What Are the Potential Benefits of Automated Feeding Robots?

Introduction to Automated Mixing & Feeding Robots

- Automated feeding systems are not new, but feeding robots are!
 - Previous systems were rail-guided or conveyer belt distributors
- Robotic systems are battery-powered self-propelled
- Laser-guided and programmable to feeding fence
- Most feed up to ~ 12 times per day depending upon herd size and pen length

https://www.youtube.com/watch?v=oyiboTl8R6I

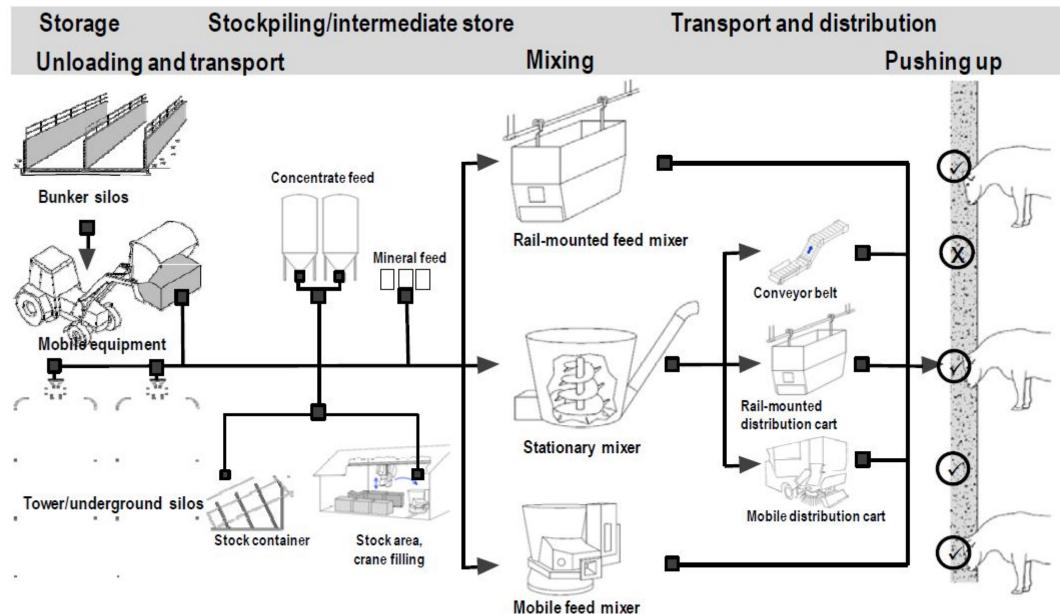
Existing Automated Feeding Robots on the Market

Lely Vector*

AMS Galaxy Aranom

Triolet Triomatic*

Wasserbauer Shuttle Eco


*Currently have systems in the U.S.

Summary of Available Automated Feeding Systems

Product	Mixing in Robot?	Tub Volume	Load Capacity	Herd Size Served	Speed	Times Fed/D
AMS Galaxy Aranom	Yes	141 ft ³	2397 lbs.	425 cows	0.62 to 0.93 mph	6
DeLaval OptiWagon	No- Uses stationary mixer	88 ft ³	1760 lbs.	425 cows	0.62–1.24 mph	Up to 32
Lely Vector	Yes	71 ft ³	1322 lbs.	≤ 300 cows	0.37 – 0.75 mph	8 to 14
Lely Vector MFR Next	Yes	71 ft ³	1760 lbs.	425 cows	0.75 mph	8 to 14
Triolet Triomatic MB	Yes	88 ft ³	1984 lbs	≤ 300 cows	0.31	8 to 12
Wasserbauer Shuttle Eco	Yes	77 ft ³	1760 lbs.	250 cows	0.62–0.93 mph	10 to 10

