serves as the foundation upon which the
experiments are built, providing rich insights into learners’ interactions with
educational content.

Data pre-processing

Pre-processing the DBE-K22 dataset involved several steps to ensure its suit-
ability for Knowledge Tracing (KT) tasks, including handling missing values,
encoding categorical features, and incorporating question text as model input.
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Handling Missing Values: One significant aspect of the pre-processing
stage was addressing missing values in the confidence column, considering its
pivotal role as a target variable alongside correctness. Specifically, missing
confidence values were treated as a priority due to their potential to disrupt
the sequential structure of the data. In a sequential learning context, missing
confidence values can introduce discontinuities in the learning trajectories, hin-
dering the model’s ability to capture temporal dependencies and longitudinal
patterns effectively. To mitigate this issue, missing values in the confidence
column were identified and replaced using a predictive modeling approach.
Specifically, a RandomForestClassifier was trained on rows with known con-

Figure 5.1: ER Diagram for DBE-K22 [6]



CHAPTER 5. EXPERIMENTS 51

fidence values, and the model was used to predict confidence values for rows
with missing values.

Encoding Categorical Features: Categorical features such as knowl-
edgecomponent name, question text, hint used, prev correct, and prev hint used
were encoded using Label Encoding. This transformation facilitates the incor-
poration of categorical variables into machine learning models, ensuring com-
patibility with algorithms that require numerical inputs. Notably, encoding
question text allows the model to leverage the semantic information embedded
within the text, enhancing its understanding of the underlying concepts and
potentially improving KT performance.

Utilizing Previous Columns: In addition to traditional KT features,
the dataset includes columns prefixed with ”prev ” denoting previous interac-
tions or states. These columns, such as prev difficulty feedback, prev confidence,
prev correct, prev hint used, and prev time delta, provide valuable context re-
garding learners’ past behavior and performance. Incorporating these features
into sequence classification tasks enables the model to capture temporal de-
pendencies and longitudinal learning trajectories, thus enhancing its predictive
capabilities.

Significance of Using Question Text: In traditional KT approaches,
question features are typically represented by abstract identifiers or attributes.
However, by including the actual text of the questions as encoded input, the
model gains access to rich semantic information embedded within the ques-
tions. This approach not only enriches the feature space but also allows the
model to leverage the textual context to infer latent knowledge states more ef-
fectively. Consequently, utilizing question text as encoded input enhances the
model’s interpretability and promotes better learning outcomes by capturing
nuanced relationships between questions and learner responses.

Final Dataset Structure and Pre-processing

After pre-processing, the DBE-K22 dataset was transformed into a structured
format conducive to Knowledge Tracing tasks. The final dataset retained the
columns as described in table 4.3:

In addition to structuring the dataset, special attention was given to main-
taining the sequential integrity of the data. Sequences of interactions between
students and educational content were preserved to capture temporal depen-
dencies and longitudinal learning trajectories effectively.

Furthermore, to ensure balanced representation of classes and mitigate
potential biases in the dataset, a sampling strategy was employed. The dataset
was balanced around either correctness or confidence, depending on the specific
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use case, using the RandomUnderSampler from the python imbalance-learn
package. This approach helped to address class imbalances and ensure that
the model learns from a diverse and representative set of examples, thereby
enhancing its generalization capability and robustness in Knowledge Tracing
tasks.

Model Training

The DBE-K22 dataset presented a sizable volume of data, with an initial
source dataset length of 305,794 instances. All experiments related to the
DBE-K22 dataset were conducted in a CUDA environment on Google Colab,
utilizing a free tier T4 GPU for computational acceleration.

Correctness Prediction
After employing the undersampling balancing strategy, the dataset was

balanced around correctness, resulting in the following breakdown:

• Correct (1): 71,021 instances

• Incorrect (0): 71,021 instances

The model training process remained consistent across experiments, em-
ploying the AdamW optimizer with a learning rate of 1e-5. Due to limited
hardware resources on the free-tier Google Colab, model training was con-
ducted for 3 epochs. From the balanced dataset, 30% of the instances were
reserved for testing, while the remaining 70% were used for training.

