3D Printed Soft Robotics

Prosthetic Hand

Louis Beardell
Episcopal Academy 2023
PJAS Region 1A

Advisor/Sponsor : Dr. Colyer

Advisor: Mr. Memmo

Inspiration

Exploring the broader applications of 3D printing within the robotic prosthetics industry.

Reasoning

Speed

Rapid prototyping allows creators to design, manufacture, and test their custom palms and actuators at minimal cost in as little time as possible.

Customization

Every use case is unique. Individuals can create custom solutions to suit their specific needs.

Accessibility

Desktop 3D printers are becoming increasingly cost effective, allowing this technology to reach more people.

Goals

3D Printed Actuators

Direct 3D Printing of personalized soft robotic fingers without the need for post-processing.

3D Printed Palm

Create a palm to house necessary components and act as an interface between fingers and the forearm.

Integration of Valves

Unique to this project, the solenoid valves that operate the hand are stored inside the palm.

The Solution

A fully 3D printed Soft Robotic Prosthetic Hand (Palm, Actuators, and Valves) utilizing pressured air.

3D Printing Technologies

Fused Deposition Modeling (FDM)

 FDM 3D printing works by extruding plastic filament through a heated nozzle and depositing layer after layer onto a heated print bed.

Stereolithography (SLA)

 SLA 3D printing uses UV lasers to systematically cure a polymer resin.

3D Printers

Original Prusa i3 MK3S+ (FDM 3D Printer)

Anycubic Photon Mono X (SLA 3D Printer)

How do Soft Robotics Work?

Existing Soft Robotic Devices

Soft Robotics Toolkit

- Many actuator designs stemming from the Soft Robotics Toolkit involve a lengthy and technical fabrication process that involves:
 - 3D Printed Molds
 - Silicone
 - Fabrics

Fluidic Control Board

Soft Robotics Toolkit

- Tool used for prototyping and testing
- Allows for individual control of actuators
- PWM Control over Solenoid valves using Potentiometers
- Feedback from pressure sensors through serial monitor allow for verification and testing of vario levels of PSI.
- Figure 1 Soft Robotic Toolkit Design
- Figure 2 My own Fluidic Control Board

Pneumatic System

Pneumatic System

- Pneumatic air is used to precisely inflate the actuators (fingers) and bend them into desired positions.
- Allows for ergonomic gripping of objects
- Initial work was done with a mini vacuum pump.
 - 40L/min
- Final testing used a pancake air compressor
 - 150 max PSI

Actuators - Final Design

Important Elements:

- Layer height .2mm
- Infill 100%
- Support under pneumatic extension
- Foot Wall thickness .6mm
- Foot length 4.2mm
- Initial air compartment size 12.8mm
- Side wall thickness 1mm
- Length of tubing interface 13mm
- Thickness of tubing interface Imm

Figure 2

Figure 3

Figure 4

Actuators - SLA Prototyping

- Printed using Anycubic Photon Mono X
- Materials
 - o F69
 - Shore Hardness 60-75A
 - Elongation at break 255.1%
 - Flexible X
 - Shore Hardness 55A
 - Elongation at Break 160%
- Post Processing
 - Anycubic Wash & Cure Plus
- 12+ Prototypes

Actuators - FDM Prototyping

- Printed using **Original Prusa i3 MK3S+**
- Materials
 - Polymaker TPU
 - Shore Hardness 95A
 - Elongation at Break 331.1%
- 15+ Prototypes

Data - Actuator Prototyping

Version Number	Foot Wall Thickness (mm)	Distance Between Feet (mm)	Material	Result
MK-1	1	2	Resione F69	Structure Failure
MK-2	.75	5	Resione F69	Structure Failure
MK-3	.75	2	Liqcreate Flexible-X	Structure Failure
MK-4	.75	2	Liqcreate Flexible-X	Structure Failure
MK-5	.75	2	Liqcreate Flexible-X	Structure Failure
MK-6	1	2	Liqcreate Flexible-X	Structure Failure
MK-7	1	2	Liqcreate Flexible-X	Structure Failure
MK-8	1.5	3	Liqcreate Flexible-X	Structure Failure
MK-9	1.5	3	Liqcreate Flexible-X	Structure Failure
MK-10	1	3	Polymaker PolySmooth TPU95	Low Flexibility
MK-11	1	2	Polymaker PolySmooth TPU95	Low Flexibility
MK-12	.6	1	Polymaker PolySmooth TPU95	Success

Palm - Design

- An existing 3D model of a Hand was used as a base for the design.
- Model was scaled and hollowed, followed by the creation of a cavity to house the components, and pathways were created for pneumatic tubing.
- The Fingers were removed systematically by using existing model lines and replaced with soft robotic actuators.