Feed Kitchen Design

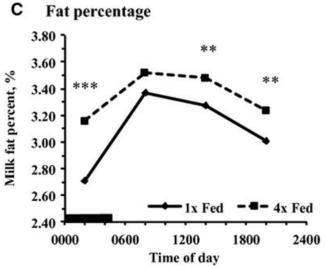
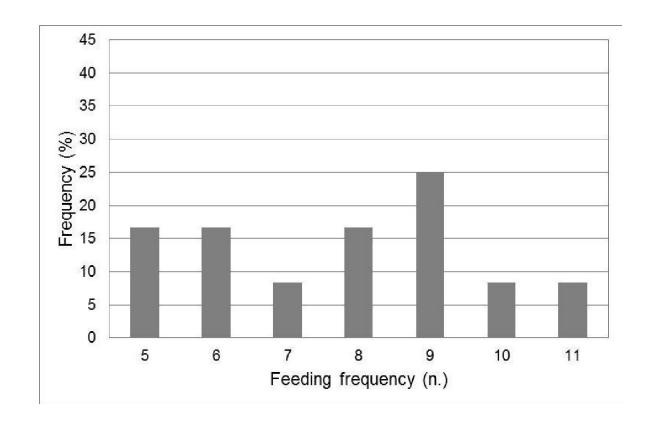

- Every feed kitchen is different!
 - Can be customized to your system
- Careful with feed losses & sorting

Table 2. Daily milk production and feed intakes in cows fed once per day or in four equal meals every 6 h when milked every 6 h.


	Treatment ¹			<i>P</i> -values	2	
Parameter	1× Fed	4× Fed	SEM	Trt	Time	Trt × Time
Milk Yield,	47.3	47.1	1.5	0.64	<0.001	0.05
Fat, % Fat Yield, g/day	3.09 1465	3.35 1592	0.15 90	<0.001 <0.001	<0.001 <0.01	<0.05 0.05
Protein, %	2.96	2.90	0.03	< 0.001	< 0.001	< 0.001
Protein Yield, g/day	1389	1360	45	0.06	<0.01	<0.05
DMI, kg	28.2	30.4	1.0	<0.01	<u> 12</u>	-

Increased Frequency of Feeding Delivery can Increase Milk and Especially Milk Fat production

Bisaglia et al. (2012) study – feeding frequency in 22 herds with AFR

We conducted an observational study to compare herds with and without AFR

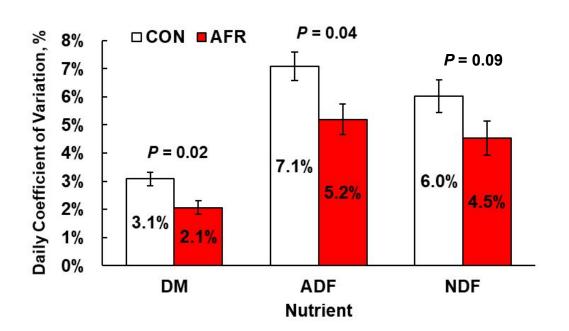
- Herds located in MN, IA, and WI (8 Conventional, 8 AFR)
- Pair matched based on:
 - Geographic location: within 60 miles
 - Breed
 - Diet ingredient composition
 - All herds had Lely Automated Milking Systems
 - AFR had to be on farm for at least 1 year
- TMR was sampled from both herds at 4 times (5 AM, 11 AM, 5 PM, 11 PM) each day for 3 days [within 1 h of each other]
- Bulk tank milk samples were collected for fat, protein and FA analysis
- Visit behavior to AFS was determined