Results:

• AUC: 0.8558

• RMSE: 0.6163

• Accuracy (ACC): 0.8557

Confidence Prediction
For confidence prediction, a similar undersampling balancing strategy was

employed, resulting in a balanced dataset with the following distribution:

• Low Confidence (1): 22,603 instances

• Medium Confidence (2): 22,603 instances

• High Confidence (3): 22,603 instances

All other settings remained consistent with the correctness prediction task.
Results:
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• AUC: 0.9369

• RMSE: 0.6297

• Accuracy (ACC): 0.9159

Overall, the experiments conducted on the DBE-K22 dataset yielded promis-
ing results, demonstrating the efficacy of the proposed approach in predicting
both correctness and confidence levels in learners’ responses even while dealing
with environmental constraints for training on a relatively bigger dataset.

5.0.3 RIT Dataset

The experiments conducted over the Rochester Institute of Technology (RIT)
data were constrained by the limited participation of learners, with only 11
individuals contributing to a total of 550 unique learner data points. Maintain-
ing the anonymity of learners was a priority during data collection to ensure
privacy and compliance with ethical guidelines. The data collection procedure
was set to simulate the Reflection Assistance setup, where the learners essen-
tially rated their confidence before solving a problem. The table 5.4 describes
the curated dataset and it’s attributes in detail. Due to the scarcity of data
points, oversampling techniques were explored to maximize the utilization of
available data.

Oversampling Experiments:
For oversampling, the Synthetic Minority Over-sampling Technique (SMOTE)

from the imbalance-learn package was utilized. This technique aims to gener-
ate synthetic samples for minority classes, resulting in a more balanced dataset.
After applying SMOTE, the resulting balanced dataset contained more data
points than the original dataset.

Results for Correctness Prediction
After balancing the dataset using SMOTE for correctness prediction, the

results were as follows:

• AUC: 0.7829

• RMSE: 0.6891

• Accuracy (ACC): 0.7745

The balanced dataset, with equal representation of correctness labels, had
the following distribution:

• Count of Correctness = 1: 340
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• Count of Correctness = 0: 340

Results with Undersampling:
Subsequently, the predictions were repeated after balancing the dataset

using undersampling. For correctness prediction, the balanced dataset had
the following distribution:

• Count of Correctness = 0: 159

• Count of Correctness = 1: 159

The results obtained with undersampling were notably improved:

• AUC: 0.9677

• RMSE: 0.4204

• Accuracy (ACC): 0.9688

Similarly, for confidence prediction, the balanced dataset after undersam-
pling exhibited the following distribution:

• 0: 103, 2: 103, 1: 103

The results seem to not remain consistent with correctness prediction as
the evaluation metrics suggest that confidence prediction performs not as well
as correctness prediction for RIT dataset :

• AUC: 0.7262

• RMSE: 0.9252

• Accuracy (ACC): 0.6335

5.0.4 Experimentation Summary and Comparison with other
Metacognitive Models

When comparing the performance of the KT Fine-Tuned BERT model from
the BERT-Boosted KT Framework with existing models known for efficient
knowledge tracing, interesting observations emerge:
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Predicting Correctness:

When comparing the performance of the KT Fine-Tuned BERT model from
the BERT-Boosted KT Framework with other known models that utilize
metacognition, we refer to a seminal paper titled “Knowledge Tracing for
Adaptive Learning in a Metacognitive Tutor” [4]. In this study, the au-
thors leverage metacognitive inputs (specifically confidence reports from an
RA model) to train two distinct models:

• RA-BKT (Bayesian Knowledge Tracing): RA-BKT is a Bayesian Knowl-
edge Tracing model equipped to handle metacognitive inputs. It in-
corporates confidence information to enhance its predictions of learner
correctness.

• RA-ANN (Artificial Neural Network): RA-ANN is an ANN (Artifi-
cial Neural Network) designed for Knowledge Tracing with the use of
metacognitive inputs. Similar to RA-BKT, it leverages confidence re-
ports to improve its performance.