Palm - Prototyping

- Initial printing performed on FDM Printer
- Moved over to SLA for improved print quality and improvement of complex geometries on the interior.
- The translucent printing resin allows insight on the interior cavity.
- 7+ Prototypes

Palm - Mass Reduction Analysis

• A Soft Robotic hand needs to be as lightweight as possible to ensure the comfort of the amputee and reduce fatigue.

Mass Analysis of Palm Prototypes

Palm - Components

- Five microvalves are utilized inside the palm
- Pneumatic Tubing is secured to the actuators using CA Glue and activator
- Figures 3-5 are ongoing research on embedding force sensors into the actuators.

Custom Control Board

- Components
 - 2x Mosfet Switch Module
 - o lx Arduino Uno
 - 2x Voltage Regulator
 - 24V Power Supply
- Refined from Original Fluidic Control Board that included:
 - 1x Mosfet Switch Module
 - o lx Arduino Uno
 - 2x Voltage Regulator
 - 4x Manual Switches
 - 4x Potentiometers
 - 4x BP Pressure Sensors
 - 24V Power Supply

Cost Summary

Fittings	52.95
Valves (5x)	658.58
Mosfet Switch Module (2x)	46.60
Arduino Uno	22.77
Breakout Module	20.99
Voltage Regulator (2x)	33.78
24V Power Supply	20.99
Total	\$856.66

Programming (Sample)

Portion of BP Code

```
void loop() {
  float P1 = (analogRead(A8)/1024.0 - 0.1)*100.0/0.8;
  float P2 = (analogRead(A9)/1024.0 - 0.1)*100.0/0.8;
  float P3 = \frac{\text{analogRead}(A10)}{1024.0} - 0.1*100.0/0.8;
  float P4 = (analogRead(A11)/1024.0 - 0.1)*100.0/0.8;
  // print pressure readings
  Serial.print(P1); Serial.print("\t");
  Serial.print(P2); Serial.print("\t");
  Serial.print(P3); Serial.print("\t");
  Serial.print(P4): Serial.print("\n"):
digitalWrite(PinOne, HIGH);
  if(P1<110){
    diaitalWrite(PinOne, HIGH):
else {
  digitalWrite(PinOne, LOW);
```

Portion of FSR Code

```
void loop() {
    // Read the FSR pin and store the output as fsrreading:
    fsrreading = analogRead(fsrpin);
    // Print the fsrreading in the serial monitor:
    // Print the string "Analog reading = ".
    Serial.print("Analog reading = ");
    // Print the fsrreading:
    Serial.print(fsrreading);

if (fsrreading < 500) {
    digitalWrite(PinOne, HIGH);
    } else if (fsrreading > 500) {
        digitalWrite(PinOne, LOW);
}
```

Final Design - Palm and Actuator

Assembled Mass - 310g

Back

Front

Independent Movement

Tennis Ball

Egg

Ski Pole

Individual Finger Movement

Future Research

Soft Robotic Hand

Phase 1 of the project was the research presented here.

Forearm Control System

Phase 2 of this project aims to create a control system that is small enough to fit in a forearm sized extrusion. This will be based of the custom control board presented earlier.

Myoelectric Control

Phase 3 of the project aims to control the hand using electric signals generated by the subjects existing muscles. These will interact with Pressure sensors embedded in each actuator.

Acknowledgements

- Harvard Soft Robotics Toolkit
- The Episcopal Academy
- The Clare Foundation

Work Cited

- Soft Robotic Toolkit <u>https://softroboticstoolkit.com</u>
- Human Hand 3D Model https://grabcad.com/library/human-hand-1
- Presentation Template
 https://slidesgo.com/theme/robotic-workshop
- Existing Skiing Prosthetic <u>https://www.trsprosthetics.com/product/snow-skiing-downhill-racer-ski-td/</u>
- 3D Printing https://www.makerbot.com/stories/engineering/advantages-of-3d-printing/