Demographics of Herds Enrolled in the Experiment

Block	Dates Visited	Location	# of <i>i</i>	AMS ¹		ows in nk	Cows	s/AMS	Averaç	ge DIM		rage rity		ınk e/Cow	x Fed/d
			CFS	AFR	CFS	AFR	CFS	AFR	CFS	AFR	CFS	AFR	CFS	AFR	CFS
1	8/9/21- 8/12/21	NE IA	2	3	111	188	55.5	62.7	157	190	2.6	2.6	16.8	14.2	2
2	8/28/21- 8/30/21	Central WI	4	2	207	116	51.8	51.8	204	181	1.8	2.1	27.8	23.3	2
3	8/28/21- 8/30/21	Central WI	2	1	113	65	56.5	44	189	131	2.2	2.5	30.1	22.3	2
4	10/02/21-10/04/2 1	Central MN	2	3	134	181	67	60.3	164	193	2	2.2	17.5	17.9	2
4	10/16/21- 10/19/21	SE MN	2	2	125	125	62.5	62.5	151	194	2.1	2.2	20.8	31.9	1
6	11/24/21- 11/26/21	NW MN	3	3	132	177	44	59	240	208	2.1	2.3	17.7	15.7	2
7	11/27/21- 11/29/21	NW MN	2	3	154	170	77	56.7	196	205	2.5	2.8	22.3	19	2
8	01/31/22 - 2/3/22	Central MN	2	3	200	116	66.7	58	188	195	2.5	2.6	25.2	17.6	1
Ave.			2.5	2.4	147	142	60.1	56.9	186	187	2.2	2.4	22.3	20.2	1.75

Nutrient composition at the feed bunk by feeding system and time

	Feeding System					SEM	<i>P-</i> \	/alue			
	С	CFS			AFR			<u> </u>			
0500	h 1100 h	1700 h	2300 h	0500 h	1100 h	1700 h	2300 h		System	Time	$S \times T^3$
Feed Bunk Nutrient											
Composition											
DM, % 46.9	47.6	47.8	47.6	45.8	46.1	45.9	45.7	1.44	0.44	0.33	0.57
CP, % of DM 15.7	15.9	15.8	15.7	15.7	15.7	15.5	15.5	0.34	0.68	0.51	0.64
SP, % of DM 6.38	6.36	6.57	6.51	6.27	6.18	6.15	6.21	0.37	0.64	0.54	0.12


No Difference Was Observed for system, time or the interaction of system and time

	Starch, % of DM	25.4	24.9	25.4	25.0	24.6	24.0	24.0	24.2	1.10	0.61	0.73	0.95
	ESC, % of DM	4.10 ^{xy}	4.01 ^y	4.49 ^x	4.18 ^{xy}	4.92 ^x	4.75 ^x	4.81 ^x	4.55 ^x	0.38	0.30	0.05	0.08
	Total FA, % of DM	2.90	2.87	2.90	2.87	2.78	2.76	2.77	2.76	0.10	0.41	0.95	0.99
	Ash, % of DM	8.35	8.33	8.39	8.30	7.79	7.73	7.72	7.72	0.24	0.12	0.78	0.80
	Feed Bunk Particle Size Distribution												
	Upper Sieve (> 19 mm), %	21.4	21.8	20.4	21.5	23.1	22.4	22.4	24.5	4.25	0.76	0.58	0.77
	Middle Sieve (19 to 8 mm), %	36.5	36.6	37.1	37.4	35.3	36.0	35.5	35.0	3.50	0.78	0.96	0.75
	Lower Sieve (8 to 4 mm), %	13.5 ^y	13.6 ^y	13.5 ^y	12.8 ^y	16.2 ^x	16.4 ^x	18.2 ^x	15.9 ^x	1.27	0.06	0.31	0.59
. (2 B9ttAmmB&n \$1 8 14 <u>Impo)</u>/1861.org/10	0 23 960/an	ni 2:8 0 :8 110	<u>3</u> 28.9	28.3	25.3	25.2	23.9	24.6	1.94	0.19	0.91	0.52

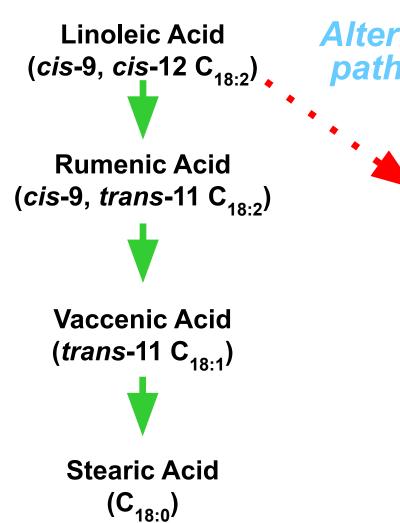
Kamau et al.