The authors then compare the results of these two developed models (RA-
BKT and RA-ANN) with a baseline BKT (Bayesian Knowledge Tracing) and
ANN (Artificial Neural Network) that predict correctness without considering
metacognitive inputs. Interestingly, both RA-ANN and RA-BKT outperform
the traditional BKT and ANN for the Knowledge Tracing task, highlighting
the importance of incorporating metacognitive information.

Now, let’s turn our attention to the BERT-based KT model fine-tuned
using the BERT Boosted Framework and similar metacoginitve inputs as used
in RA-ANN and RA-BKT. In an attempt to ensure the robustness of the
comparison, the synthetic dataset creation process in this study, follows the
steps closely as described by May Kristine Jonson Carlon and Jeffrey S. Cross
in their paper. This model demonstrates superior performance compared to
RA-BKT and RA-ANN. The comparison results are summarized in the table
5.5.

It’s essential to note that while developing RA-ANN and RA-BKT, the au-
thors consider KMA and KMB as inputs to the model. However, in real-world
scenarios of KT models, KMA and KMB cannot be evaluated beforehand.
These metacognitive inputs depend on both confidence and correctness val-
ues for a learner’s interaction with a problem. Since our goal is to predict
correctness, KMA and KMB are not available as input parameters upfront.
Therefore, the comparison results for the BERT-based KT model do not take
KMA and KMB into account.
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Predicting Confidence:

The landscape of predicting learner confidence in problem-solving scenarios
remains relatively uncharted. A comprehensive literature review revealed a
scarcity of existing work that specifically addresses this domain. Surprisingly,
no established benchmarks or widely recognized models have emerged to guide
researchers and practitioners in this area.

However, the exploration done in this study pertaining to confidence pre-
diction has yielded promising results. The accuracy of confidence predictions
suggest that this avenue holds potential for future investigation. As we con-
tinue to unravel the intricacies of learner behavior and cognition, predicting
confidence levels could become a pivotal aspect of personalized learning expe-
riences.

Experimentation Summary

The models developed as a part of the experimentation conducted for learners’
correctness and confidence prediction are summarized in table 5.6 along with
their respective evaluation metrics.
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Table Name Description

dbe question This pivotal table encapsulates all ques-
tion meta-data, serving as the primary
repository for question-related informa-
tion.

dbe choice Contains meta-data pertaining to choices
associated with each question, facilitating
the exploration of multiple-choice ques-
tions.

dbe hints Stores hint data tailored to questions,
aiding learners in navigating complex
problem-solving scenarios.

auth user Houses user login credentials and contact
information, essential for user authentica-
tion and communication purposes.

dbe transaction Records question answering transaction
data, including the state of answers, form-
ing the central data source for our analy-
sis.

dbe week Contains weekly exercise set data, orga-
nizing exercises into weekly structures to
facilitate course management.

dbe consentform Stores student consent data, including
specialization inquiries and confirmation
on course policies.

dbe specialization Serves as a lookup table for specialization
data, facilitating the categorization of stu-
dents based on their areas of focus.

dbe knowledgecomponent Holds meta-data pertaining to knowledge
components (KCs) within the course, cru-
cial for understanding the underlying cog-
nitive processes.

dbe knowledgecomponents dependendts Stores relationships between knowledge
components, enabling the exploration of
hierarchical knowledge structures.

dbe question kcs Records relationships between questions
and knowledge components, facilitating
the alignment of questions with specific
learning objectives.

