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A B S T R A C T

Autonomous Guided Vehicles (AGVs) are nowadays an indispensable component of production lines in smart
manufacturing. Managing the fleet of AGVs covers not only the delegation of operational tasks but also the
monitoring of AGVs activity and health condition by applying tailored Machine Learning-based methods to
detect anomalies in various signals gathered by edge IoT devices mounted on board. Detecting anomalies
requires appropriate prediction of selected signals based on multiple types of sensor readings. Momentary
energy consumption is one of the signals that can indicate abnormal states in AGVs. In this paper, we
show that the prediction of this signal can be improved with the Federated Learning (FL) approach that
involves exchanging experience gained by particular AGVs. This paper significantly extends the conference
paper (Shubyn et al., 2022) with the new multi-round approach to building global prediction models and
recent experiments on real data streams produced by AGVs designed by the AIUT company. The results of our
experiments prove that in the AGV operational environments with distributed knowledge Federated Learning
performs better than traditional centralized approaches and that frequent synchronization of experience may
lead to better prediction quality.
1. Introduction

Autonomous Guided Vehicles (AGVs) are unmanned vehicles con-
trolled by appropriate navigation systems capable of transporting pro-
duction components on manufacturing lines without the need for direct
operator support [1]. AGVs are used mainly in those manufacturing
cases that require reducing the costs of business activities and in
companies focused on continuous production optimization. Technical
requirements for communication cause that AGVs primarily operate in
transportation works inside factories, warehouses, office buildings, and
in closed areas [2]. Moreover, AGVs perform well in cases of production
involving cyclical processes, for the transport of heavy loads, as well
as in the presence of hazardous conditions or conditions negatively
affecting work efficiency [3].

Therefore, it is not surprising that AGVs are widely used in the
field of process automation and have become an essential element of
automated production in the era of Industry 4.0 [4]. Indeed, Industry
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4.0 relies on automated production, where decisions are frequently
made in real time. However, making decisions in the production envi-
ronment requires the operation of the whole manufacturing equipment,
which is constantly monitored, controlled, and coordinated. In fact,
modern manufacturing relies on a complex ecosystem that consists
of many elements, including various sensors, communication infras-
tructure, intelligent devices, various IT systems, and people. AGVs are
a part of this ecosystem, which also means they are not a separate
technological solution and completely independent entities but must
operate in cooperation with the elements of this ecosystem to optimize
the ongoing production tasks and to ensure automatic cooperation with
assembly stations.

Ensuring the proper operation of the AGVs requires constant moni-
toring of the operational cycles they are involved in and the various
types of signals they generate every second of the operational cy-
cle. Such monitoring is a rich source of data that can be collected
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and analyzed to quickly recognize the potentially dangerous situa-
tions, abnormal usage, anomalous states of the vehicles or non-optimal
operation of a single AGV or the whole fleet [5]. Artificial Intelli-
gence (AI) and Machine Learning (ML) play an increasingly important
role in such data analysis, especially in complex cases, where simple
threshold-based alarm raising based on signal observation is difficult
to implement due to the diversity of analyzed signals and features
that may reflect the anomaly [6]. Moreover, since some decisions must
be taken immediately after the critical anomaly is detected, AI-driven
analytics should be performed at the edge IoT devices mounted on
board. Edge computing or Edge analytics play a significant role in
coordinating a fleet of AGVs and enabling robust production cycles.
The analytics cover the development and embedding of appropriate
Machine Learning (ML) algorithms in the edge IoT device to analyze
the current behavior of each AGV and detect any possible problems,
anomalies, or failures. Real-time analysis of the data produced by AGVs
(like safety signals, navigation data, odometry information, motor ac-
tivity, etc.) and advanced data exploration with ML techniques can
enrich local and remote monitoring of the AGVs’ health and improve
the consistency of production. The experience gained by each AGV
is precious, and appropriate predictive maintenance tools may detect
the first signs of failure in industrial environments long before the
appearance of the early alarms that precede failures of AGVs in a short
period.

However, in the whole environment, AGVs operate as autonomous
units with their own characteristics and sometimes implement different
operational cycles in specific work environments. Thus, they experience
various conditions during different or sometimes even the same opera-
tional cycles (e.g., multiple types of surfaces and surface contamination,
different temperature and air humidity in the production hall or a
warehouse, and different payloads on various routes for transporting
components). Aggregating this experience in a natural production en-
vironment requires exchanging large amounts of valuable data, which
is sometimes difficult, expensive, or could provide additional delays in
detecting anomalies and reacting, which should be avoided.

Solving this problem on a broader scale and making AGVs in pro-
duction more effective in anomaly and failure detection necessitates
using more sophisticated ML techniques that fit such a distributed
environment, where experience is dispersed among many members of
the AGV society. We decided to investigate using Federated Learning
(FL), which allows exchanging the experience between AGVs in the
Edge computing-based system.

Federated learning emerged because much of the data containing
useful information required to solve specific problems is difficult to
obtain in sufficient amounts to train a powerful deep learning model.
Moreover, besides useful information, training such a global model
would cause transferring of additional operational data that is not rel-
evant to the solved problem, increasing the volume of the transmitted
data. The main idea of FL is that the same types of intelligent devices
or AGVs working in production share their experience instead of data.
Sharing experience reduces the data transfers, speeds up the building
of the global view of the ongoing processes, and increases the amount
of knowledge about various breakdowns of production, which allows
better prediction and avoidance. Moreover, this approach increases the
security of the whole solution since most of the data are stored and
utilized locally on edge IoT devices. This prevents data from being
stolen or intercepted as the experience is exchanged in the form of
parameters of the artificial neural networks (their weights) suitable
only for further processing at the highest level.