Feed bunk dry matter and fiber concentration were less variable across the day in herds with AFR

	Feeding	System	SEM	<i>P</i> -Valu
Item	CFS	AFR	SEIVI	е
Daily Variation in PMR Nutrient				
Composition ³				
CV of CP, %	2.50	3.23	0.32	0.15
CV of SP, %	5.27	3.40	0.94	0.22
CV of ADIN, %	4.53	3.08	0.72	0.20
CV of NDIN, %	7.33	6.03	0.86	0.26
CV of Lignin, %	7.40	6.26	5.19	0.40
CV of Ethanol-Soluble Carb., %	13.0	8.42	3.08	0.32
CV of Starch, %	6.44	5.38	0.65	0.32
CV of Total Fatty Acids, %	7.34	8.75	0.74	0.21
CV of Ash, %	2.92	3.30	0.50	0.61

No difference in variation of particle size distribution was observed

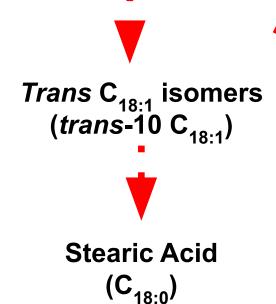
	Feeding System		SEM	P-Value
Item	CFS	AFR	SEIVI	r-value
Daily Variation in PMR Particle Size				
Distribution ⁴				
CV of Upper Sieve (> 19.0mm), %	23.3	26.7	3.02	0.41
CV of Middle Sieve (19.0 to 8.0 mm), %	8.84	10.3	1.78	0.57
CV of Lower Sieve (8.0 to <u>4.0</u> mm), %	6.80	12.1	2.74	0.20
CV of Bottom Pan (< <u>4.0</u> mm), %	10.7	13.4	2.15	0.33



Milk Yield and Components did not differ between feeding systems

	Feeding S	System	SEM	P-Value
Item	CFS	AFR	SEIVI	P-value
Milk yield, kg/d	37.5	37.3	0.25	0.68
Milk fat indication ² , %	4.01	4.03	0.010	0.18
Milk protein indication, %	3.12	3.14	0.020	0.51
Fat yield ³ , g/d	1503	1499	9.76	0.84
Protein yield ⁴ , g/d	1170	1172	7.23	0.90
Fat + protein, g/d	2676	2670	16.72	0.87

De novo fatty acids are indicative of rumen fermentation



Alternative pathways

Alternate CLA isomers (*trans*-10, *cis*-12 C_{18:2})

Risk factors for alternative:

- Excessive polyunsaturated fats
- Rapidly fermentable diets
- Ionophores
- Poor bunk management
 - "Slug feeding" can cause rapid drop in pH

Reduced *De novo* fatty acid synthesis

Milk fatty acid profile can tell us about rumen function

We can tell properties about fatty acids based on their carbon chain length

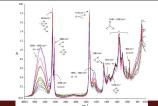
Chain Length	Source
< 16 carbons	De novo synthesis
16 carbons	Both De novo & preformed
> 16 carbons	Preformed

How do we know this?

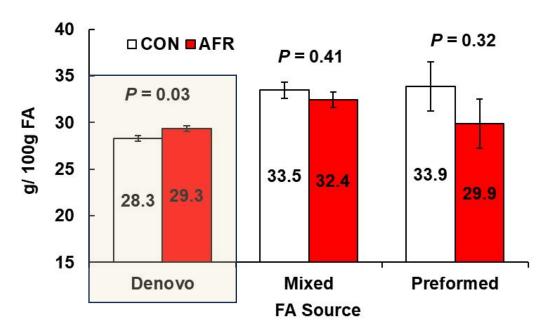
- Plant fats are all over 16 C or greater
- The mammary gland cannot synthesize fats >16C