Table 5.2: DBE-K22 Entity Types
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Field Description

student id Identifier for individual students participating in the learn-
ing activities.

knowledgecomponent id Identifier for knowledge components (KCs) associated with
the learning content.

knowledgecomponent name Name or label corresponding to knowledge components.

question id Identifier for individual questions posed to learners.

question text Textual content of the questions, encoded for machine pro-
cessing.

gt difficulty Ground truth difficulty level assigned to questions by course
instructors.

difficulty feedback Student’s feedback on the perceived difficulty level of ques-
tions.

hint used Binary indicator denoting whether a hint was utilized for a
given question.

prev difficulty feedback Student’s feedback on the perceived difficulty level of previ-
ous questions.

prev confidence Confidence level associated with previous responses.

prev correct Binary indicator denoting correctness of previous responses.

prev hint used Binary indicator denoting whether a hint was utilized for
previous questions.

prev time delta Time difference between current and previous responses,
capturing temporal dynamics.

confidence Confidence level associated with current responses (target
variable).

correct Binary indicator denoting correctness of current responses
(target variable).

text Additional textual information, such as comments or expla-
nations, if available.

Table 5.3: Description of Fields in the DBE-K22 Dataset
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Field Description

student id Identifier for individual students participating in the learn-
ing activities.

knowledgecomponent id Identifier for knowledge components (KCs) associated with
the learning content.

question id Identifier for individual questions posed to learners.

Confidence Confidence level associated with current responses (target
variable).

Correctness Binary indicator denoting correctness of current responses
(target variable).

Table 5.4: Description of Fields in the RIT Dataset

Table 5.5: Model Comparison Summary
Model Accuracy

BERT-Boosted Correctness Prediction (Synthetic Dataset
(CUDA Training) )

0.8834

BERT-Boosted Correctness Prediction (Synthetic Dataset
(MPS Training) )

0.8692

RA-BKT 0.845
RA-ANN 0.864
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Table 5.6: Performance summary of models trained
Model AUC RMSE Accuracy

BERT-Boosted Confidence Prediction (Synthetic Dataset
(CUDA Training) )

0.8828 0.7483 0.8459

BERT-Boosted Confidence Prediction (Synthetic Dataset
(MPS Training) )

0.7818 0.8912 0.7422

BERT-Boosted Correctness Prediction (Synthetic Dataset
(CUDA Training) )

0.8835 0.5843 0.8834

BERT-Boosted Correctness Prediction (Synthetic Dataset
(MPS Training) )

0.8693 0.6014 0.8692

BERT-Boosted Correctness Prediction (DBE-K22 Dataset
(CUDA Training) )

0.8558 0.6163 0.8557

BERT-Boosted Confidence Prediction (DBE-K22 Dataset
(CUDA Training) )

0.9369 0.6297 0.9159

BERT-Boosted Correctness Prediction (Over-sampled RIT
Dataset (CUDA Training) )

0.7828 0.6891 0.7745

BERT-Boosted Correctness Prediction (Under-sampled RIT
Dataset (CUDA Training) )

0.9677 0.4204 0.9687

BERT-Boosted Confidence Prediction (Under-sampled RIT
Dataset (CUDA Training) )

0.7262 0.9252 0.6335
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Conclusion

In conclusion, the experiments conducted across various datasets, including
synthetic data, open-source dataset, and data collected from the Rochester
Institute of Technology (RIT), have demonstrated the versatility and efficacy
of the proposed framework for Knowledge Tracing tasks. Through these ex-
periments, it is evident that the framework exhibits the capability to adapt to
different input sequences based on the specific use case requirements.

The framework’s flexibility was showcased through its ability to accom-
modate varying input parameters, such as correctness, confidence, question
text, and metadata, allowing for customization tailored to the learning con-
text. Moreover, the framework showcased robust performance across different
datasets, indicating its potential applicability in diverse educational settings.

6.1 Observations over each model creation

Synthetic Dataset Models:

The models created using synthetic datasets played a crucial role in establish-
ing a baseline success metric for the approach discussed in this report. Given
that metacognitive input for knowledge tracing (KT) models is not abun-
dantly explored in the KT literature, it was challenging to ascertain whether
the framework developed would yield the desired results. By meticulously con-
structing synthetic datasets following the steps outlined in the paper “Knowl-
edge Tracing for Adaptive Learning in a Metacognitive Tutor,” the BERT
KT models trained through our framework were compared with the originally
proposed RA-BKT and RA-ANN by the authors. This comparison provided
valuable insights into the experimental direction. Subsequently, we extended
these ideas to other datasets.