In the AGV reality, Federated Learning relies on the capability
of IoT devices mounted on board to store all the data necessary for
training the ML/FL local model. Therefore, there is no need to store
vast amounts of training data in the monitoring data center, located,
e.g., in the cloud (unless required for other purposes), which improves
decentralized, edge-based data processing.
2

Predicting energy consumption in AGVs is essential for many rea-
sons [7]. Abnormal energy consumption may indicate ongoing degrada-
tion of AGV components or improper usage of the AGV. For the whole
AGV fleet prediction of energy consumption may decide on sending
some of them to be charged, as all of them cannot be sent for charging
at the same time. Thus, the prediction supports the management of
the whole AGV fleet. In this paper, we show that FL improves the
effectiveness of prediction of energy consumption performed on edge
IoT devices by iterative creation of a global prediction model based
on many local prediction models of particular AGVs and retraining
the local models with new data. Before we start, we will review the
related literature in terms of the use of Machine Learning models in
smart industry and predictive maintenance (PdM) in Section 2. Sec-
tion 3 provides characteristics of the Autonomous Guided Vehicles and
Section 4 explains their industrial environment and data acquisition
flow. In Section 5, we describe our FL-based approach for anomaly
detection in AGVs, which relies on sharing and exchanging experience
between edge devices mounted on AGVs. Section 6 presents results
of experiments we conducted to appropriate strategy for sharing the
experience of AGVs and increasing the performance of local energy
consumption prediction models in a smart manufacturing environment.
Finally, Section 7 summarizes our work with the discussion of obtained
results in the context of traditional ML-based techniques and related
works.

2. Literature review

2.1. Smart industry

The explosive growth of information and communication technol-
ogy fuels the ever-growing development of smart industry and manu-
facturing [8,9]. Internet of Things (IoT) devices and advanced commu-
nication technologies facilitate the interconnection between machine–
human (M2H) and machine–machine (M2M), enabling real-time mon-
itoring and automatic control without human intervention. Addition-
ally, artificial intelligence (AI) algorithms are adopted to analyze,
diagnose, and predict industrial environments. Through data mining
patterns and machine learning predictions, AI algorithms in inno-
vative industries can achieve self-monitoring [10,11] and improve
efficiency [12], and attract widespread attention in various industrial
fields, including manufacturing [9,13,14], energy generation [15,16],
robotics [17,18], and finance [19–21].

Machine learning (ML) is a subset of AI designed to build models,
learn from data, and make predictions. ML is actively and widely used
in various industries; Kotsiopoulos et al. [14], and Sharp et al. [22]
stated that ML can improve the agility and energy efficiency of manu-
facturing systems and further optimize the production process. Tradi-
tional machine learning algorithms are lightweight models with low
computational complexity and computational time, including regres-
sion, decision trees, random forests, support vector machines, etc [23].

With the exponential growth in computational capacity, numerous
deep learning (DL) algorithms have been developed for robust feature
extraction and accurate prediction. Recurrent Neural Networks (RNNs)
are designed to memorize and analyze the temporal behavior of in-
put data. Extended RNN architectures include Gated Recurrent Unit
(GRU) and Long Short-Term Memory (LSTM), which are feasible and
widely used in the smart industry. Wang et al. [24] proposed a hybrid
prediction scheme for intelligent manufacturing, which consists of a
novel deep heterogeneous GRU model and a local feature extraction
mechanism. Essien and Giannetti [25] developed a novel autoencoder
with deep convolutional LSTM neural networks for machine speed
prediction, which employs a sliding window approach to reconstruct
input sequences into a supervised learning framework. Convolutional
Neural Network (CNN) is a shared weight architecture that can extract
features from different scales and filters and exhibits outstanding per-
formance in image processing and computer vision [26]. Melinte and
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Vladareanu [27] utilized various CNN-based networks (VGG, Inception,
ResNet, and Faster R-CNN) for facial expression recognition of human–
computer interaction. Luo et al. [28], and Benjdira et al. [29] developed
a CNN-based image detection model for unmanned aerial vehicles.

However, industrial circumstances may not have correct and deter-
ministic answers. Instead of supervised learning, reinforcement learn-
ing (RL) lets intelligent agents take appropriate actions to maximize
rewards and learn from trial-and-error in the environment. Zhou et al.
[30] developed a multi-agent RL-based model for online scheduling
in smart factories. Faryadi and Mohammadpour Velni [31] proposed
an RL-based approach for modeling unknown fields for autonomous
ground vehicles. Wu et al. adopted RL for financial portfolio establish-
ment [21] and risk management [32]. The literature mentioned above
demonstrates the considerable research attention to AI technology in
smart industries.

2.2. Predictive maintenance

When it comes to anomaly detection, predictive maintenance is a
critical issue in smart manufacturing by monitoring production status to
discover potential anomalies (atypical states) and providing early warn-
ings that seriously affect production quality, efficiency, and even safety.
Predictive maintenance is designed to maximize the service life of com-
ponents in manufacturing equipment, avoid unplanned downtime, and
minimize planned downtime [33]. Traditional predictive maintenance
is based on constant time or unquantified experience, which can be
significantly improved by AI technologies of IoT sensors [33,34], web
platform [35], and ML models [36,37]. Javed et al. [37] utilized en-
semble, attention, RNN, and CNN techniques for anomaly detection in
automated vehicles. Ahmad et al. [38] proposed an unsupervised learn-
ing algorithm with hierarchical temporal memory to detect anomalies
in streaming data, which outperformed the traditional LSTM and GRU
models on the real-world data streams, Numenta Anomaly Benchmark
(NAB). Malawade et al. [39] developed neuroscience-inspired algo-
rithms for predictive maintenance, which also employed hierarchical
temporal memory and were evaluated on NAB.