De novo synthesized fatty acids are more highly correlated with total milk fat

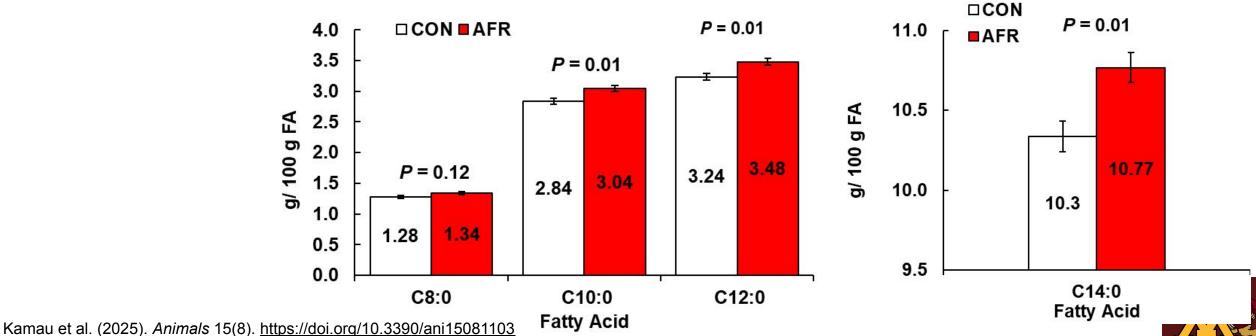
A reduction in de novo FA is indicative of milk fat depression

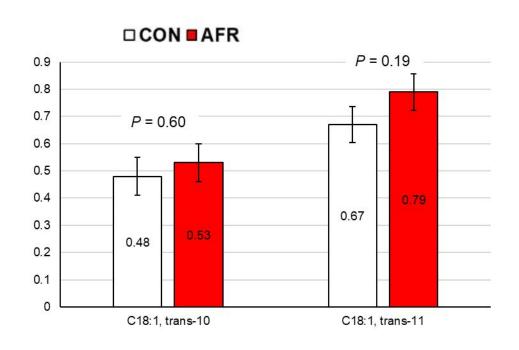

A reduction in preformed FA can indicate decreased lipid mobilization or opportunity

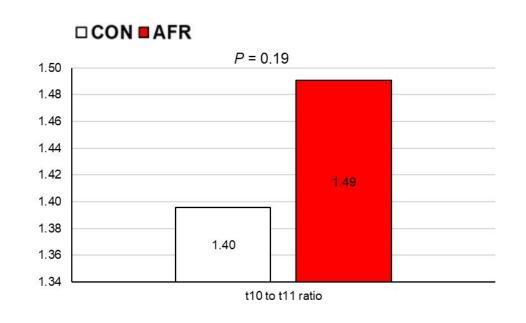
for fat feeding


Source	% of total FA
De novo	20-30%
Mixed	~35%
Preformed	35-40%

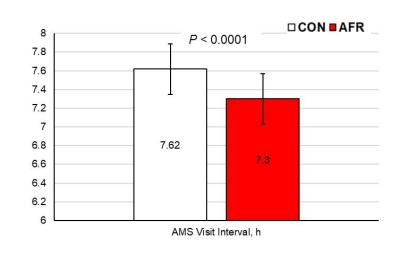
Currently, many milk testing labs can analyze for de novo, mixed and preformed FA