61
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DBE-K22 Dataset Models:

Finding a real-world learner dataset with metacognitive attributes proved to be
a challenge. While widely used KT datasets like ASSISTments lack metacog-
nitive attributes, the DBE-K22 dataset came to the rescue. Its rich and abun-
dant data allowed us to explore the framework’s capabilities further. Notably,
the use of DBE-K22 data demonstrated that with more training examples, the
framework could curate more accurate KT models. The dataset’s unique at-
tributes, such as historical learner interactions with course material, facilitated
easy experimentation and highlighted the framework’s helpfulness.

RIT Dataset Models:

Despite the limited data points in the RIT dataset, the KT models performed
remarkably well for correctness prediction. Intriguingly, when the data was
augmented through oversampling to balance the dataset, the resulting mod-
els were less accurate, even though they were trained on more data. How-
ever, when the framework was leveraged to develop models with undersam-
pled data, accuracy increased. This observation underscores the framework’s
domain adaptability, allowing seamless adjustments to changing learning en-
vironments.

In summary, these observations collectively emphasize a grand theme: the
framework opens up a multitude of possibilities for exploring and understand-
ing KT models. Its flexibility, adaptability, and ability to handle diverse
datasets empower researchers and educators alike in their pursuit of effective
adaptive learning solutions.

6.2 Future Work

The Knowledge Tracing (KT) framework developed in this study holds promise
for future advancements in Intelligent Tutoring Systems (ITS). The frame-
work’s flexibility and adaptability make it a valuable tool for exploring vari-
ous hypotheses and addressing diverse educational challenges. It is envisioned
that the output capabilities of the framework could be leveraged by future
researchers and developers to quickly explore new ideas and innovations in
the field of KT.
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6.2.1 Meta-cognitive monitoring along with cognitive moni-
toring

One promising avenue for future research is the integration of meta-cognitive
monitoring alongside cognitive monitoring within the KT framework. Meta-
cognitive monitoring involves assessing learners’ awareness (KMA) and out-
look (KMB) regarding their own learning process. By evaluating KMA and
KMB alongside traditional cognitive measures, such as correctness and confi-
dence prediction, the framework can provide a more holistic understanding of
learners’ cognitive processes.

Having access to KMA and KMB values for each learner opens up oppor-
tunities for personalized interventions within ITS platforms. For example, if a
learner exhibits low KMA or KMB, automated interventions can be triggered
using fine-tuned Language Model prompts. These interventions can address
specific learning needs, such as addressing shallow learning by providing ad-
ditional challenging questions that require deeper understanding.

In ITS systems facilitated by instructors, KMA and KMB values can be
provided to instructors to guide their interventions. For instance, instructors
can intervene when learners exhibit signs of shallow learning, thereby enhanc-
ing the effectiveness of the learning experience. The flexibility provided by
the framework enables the prediction of confidence values even in scenarios
where learner-derived data is not available. This ensures that metacognitive
training can be integrated seamlessly into the learning process without adding
unnecessary burden.

Shallow learning occurs when learners acquire superficial knowledge with-
out fully grasping underlying concepts or principles. By evaluating KMA and
KMB alongside cognitive measures, such as correctness and confidence pre-
diction, the KT framework can identify instances of shallow learning more
effectively. For example, if a learner consistently demonstrates high correct-
ness but low confidence or exhibits inconsistent meta-cognitive monitoring
patterns, it could indicate a reliance on memorization or surface-level under-
standing rather than deep comprehension.

One of the key advantages of integrating KMA and KMB into the KT
framework is the flexibility it offers in assessing confidence levels. Traditional
approaches rely on learners’ self-reported confidence values, which may not al-
ways be available or reliable, especially in automated learning environments.
However, by leveraging the framework’s predictive capabilities, confidence lev-
els can be inferred from learners’ correctness patterns. This eliminates the
need for explicit confidence reporting and ensures a seamless integration of
meta-cognitive assessment into the learning process.
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Furthermore, by automating the prediction of confidence levels, the burden
of metacognitive training is significantly reduced. In traditional approaches,
explicit metacognitive training often requires additional time and resources,
potentially detracting from the primary learning objectives. However, with the
predictive capabilities of the KT framework, metacognitive assessment can be
seamlessly integrated into the learning process without imposing an additional
burden on learners or instructors.