Unsupervised anomaly detection can be seen as a one-class classi-
fication problem. While learning, models fit the non-anomalous data.
In the next step, new data is evaluated by the model to generate a
number called an anomaly score, which is used to decide whether
the upcoming samples can be considered anomalous [40,41]. As time
series is a specific input data for anomaly detection, the process is
usually started from forecasting the expected following values of the
series [42,43]. Those are compared with actual upcoming values, and
the error is analyzed in further processing [42].

Last years brought many methods based on machine learning, es-
pecially on RNNs used for signal forecasting in many applications,
among them: finance [44], signal prediction [45], finding anomalies
in satellite telemetry [46,47] and medicine [48]. Multivariate approach
for forecasting using LSTM, GRU, and derived bidirectional models was
studied in [49]. In this paper, we focus on univariate signal prediction
used together with federated learning-based training.

Distributed learning and federated learning [50] are potential tech-
niques for predictive maintenance. They are decentralized learning
methods with high parallelism, data privacy, and security, and state-
of-the-art research for smart manufacturing [51]. Zhang et al. [51] in-
troduced a real-time tuning architecture with two-level deep federated
learning and a real-time automatic configuration tuning mechanism,
where local servers obtain experience and share it with cloud servers
and then aggregate knowledge to build a robust federated model. Our
previous work related to FL-based anomaly detection published in [52]
verified the usefulness of this technique on the mentioned NAB data set
and analyzed different architectures for averaging shared experience.
However, it did not explore the data streams from the real AGV
environment. This work goes one step forward, showing that flattened
architecture for FL is sufficient for obtaining high-quality predictions
and that appropriate upgrading of prediction models increases the
3

quality.
3. AGV characteristics

AGVs may differ in allocation and construction, but they also share
the general purpose they were invented for. Before we go further into
the details of our approach, we will provide more information about
the AGV environment we performed our industrial tests.

3.1. The test vehicle

Our experiments use an AGV developed by AIUT Ltd. in cooper-
ation with the Silesian University of Technology (SUT) in Gliwice,
Poland [53]. While the company provides many versions of the vehicle,
the paper focuses on Formica-1 (see Fig. 1). It is an AGV capable of
moving specialized passive trolleys or carrying a general payload. In
the first case, it is equipped with special lifting pins which interact with
a trolley. The latter situation requires a lifting plate to be mounted on
top of the vehicle.

With its own weight of ca. 250 kg, Formica-1 can handle up to
1000 kg of payload. Its battery (a single module, the same as used in
electric buses) is sufficient for at least 8 h of continuous operation.

3.2. Data provided by AGV

The tested AGV provides a variety of signals and statuses. The
groups of signals are as follows:

• energy measurements - floating-point values representing mo-
mentary energy consumption (MEC) in [W] and battery cell volt-
age in [mV]; the energy consumption is measured only at the
battery, with no separate values on motors and electronics;

• motors (separately left and right) - boolean statuses of engines
- if a motor is active and how it has been activated (man-
ual/automatic);

• odometry - numbers showing momentary frequencies of left/right
encoder pulses and cumulative distance on each wheel;

• brakes - boolean values which indicate the current state of brakes
- whether they are active and how they have been activated
(manual/automatic);

• payload lifting - boolean states of pins (used for passive trolleys)
or lifting plate for another type of payload;

• status of LED strips - booleans indicating activity of specific
light strips; especially blue LED consume considerable amounts
of energy;

• natural navigation and path control - numbers representing co-
ordinates, heading, speed, position confidence, and path segment
id;

• alarms and warnings - boolean values indicating various system
failures and safe-related situations, e.g., problems with internal
Profinet communication, no data from natural navigation, uneven
distribution of payload, errors of safety devices (safety scanners,
bumpers);

• safety signals - violation of safety zones and activation of bumpers;
• weight strains (depending on AGV version) - four weight gauges

measuring the amount and location of the payload;
• driving modes - if the vehicle is manual/automatic/docking mode.

3.3. The dataset

To test the suitability of the Federated Learning approach in the
prediction of the AGV energy consumption, we gathered the data
from nine test runs with an average sequence length of ca. 1600 data
points. In total, the whole dataset contained ca. 14,000 timestamps. The
frequency of data was 1 Hz.

Test drives were executed using the following scenarios: repeated
circular clockwise and counter-clockwise paths of diameter 2 m with a

m , driving forward and backward with the speed of 0.2
speed of 0.25 s
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Fig. 1. Formica-1, the AGV used as a source of data and the test device.
Fig. 2. Fragment of a time series from the dataset (run 3). Momentary energy/power consumption (MEC) and a few selected features are presented. Values were normalized to
fit on a chart.
m
s , repeated emergency braking and fast acceleration in both directions,

lifting plate up and down movements; each of those scenarios was exe-
cuted on an empty vehicle and with half-loaded payload compartment
(425 kg). Total weight of the vehicle correlates positively with energy
consumption, so it needs to be considered. The experiments presented
in Section 6 make use of all test drives without creating boundaries
between runs, so the energy prediction model learns from data acquired
on different load levels. The version of AGV used while testing was
not equipped with weight strains, so the model learns this relation
implicitly. Each sequence consists of more than 40 features mentioned
above. However, in this paper, we deal only with univariate forecasting
of momentary energy consumption. An example fragment of the time
series containing MEC can be seen in Fig. 2.

4. Industrial environment and data acquisition flow

AGVs operate in industrial conditions and cooperate with several IT
systems. This necessitates dedicated solutions for communication and
data acquisition. This section provides an overview of the operational
environment.