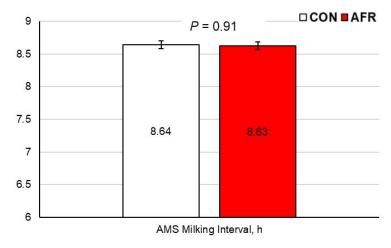


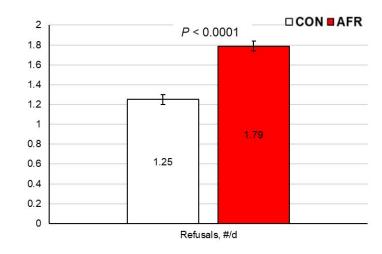


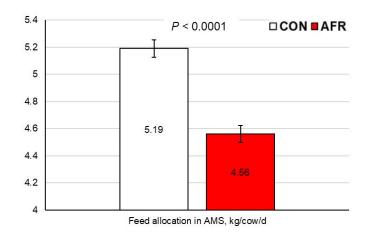


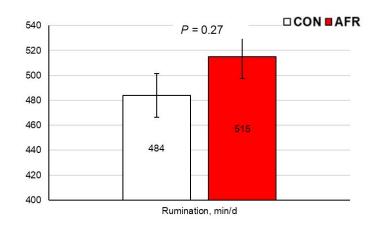
Herds with AFR had increased de novo synthesized fatty acids


No difference in trans-10 or trans-11 C18:1 were observed








Herds with AFR had a shorter visit interval greater refusals, and lower feed allocation in the robot

Kamau et al. (2025). *Animals* 15(8). https://doi.org/10.3390/ani15081103

Study Limitations

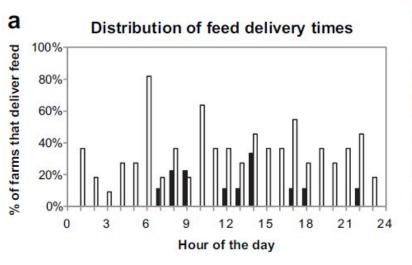
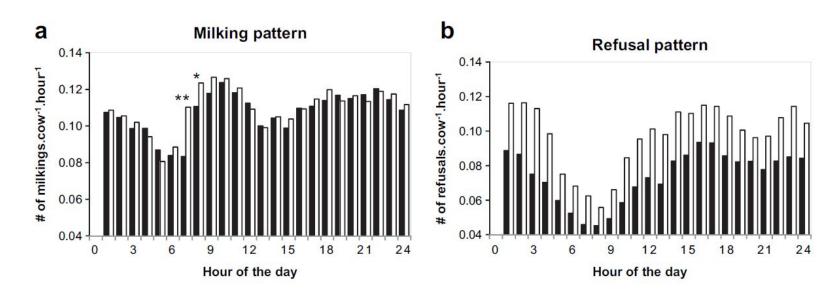

- Limited # of farms
 - Used all but 1 vector herds in the Upper Midwest at the time
- Uncontrolled variation
 - No direct comparison of automated vs. conventional feeding on the same operation
- Did not study similar metrics with other brands of feeding systems
- No daily feed intake or feeding behavior recorded
- Unable to collect feeding frequency of AFR herds
- Did not measure true sorting because PMR sampling was collected based on time of day not time relative to feeding

Table 1 — Main characteristics of the farms with conventional feeding systems (CFS) and of the farms with automatic feeding systems (AFS).

Feeding system	CF	S	AF	S	
Number of farms	9	1	11		
General characteristics	Mean	s.d.	Mean	s.d.	
No. of cows farm ⁻¹	88.2	52.7	80.7	23.7	
Milk production, kg cow ⁻¹ year ⁻¹	8705	845	8900	697	
No. of AMS farm ⁻¹	2.0	1.1	2.2	0.8	
No. of cows AMS ⁻¹	42.4	11.3	40.6	7.7	
Milking and feeding related action	s				
No. of feed deliveries day ⁻¹	1.4	1.0	7.4	1.7	
No. of feed push-ups day-1	2.3	1.3	0	0	
No. of AMS cleanings day ⁻¹	2.60	0.52	2.75	0.45	
No. of fetchings day ⁻¹	2.0	0	2.1	0.51	


Belle et al (2012) study in the Netherlands

Belle et al (2012)

Feeding system	Daily number of milkings	Daily number of refusals	Daily number of failures	Daily occupation of the AMS
	-	No. cow ⁻¹ day ⁻¹		% day ⁻¹
CFS	2.567	2.056	0.105	59.71
AFS	2.614	2.483	0.118	56.83
s.e.d.	0.123	0.515	0.027	4.131
P value	0.71	0.42	0.64	0.49