In summary, integrating meta-cognitive monitoring alongside cognitive
monitoring within the KT framework opens up new avenues for addressing
educational challenges and enhancing personalized learning experiences. By
leveraging the framework’s capabilities, future research can explore innovative
approaches to support learners’ cognitive and meta-cognitive development in
educational settings.

6.2.2 Leveraging Domain Adaptability

The utilization of pre-trained language model, such as BERT (Bidirectional
Encoder Representations from Transformers), facilitates domain adaptability
within the Knowledge Tracing (KT) framework. Specifically, employing the
bert-base-uncased model allows for seamless adaptation to various educational
domains, as evidenced by the experiments conducted, particularly with the
RIT dataset. Despite being the smallest dataset among the three examined,
the model demonstrated the ability to quickly adapt, underscoring its domain
adaptability.

Domain adaptability in KT is paramount for accommodating changes in
learner subjects or classes. As learners transition between different subjects
or courses, their learning patterns and behaviors may vary. By leveraging
domain-adaptable models like BERT, the KT framework can efficiently adjust
to these changes without the need for extensive retraining or customization.
This ensures that the model remains effective and accurate across diverse
educational contexts.

The significance of domain adaptability in KT lies in its ability to enhance
the scalability and applicability of intelligent tutoring systems (ITS). As ed-
ucational environments continue to evolve, ITS platforms must be capable of
accommodating dynamic changes in curriculum, instructional methods, and
learner populations. By incorporating domain-adaptable KT frameworks, ed-
ucators and developers can create more robust and flexible ITS solutions that
effectively address the evolving needs of learners.

Moreover, domain adaptability enables KT frameworks to generalize knowl-
edge and insights gained from one educational domain to others. This transfer-
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ability of knowledge enhances the efficiency of model training and accelerates
the deployment of KT solutions in new educational settings. Additionally,
it promotes knowledge sharing and collaboration among educators and re-
searchers across different domains, fostering innovation and advancement in
educational technology.

6.2.3 Leveraging Framework’s Flexibility

The framework’s inherent flexibility lies in its ability to adapt to varying target
variables and input attribute sequences, offering researchers the opportunity
to explore the significance of different attributes in Knowledge Tracing (KT)
problems. This flexibility is exemplified by the framework’s capability to seam-
lessly switch between predicting confidence and correctness, depending on the
availability of learner responses and the specific use case.

One of the key aspects of the framework’s flexibility is its adaptability to
different target variables. Researchers can choose to predict either confidence
or correctness based on the requirements of their study or the characteristics
of their dataset. For instance, predicting confidence may be more relevant
in scenarios where learners’ self-assessment is critical for understanding their
learning progress, while predicting correctness may be preferable in contexts
where objective performance evaluation is prioritized.

Furthermore, the framework’s flexibility extends to the sequence of input
attributes used for prediction. Researchers have the flexibility to experiment
with different attribute sequences, allowing them to explore the impact of
various factors on KT performance. For example, some researchers may in-
vestigate the influence of time attributes, such as response time or time since
last interaction, on model training and prediction accuracy. Others may fo-
cus on attributes related to learner behavior, such as hint usage or previous
correctness patterns, to gain insights into learning strategies and cognitive
processes.

Moreover, the framework’s flexibility opens up possibilities for exploring
the significance of additional attributes beyond the standard features com-
monly used in KT models. Researchers may choose to incorporate domain-
specific attributes, learner demographics, or instructional features into the in-
put sequence to better capture the complexities of the learning environment.
This flexibility enables researchers to tailor the KT framework to their specific
research questions and hypotheses, fostering innovation and advancement in
the field of educational data mining.
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