4.1. Industrial environment

The considered industrial environment is based on the model of
two separate production factories equipped with two independent AGV
4

systems. AGVs perform their regular operational activity while com-
municating with various IT systems in the manufacturing environment,
including the Transport Management System (TMS, used for transporta-
tion operations), the Manufacturing Execution System (MES, which
optimizes manufacturing operations and production efficiency), the
Warehouse Management System (WMS, which supports inventory man-
agement), and Automation systems and field devices. Apart from these
systems, the activity of the vehicles is monitored by Analytical systems
that independently exist next to the production and warehouse man-
agement systems. The FL-based prediction methods we designed and
developed are integrated with the analytical systems. The analytical
system monitors the signals from Formica-1 AGV (described in detail
in Section 3.1). It consists of three main components: Edge Federated
Learning module, Edge Data Acquisition module, described in more de-
tail in Section 4.2, and OPC UA Server. The OPC UA Server defines to its
clients (i.e., OPC UA Clients) the set of services it offers and the process
data format that it uses for communication. Each AGV communicates
with external services running in the cloud environment, which hosts
the data center. The cloud platform consists of a centralized industrial
Data Lake for data storage, the IoT Hub service, which is responsible
for maintaining communication between edge and cloud, and the Cloud
Federated Learning module (for building a global prediction model).
Fig. 3 presents the conceptual diagram of the considered industrial
environment.
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Fig. 3. Conceptual diagram of the industrial environment.
4.2. Data acquisition flow

The signals provided by AGVs, described in Section 3.2, are exposed
by AGVs via OPC UA Server, which integrates signals from various
internal sources, such as PLC controller, proximity sensors, and more.
The OPC UA Server is running directly on the AGV. In order to inte-
grate with it, a dedicated OPC UA Client module was implemented to
retrieve the data for further analysis and use in an edge-based federated
learning approach. The OPC UA Client is a part of the Edge Data
module presented in Fig. 3, which runs on a separate edge device
mounted on the AGV. This module is responsible for connecting to OPC
UA Servers on AGVs, managing subscriptions to selected data nodes,
retrieving data, pre-processing and aggregating it, and storing it in a
local database before sending the required information (incl. parame-
ters of local prediction models built on AGVs) to the cloud environment
for long-term storage and further processing (e.g., building a global
prediction model). The locally stored data are then used to train local
models on the edge device mounted on an AGV, described in more
detail in Section 5.

The proposed implementation consists of two different approaches
to data retrieval: ‘‘subscription-based’’ and ‘‘periodical fetch.’’ The first
of them, called ‘‘subscription-based,’’ relies on the built-in subscription
mechanism of the OPC UA Server. Subscriptions allow us to separately
subscribe for updates to each data node in the OPC UA Server, resulting
in a precise and granular stream of updates for each considered data
signal. It also reduces the number of unnecessary calls to the OPC UA
Server. The downside of this approach is that since each data node
is observed separately, the corresponding data streams are updated
independently and have to be joined together to produce a view of the
whole system at a given point in time, which is required to train local
prediction models. To obtain such a complete view of all signals in a
particular moment, we implemented a dedicated periodic aggregator
module that produces such a view for predefined time windows. In
the case of our setup, the view was produced every second. After
5

periodic aggregation, the data are saved back in the local database.
Fig. 4 presents the components of the ‘‘subscription-based’’ approach.

In order to simplify the ‘‘subscription-based’’ approach, especially
to speed up and ease obtaining the data from initial experiments, we
also implemented another approach called ‘‘periodic fetch.’’ In this
approach, instead of relying on a subscription mechanism, the data
are retrieved and persisted in the local database for each signal at
predefined time intervals (time windows). Thanks to that, there is a
corresponding snapshot of the state of the whole AGV system for given
points in time. As the data are already aggregated, they only need
minimal processing and cleaning before they can be considered for
further analysis and building local prediction models. This approach
also has its downsides, such as inducing excessive load on OPC UA
servers or producing redundant data. The components of the ‘‘periodic
fetch’’ approach are presented in Fig. 5. In the future, we aim to still use
a combination of both approaches, but with a more significant focus on
a ‘‘subscription-based’’ approach, due to the benefits listed above.

However, this architecture was also used to compare the FL-based
approach with the traditional ML-based approach, relying on the view
of all the data that requires sending all the data to the cloud data center.

5. Federated learning for Anomaly detection in AVGs

Anomaly detection is identifying anomalous observations that do
not fit the expected pattern of other observations in a data set. Anomaly
detection has become a central research issue for intelligent devices
(particularly AGVs) in the smart manufacturing environment.

Anomalous data can indicate significant and critical incidents that
may require urgent attention. Anomaly detection is an essential concept
in data analysis and is widely researched. In intelligent manufacturing,
an anomaly is considered an unexpected change in the state or behavior
of an Industrial IoT (IIoT) system that deviates from the norm.

Any sudden failure of the machine will lead to an undesirable loss of
quality and productivity. Anomaly detection helps alleviate and reduce
these problems. However, the limited availability of historical data and
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Fig. 4. Diagram of a ‘‘subscription-based’’ approach to data acquisition from OPC UA Server.
Fig. 5. Diagram of a ‘‘periodic-fetch’’ approach to data acquisition from OPC UA Server.
the security of industrial data make anomaly detection a challenging
and complex process in an intelligent manufacturing environment.

It is often hard to get data with labeled anomalies, which is also the
case for AGV-acquired data. Thus it is crucial to have an unsupervised
method to classify data as anomalous. It can be seen as a one-class
classification problem, where the only class represents non-anomalous
data. One of the typical anomaly detection schemes involves the analy-
sis of error between the actual and forecasted value of an investigated
feature [42]. The forecasting model learns from data describing normal
behavior and then is fed with upcoming time series to generate the
expected sequence. Compared to the actual observations, this allows
predicting anomaly score [46]. A suitable forecasting method is pivotal
for successful anomaly detection [49], and we focus on that aspect in
this paper.