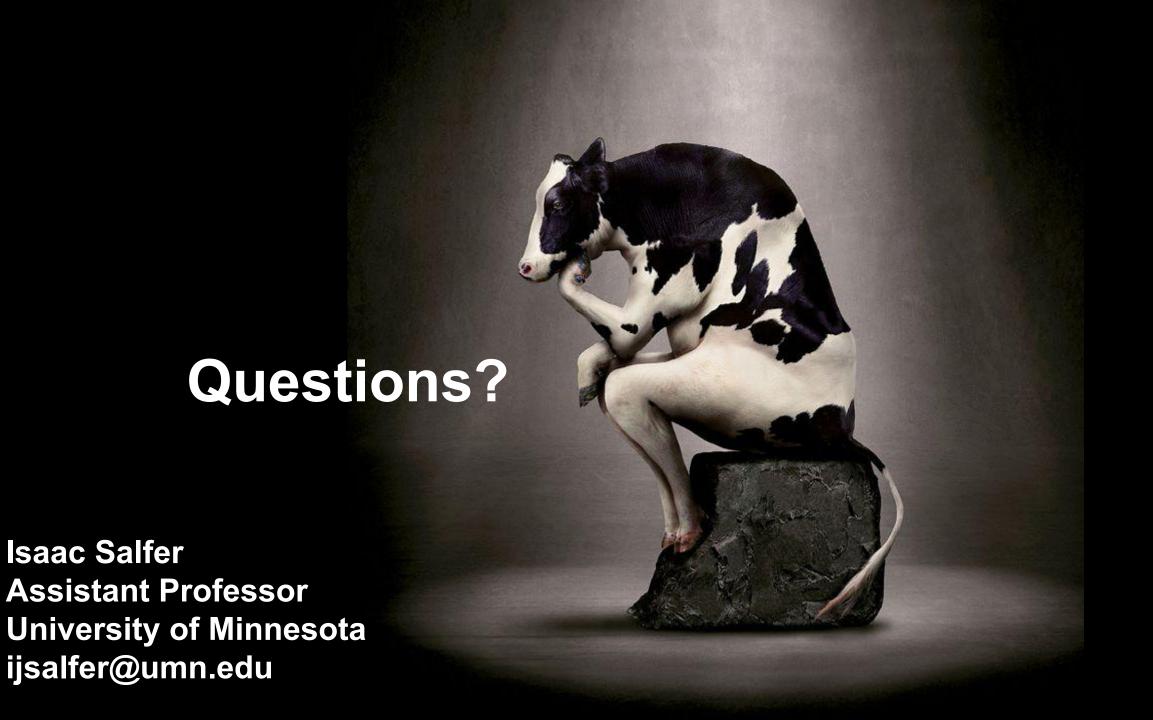
Observations/Comments from the Field

- Reduced energy costs by switching from gas-powered TMR mixer to electric AFR
- Increased cow activity in the barn & fewer fetches after implementing AFR
- Less frequent feed cleanup
 - Herds typically removed feed from the bunk about every week
- Like all technology, there is an adjustment period after adoption
- Variable reports about feed mixing consistency
- Limited herd size current systems are designed for herds <300 cows

Picture courtesy of Jake Pisig, JTP Farms

Summary

- Major advantage is labor savings and flexibility
- Opportunity to reduce feed shrink through more precise feeding
 - Can feed to essentially <1% refusals pretty easily
- Currently difficult to implement on larger farms due to small capacity mixer & needing to run multiple systems
- Definitely seems to stimulate cow activity and improve cow flow due to more frequent feeding
- Does not appear to be major impacts on production of cows
- Could allow more flexibility # of rations fed
 - Both for different groups or even within a day
- I do believe that automated feeding has future of feeding cows, but new options with ability to feed more cows/unit are required before I see large scale adoption in the U.S.



Self-Driving Feed Delivery Truck

Automated silage extractor

