
Lab 2. Some Logic
Review

Sampling a Vector
Vector to select from
a <- c(1, 2, 3, 4)
Without replacement & Equal Probabilities
sample(a, size = 2, replace = FALSE)

[1] 4 3

With Replacement \& Equal Probabilities
sample(a, size = 12, replace = TRUE)

 [1] 1 3 2 4 3 3 3 2 1 4 4 1

With Replacement \& UNEQUAL Probabilities
sample(a, size = 12, replace = TRUE, prob = c(0.05, 0.05, 0.1, 0.7))

 [1] 4 4 4 4 4 4 4 4 4 4 1 4

Help Menu

Type ? before the function’s/command’s name ### Logical Vectors

Don't name a variable TRUE or FALSE
A <- c(TRUE, TRUE, FALSE, FALSE) #must be in caps
B <- c(T, F, T, F) #must be in caps

Logical Operators - Vectorized
Using the Vector A and B from above
!A #NOT, NEGATION - NOT TRUE is FALSE, NOT FALSE is TRUE

[1] FALSE FALSE TRUE TRUE

A && B #Scalar-AND -> First elements Both TRUE for TRUE, otherwise FALSE

[1] TRUE

A & B #Vector-AND - Both TRUE for TRUE, otherwise FALSE

[1] TRUE FALSE FALSE FALSE

A || B #Scalar-OR -> First elements At least one TRUE for TRUE, otherwise FALSE

[1] TRUE

A | B #Vector-OR - At least one TRUE for TRUE, otherwise FALSE

[1] TRUE TRUE TRUE FALSE

Comparisons
Element by Element comparisons
x <- c(1, 2, 3, 4, 5)
y <- c(5, 4, 3, 2, 1)
x == y # equality

[1] FALSE FALSE TRUE FALSE FALSE

x != y # inequality

[1] TRUE TRUE FALSE TRUE TRUE

x <= y

[1] TRUE TRUE TRUE FALSE FALSE

x < y

[1] TRUE TRUE FALSE FALSE FALSE

x >= y

[1] FALSE FALSE TRUE TRUE TRUE

x > y

[1] FALSE FALSE FALSE TRUE TRUE

Any & All
x <- c(TRUE, FALSE)
y <- c(TRUE, TRUE)
z <- c(FALSE, FALSE)

Are any TRUE?
any(x)

[1] TRUE

any(y)

[1] TRUE

Are all TRUE?
all(x)

[1] FALSE

all(y)

[1] TRUE

Filtering with Logic
x <- c(1, 2, 3, 4)
bool <- c(FALSE, TRUE, FALSE, TRUE)
x[bool]

[1] 2 4

x[x > 3]

[1] 4

x[x >= 3]

[1] 3 4

ifelse
x <- c(1, 2, 3, 4)
y <- c(2, 2, 2, 2)
if the corresponding values are equal, produce 0, otherwise produce 1
ifelse(x == y, 0, 1)

[1] 1 0 1 1

if…else…
x <- c(1, 2, 3, 4)
if a condition is true, complete these steps. Else Complete alternate steps if first value is 1, output the second,
else output the third
y <- sample(x, size = 3, replace = FALSE)
y

[1] 1 4 2

if (y[1] == 1) {
 y[2]
} else if (y[1] == 2) {
 y[3]
} else {
 y[1]
}

[1] 4

Examples
1. Using the @AB.;C() function, you will use D to simulate selecting a numbered

ball from a bucket. The contents of the bucket are: One ball marked 1. Two balls
marked 2. Three balls marked 3. Four balls marked 4.

a. Create two vectors: unique.values.on.balls and proportions.of.each.value. The
values in the second vector should correspond the the values in the first.

b. Use the sample function to simulate selecting a single ball from the bucket. Run
this in the console, just to see the output.

c. Create one vector: expected.number.of.each.value. Its elements will represent the
number of times you would expect to see a 1,2,3,or 4, if you repeated the
selection 1,000 times. I believe there should be about 100 1s, 200 2s, 300 3s and
400 4s. You should think about that.

d. Create one vector: simulated.observations. Use the @AB.;C() function to repeat
the process of selecting one ball one thousand times.

e. Create one vector: observed.number.of.each.value. Use the EA1;C() function to
count the number of 1s,2s,3s, and 4s that appeared in simulated.observations.

f. Create one vector: absolute.difference. Compute the absolute value of the
difference between observed.number.of.each.value and
expected.number.of.each.value.

g. Create one vector: absolute.difference.greater.30. Use a comparison that checks
each element in absolute.difference to see if it is larger than 30.

h. Create one vector: any.greater.than.30. It should be a logical vector that
indicates TRUE if any values in absolute.difference.greater.30 were greater than
30.

i. Report whether or not there where any occasions where
observed.number.of.each.value had a difference of more than 30 from
expected.number.of.each.value Use inline code.

j. Run this code several times, your report should update with new values each time.

Problems

Use the @AB.;C() function to simulate rolling a fair six-side die 50 times.

2. Create two vectors: unique.number.of.pips and proportions.of.number.of.pips. The
values in the second vector should correspond the the values in the first.

3. Use the @AB.;C() function to simulate rolling a single die one time.

4. Create one vector: expected.number.of.each.side. Its elements will represent the
number of times you would expect to see each number of pips, if you rolled a die
50 times. (Don’t round you value.)

5. Create one vector: simulated.rolls. Use the @AB.;C() function to repeat the
process of rolling a die 50 times.

6. Create one vector: observed.number.of.each.side. Use the EA1;C() function to
count the number of 1s,2s,3s, and 4s that appeared in simulated.rolls.

7. Create one vector: absolute.difference. Compute the absolute value of the
difference between observed.number.of.each.side and expected.number.of.each.side.

8. Create one vector: absolute.difference.greater.5. Use a comparison that checks
each element in absolute.difference to see if it is larger than 5.

9. Create one vector: any.greater.than.5. It should be a logical vector that
indicates TRUE if any values in absolute.difference.greater.5 were greater than 5.

10. Report whether or not there where any occasions where observed.number.of.each.side
had a difference of more than 5 from expected.number.of.each.side Use inline code.

11. Run this code several times, your report should update with new values each time.