To detect anomalies more accurately, we suggest sharing experi-
ences between AGVs using approaches based on Federated Learning.
Federated Learning is a machine learning technique that allows training
machine learning models without moving data from the devices where
this data is generated. Therefore, it has the inherent characteristics
of preserving data privacy and reducing the amount of transferred
data. These characteristics are required for industrial IoT environments
that need data processing solutions working in real-time. So, the main
idea of FL is that smart elements or AGVs of the same type being in
production can share experiences to increase the amount of knowledge
about various breakdowns, which will allow us to predict them more
accurately.

We have been introducing this idea in the production environments
operating based on the fleet of AGVs that the AIUT company in Poland
manufactures. Fig. 1 shows the loaded Formica-1 AGV we have been
supplementing with edge-based AI/FL methods.

5.1. The overview of the Federated Learning-based prediction algorithm

The complete process of exchanging experience between AGVs will
be called a round. The round operates according to Algorithm 1 (also
6

graphically visualized in Fig. 6). First, each AGV trains a local model
on a specific data set locally (lines 1–4). In the second step, all AGVs
send updated local models to the server in the cloud (line 5). Next, all
local models are averaged on the server to create a global model that
takes into account the experience of all AGVs (lines 6–10). Finally, the
server sends the updated global model back to the AGVs to update their
local model with the new global model (lines 11–13).

Algorithm 1: Algorithm of the round
Data: 𝑚𝑖 (Local model on AGV), 𝑀 (Global model), 𝐴𝐺𝑉 𝑠 (the

fleet of AGVs), 𝑁 (the number of AGVs), 𝑆𝑀 (Server
with a global model), 𝐿𝑀𝑖𝑛𝑓𝑖 (the influence of the local
model in the formation of the global model), 𝑋𝑙𝑚𝑖
(calculated values of MSE or Validation losses for
specific AGV)

Result: 𝑢𝑝𝐴𝐺𝑉 𝑠 (AGVs updated by global model)
1 for 𝑖 ← 1 to 𝑁 (on 𝐴𝐺𝑉𝑖) do
2 Train the 𝑅𝑁𝑁𝑖 of 𝐴𝐺𝑉𝑖 locally on unique, AGV-specific

data;
3 𝑚𝑖 ← weights of the local RNN;
4 Calculate 𝑋𝑙𝑚𝑖

on training data;
5 Send 𝑚𝑖 and 𝑋𝑙𝑚𝑖

to the 𝑆𝑀 ;

6 𝑋𝑠𝑢𝑚 ←
∑𝑁

1 𝑋𝑙𝑚𝑖
;

7 for 𝑖 ← 1 to 𝑁 do
8 𝑟𝑎𝑡𝑖𝑜𝑖 ← 𝑋𝑙𝑚𝑖

∕𝑋𝑠𝑢𝑚;
9 𝐿𝑀𝑖𝑛𝑓𝑖 ←Formula (3) (𝑟𝑎𝑡𝑖𝑜𝑖);
10 𝑀 ← average of 𝑚𝑖-s with the influence of 𝐿𝑀𝑖𝑛𝑓𝑖 by using

Formula (4);
11 for 𝑖 ← 1 to 𝑁 do
12 𝑚𝑖 ← 𝑀 ;
13 Send 𝑚𝑖 to 𝐴𝐺𝑉𝑖;
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Fig. 6. The complete process of exchanging data between devices (Round).
5.2. The averaging of local models

A key element affecting the global model’s performance is how
we will average the local models. When forming a global model, it
is necessary to correctly determine local models’ influence. We want
local models that perform better to impact the global model more
significantly than local models that perform worse.

Considering that we will not have test data in real life, we decided
that we should use available training data of the AGV (including
historical training data that may not be used for training in a particular
round but is still stored on the device) to determine the influence of
local models. In this way, we will be able to determine which models
are better trained and make a more significant impact on the global
model.

In order to compare the effectiveness of local models, we decided
to use the values of MSE (Formula (1)) and validation losses (Formula
(2)) calculated as a result of running local models on training data.

𝑀𝑆𝐸 =
∑𝑛

𝑖 (𝑦𝑖 − 𝑦𝑖)2

𝑛
, (1)

where 𝑦 is the observed value, �̂� is the corresponding predicted value
and 𝑛 the number of observations.

𝑉 𝑎𝑙𝑙𝑜𝑠𝑠 =
1
𝑛

𝑛
∑

𝑖
𝑓 (𝑦𝑖, 𝑦𝑖), (2)

where 𝑓 is the loss function. Validation loss is a metric used to assess
the performance of a deep learning model on the validation set. The
validation set is a portion of the dataset to validate the model’s per-
formance. The validation loss used a similar function to the training
loss and is calculated from a sum of errors (differences (𝑦− �̂�)) for each
observation in the validation set.

Based on one of these values, we will determine the influence of a
specific local model when forming a global model using the Formula
(3).

𝐿𝑀𝑖𝑛𝑓𝑖 =
1 − (𝑋𝑙𝑚𝑖

∕𝑋𝑠𝑢𝑚)
𝑁 − 1

, (3)

where 𝑋𝑙𝑚𝑖
is calculated values of MSE or Validation losses for specific

AGV, 𝑋𝑠𝑢𝑚 is a sum of 𝑋𝑙𝑚𝑖
from all clients, and 𝑁 is the number of

AGVs.
Next, to obtain the global model, we use the averaging formula (4).

𝑀 =
𝑁
∑

𝑖
𝑚𝑖 ∗ 𝐿𝑀𝑖𝑛𝑓𝑖 (4)

where 𝑚 local model on 𝐴𝐺𝑉 , and ∗ is the point-wise multiplication.
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𝑖 𝑖
In Section 6, we will use both MSE values and validation losses in
Formula (3). In order to compare the obtained results and determine
which of these values is more appropriate to use when averaging local
models. We will also use the Mean Absolute Percentage Error (MAPE)
metric that defines the accuracy of a forecasting method:

𝑀𝐴𝑃𝐸 = 1
𝑛

𝑛
∑

𝑖=1

|

|

|

|

(𝑦𝑖 − 𝑦𝑖)
𝑦𝑖

|

|

|

|

. (5)

The meaning of the variables is the same as for Formula (1).

6. Experimental results

We conducted several experiments with the real Formica-1 AGVs,
obtaining various data from them, including momentary and cumu-
lative power consumption, battery cell voltage, motor RPM, energy
consumption and current consumption, cumulative distances, bear-
ing temperatures, transportation pin actuator signals, and momentary
frequencies, as described in Section 3.2.

For experiments reported in this article, we built a simulation envi-
ronment in which we created several virtual clients that play the role
of AGVs. For each of these virtual clients, we loaded the data from real
AGVs. We focused on the data with ‘‘Momentary energy consumption’’
and tried to predict this value over time.

Energy consumption is one of the essential monitored parameters
for the proper operation of many production machines. For example,
changes in the energy consumption of some motors may suggest its
failure and, consequently, the shutdown of the production machine or
increased energy consumption and shorter operating time of the AGV.

For this study, we used FL architecture with the AI/FL implemented
on the IoT device monitoring the AGV. This option does not require
additional local servers for separate production lines [52]. It also pro-
vides better security for industrial data, as all the data will be processed
locally on the devices and will not be sent anywhere, reducing the
communication needs (and the amount of transferred data).

6.1. Choosing artificial neural network model

Given the fact that we work with time series, we decided to use
recurrent neural networks (RNNs). Therefore, we focused on modified
RNN architectures based on long short-term memory (LSTM) cells.

A key component of the LSTM cell-based architecture is the state of
the cell. It goes directly through the whole cell, interacting with several
operations. The information can easily flow on it without any changes.
However, LSTM can remove information from the cell state using
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Fig. 7. Prediction performance of a single LSTM model trained on the whole training data set.
filters. Filters allow skipping information based on some conditions
and consist of a sigmoid function layer and element-multiplication
operation. LSTM is well-suited to predict time series given time lags
of unknown duration. We used a back-propagation approach to train
our model.

We decided to train our model on all available data, which we will
use later for Federated Learning to prove that FL allows us to get a
better result of predicting values of ‘‘Momentary energy consumption’’
over time. The results of the prediction of the LSTM model without FL
on test data are presented in Fig. 7.

6.2. Experiment 1. Averaging based on MSE or validation loss

In this experiment, we wanted to check whether it is more appropri-
ate to determine the influence of local models according to Formula (3).
This formula can be based on the MSE values obtained from running
the local model on the client’s training data or on the validation losses
obtained during the training of local models.

6.2.1. Splitting of data
We divided the data set into four main parts. The first three parts

of the data (each one of them was 28.6 percent of the data set) were
used as training data for three different virtual clients. Then, we used
the last part of this data set (14 percent) to test the efficiency of local
models from the virtual clients and the global model to compare their
effectiveness with each other.

6.2.2. Experiment summary
The whole experiment was organized as follows:

1. We divided the whole data set into four parts. Three parts were
used to conduct training on virtual clients (using the LSTM). The
fourth part of this data set was used to test the effectiveness of
the local models.

2. On each virtual client, we conducted the training and saved the
trained model in the form of weights of neural networks.

3. The models of these three virtual devices were transferred to
a separate server, which averaged the models and created two
different global models based on the MSE and Validation loss
values.

4. Based on the two global models, we predicted the Momen-
tary energy consumption for a test set and compared their
effectiveness.
8

6.2.3. Model averaging process
It is also essential to describe the process of averaging:

1. We calculate the MSE value after running the local model on
training data or validation losses calculated from training the
local model.

2. Using Formula (3), we find the influence of each local model
separately on the formation of the global model. Formula (3)
calculates the ratio of validation losses (or MSEs), inverts, and
normalizes it by dividing them by N-1 (N - number of virtual
clients).

3. When creating a global model, the neural weight of each client is
multiplied accordingly by the influence value of this local model
(Formula (4)).

6.2.4. Evaluation of models’ effectiveness
To verify the effectiveness of the built models, we used the Mean

Squared Error (MSE). The effectiveness of the local and global models
is shown in Fig. 8.

6.2.5. Results
The obtained results demonstrate that both global models work

better than local models from clients on the test data set. This is
achieved by exchanging experiences between clients. Also, we decided
to compare the global model results based on the values of MSE and
the validation losses. We can see that we got better predictions (lower
MSE) by averaging the global model using the MSE values. It is also
worth noting that the validation loss value is better optimized when
there is a large amount of data and a large number of training epochs
of the LSTM network. Therefore, with a limited amount of data, we
recommend using the MSE values by running models on training data.

6.3. Experiment 2. Multi-round averaging

In this experiment, we tested the performance of Federated Learning
when we split the client’s data for use in different rounds. We wanted
to check how the global model would change with each round since we
would train local models upgraded by the global model with the new
data for each round.

We conducted several independent experiments and split our data
to be able to produce 2/4/8 rounds. In general, this experiment was
organized as follows:

1. We divided the data available for each client into two/four/eight
parts (depending on the number of rounds). We trained local models
on the first part of the data.
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Fig. 8. Prediction performance for Local (LM) and Global Models (GM) for experiment 1.
2. We performed averaging to obtain the first global model.
3. Based on the first global model, we conducted client training by

using the second part of the client’s data.
4. We averaged the new local models to obtain the second global

model.
5. We repeated steps 3–4 until we obtained the assumed number of

rounds.
We also divided this experiment into two sub-experiments. We had

two options for running the local models and calculating MSE values
for averaging. We calculated the MSE values for averaging by running
local models on the training data from specific rounds or on historical
training data (this data includes not only the data used for training
in the particular round but also the data used for training in previous
rounds).

6.4. Multi-round averaging based on training data

In this experiment, we divided our client data to conduct 2, 4, and
8 rounds of Federated Learning separately. For further averaging, we
calculated MSE values by running the local models only on the training
data with which they were trained in a specific round.
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6.4.1. Two-round averaging based on training data
As a first step, we split our data to run two rounds. So, we have data

on our three clients. We divided this data into two parts. We used the
first part of the data to train the local models of clients in the first round
and conducted averaging. As a result, we get the global model of the
first round. We used the second part of the data set from clients in the
second round when our clients had the global model of the first round
loaded on them. When training on the second data set, the local models
uniquely changed according to training on the client’s unique training
data. Moreover, after the second round of averaging, we obtained a
more powerful global model because we added a lot of new experiences
from the clients. The prediction performance of the local models on the
training data and the global model on the test part of data after the first
and second rounds are presented in Fig. 9.

As a result of this experiment, we can see that the global model
after the second round has become much more accurate on the test
data than the global model after the first round. We obtained this result
because more client data were considered when averaging the global
model after the second round.
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Fig. 9. Prediction performance for local and global models in 2-round averaging based on training data only.
Table 1
Prediction performance for each Round in 4-round averaging based on training data
only.

Round No MSE MAPE

GM Round 1 2898.24 3.89%
GM Round 2 1422.04 2.28%
GM Round 3 1004.86 1.32%
GM Round 4 868.15 1.02%

6.4.2. Four-round averaging based on training data
In the second part of the experiment, we divided data from our

clients into four parts and conducted four rounds of averaging. At each
round, the MSE was calculated only based on the training data that
was used to train the local models at that particular round. The result
of the global models after the 1st, 2nd, 3rd, and 4th rounds can be seen
in Fig. 10 and in Table 1.

From this part of the experiment, we can see that the global model
becomes more and more powerful with each round and each new batch
of new data. Despite using the same amount of data overall for the 2-
and 4-round experiments, we obtained a significantly better prediction
result for the final global model for the 4-round variant. This can
10
Fig. 10. Effectiveness of the global models for each Round in 4-round averaging based
on training data only.

be explained by the fact that we performed more averaging of the
experience. Due to this, we obtained a better global model since we
modified the local models according to the new data each time through
the averaging process.
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Fig. 11. Effectiveness of the global model after Round 1, 2, 3, 4, 5, 6, 7, and 8 in 8-round averaging based on training data only.
Table 2
Prediction performance for each Round in 8-round averaging based on training data
only.

Round No MSE MAPE

GM Round 1 3923.97 4.24%
GM Round 2 1646.56 2.62%
GM Round 3 933.92 1.37%
GM Round 4 1202.75 1.94%
GM Round 5 956.82 1.23%
GM Round 6 840.35 0.92%
GM Round 7 1096.57 1.66%
GM Round 8 890.85 1.12%

6.4.3. Eight-round averaging based on training data
In the third part of the experiment, we divided data from our clients

into eight parts and conducted eight rounds of averaging. The results
of the global models after the 1st, 2nd, 3rd, 4th, 5th, 6th, 7th, and 8th
rounds can be seen in Fig. 11, and Table 2.

In general, we can see that the prediction performance of the global
model after round 8 is quite similar to what we got in the part of the
experiment when we used only four rounds. This result indicates that
the global model was optimized well in both cases. However, we can
also see that the performance of the global model does not improve
steadily, and we can see some jumps when it gets worse, such as in
round 4. This is because, in this experiment, we used only training data
from the specific round for running local models and calculating MSE
for averaging. In this regard, the values of MSE between different local
models could not be highly correlated with each other, for example, due
to the small dimensionality of the data in a specific part of the data set,
which led to a small value of MSE. Therefore, we decided to conduct
another experiment. To calculate the MSE for local models, we used
not only new available training data on the device but also historical
training data that were used on the client in the past rounds.

6.5. Multi-round averaging based on extended training data

In this experiment, we divide our client data to conduct 2, 4, and
8 rounds of Federated Learning separately. However, at this time, for
calculating MSE values for further averaging, we ran local models of
clients, not only on the training data with which they were trained in a
specific round but also all available training data on the client. In our
case, it will be data from the current round and data from the previous
rounds.

6.5.1. Two-round averaging based on extended training data
As a first step, we split our data to run two rounds. We used the

first part of the data to train the local models of clients in the first
round and conducted averaging. As a result, we got the global model
of the first round. The prediction performance of the local models and
the global model after the first round is the same as in experiment 6.4.1
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Table 3
Prediction performance for each Round in 4-round averaging based on extended
training data.

Round No MSE MAPE

GM Round 1 2898.24 3.89%
GM Round 2 1087.32 1.74%
GM Round 3 1209.24 1.79%
GM Round 4 875.07 1.16%

for the case with two rounds. The main changes happened in the second
round because we ran local models on all available training data and
used updated values of MSE to make more optimized averaging of local
models. Prediction performance of the local models and global model
after the first and second rounds are presented in Fig. 12.

As a result, for this part of the experiment, we can observe that the
prediction performance of the global model after round 2 is much better
when we take the MSE value from running local models on the entire
training data set than when we used the MSE value by running local
models only on the training data set data of a specific round. Therefore,
by calculating MSE values for further averaging on larger data sets,
we can obtain more qualitative estimates of the performance of their
predictions.

6.5.2. Four-round averaging based on extended training data
In the second part of this experiment, we divided data from our

clients into four parts and conducted four rounds of averaging. The MSE
was calculated based on the training data used to train the local models
at current and previous rounds. The result of the global models after the
1st, 2nd, 3rd, and 4th rounds can be seen in Fig. 13 and Table 3.

Results obtained in this part of the experiment are close to those we
got in the part of the experiment when we calculated MSE values for
further averaging by running local models only on the training data of a
specific round. However, these results are still better than the result of
the model without averaging or when using two rounds of averaging.
It also proves that we can get a global model to make better signal
predictions using Federated Learning.

6.5.3. Eight-round averaging based on extended training data
In the third part of the experiment, we divided data from our clients

into eight parts and conducted eight rounds of averaging. The results
of the global models after the 1st, 2nd, 3rd, 4th, 5th, 6th, 7th, and 8th
rounds can be seen in Fig. 14 and in Table 4.

We obtained the best prediction performance from the result ob-
tained in this part of the experiment. This proves that exchanging
experience between AGVs more frequently allows for better prediction
of energy consumption. It also proves that it is better to calculate MSE
values for further averaging by training local models on all available
training data on the device, as it allows more efficient averaging of
local models.
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Fig. 12. Prediction performance for local and global models in 2-round averaging based on extended training data.
Fig. 13. Effectiveness of the global model after each Round in 4-round averaging based
on extended training data.

The fluctuation of values of the MSE and MAPE visible in Ta-
bles 3 and 4 results from the division of the data sets and different
characteristics of the data sets provided to agents in different rounds
(which can also be observed in results presented in Figs. 8, 9, and
12). However, a common approach is to use the Federated Learning
technique with Continuous Learning, which makes the division of the
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Table 4
Prediction performance for each Round in 8-round averaging based on extended
training data.

Round No MSE MAPE

GM Round 1 3923.97 4.24%
GM Round 2 1626.64 2.59%
GM Round 3 1116.07 1.81%
GM Round 4 999.67 1.54%
GM Round 5 954.54 1.28%
GM Round 6 841.26 0.92%
GM Round 7 872.01 1.04%
GM Round 8 833.72 0.92%

data set irrelevant (after a certain number of rounds) because local
models and the global model are continuously updated over time.

6.6. Execution time and resource consumption

We also verified the execution time spent on continuous training
local LSTM models with parts of the training data sets and how it
corresponds to the training time performed with the whole training
data set. For comparison, we took the time spent on the experiment
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Fig. 14. Effectiveness of the global model after Round 1, 2, 3, 4, 5, 6, 7, and 8 in 8-round averaging based on extended training data.
by splitting data into eight rounds of training on the extended data set
and the time spent on training on the entire data set (baseline) without
using Federated Learning.

In general, the average training time when using Federated Learning
on each client is 7.2 s per round, and if we sum up the training on all
clients for eight rounds, the total time is 2 min and 52 s. However,
we should emphasize that we used three independent agents, and
their training process was parallelized. As a result, the total training
time, considering the parallelization, is about 58 s. For the baseline
(i.e., when training the prediction model on the whole data set without
using Federated Learning), the training time took 2 min and 18 s.
From these results, we can see that for the baseline model, the training
time was shorter (there is no need for knowledge sharing and weight
averaging). Still, when using Federated Learning, each device will train
the prediction model in an average of 58 s.

We also verified the possibility of running the FL on the edge
devices. Limited capabilities of edge devices pose constraints on the
Machine Learning models that can be used in the anomaly detection.
The most resource consuming is the phase of training the local pre-
diction model. The FL approach that we developed is targeted for use
with the NVidia Jetson Nano (ARM Cortex A57 1.43 GHz Quad-Core
CPU, Nvidia Maxwell GPU with 128 CUDA cores and 4 GB RAM) edge
device. We experimentally checked the memory consumption during
the training phase on the training data set divided into eight parts (for
eight training rounds) as in the experiment presented in Section 6.4.3
(each part consisted of 500 observations). The training consumed on
average 110 MB of the memory, which is not much. For comparison,
training of the baseline model on the whole data set reached the
consumption of 139 MB of memory. These results show that developed
solution is light and feasible for the edge devices.

7. Discussions

As a result of all the conducted experiments, we verified the effec-
tiveness of FL for exchanging experiences between AGVs. FL improves
the performance of signal prediction, making it possible to detect and
avoid anomalies much better by further analysis of the signal and
finding significant variations.

The results of all conducted experiments are summarized in Table 5.
Almost all experiments based on FL led to better signal prediction
results than the traditional approach (single LSTM model). We obtained
the best prediction performance as a result of an experiment in which
we performed eight rounds of model averaging and experience synchro-
nization based on the MSE values obtained from local models trained
on the extended training data set. This result is 19% more effective than
LSTM without FL.

This also confirms the usefulness of the method much stronger than
related works. For example, Zhang et al. [51] conducted an experiment
where they tried to reduce the percentage of defects in production, and
they obtained a result that demonstrates that their approach based on
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Table 5
Prediction performance for all experiments.

Experiment MSE Reference

LSTM without FL 1029.67 Fig. 7
1-Round FL based on Validation Losses 908.78 Fig. 8
1-Round FL based on MSE 878.83 Fig. 8
2-Round FL based on training set 1096.79 Fig. 9
2-Round FL based on extended training set 911.89 Fig. 12
4-Round FL based on training set 868.15 Fig. 10 and Table 1
4-Round FL based on extended training set 875.07 Fig. 13 and Table 3
8-Round FL based on training set 890.85 Fig. 11 and Table 2
8-Round FL based on extended training set 833.72 Fig. 14 and Table 4

federated learning allows them to gain an advantage over recurrent
neural networks by close to 5%. Our approach provides even more
substantial evidence of the suitability of the FL approach in terms of
gained prediction performance, despite the inherent advantages of FL,
like reduced data transfers and data security.

It has to be clearly stated that the data set used in this study is not
publicly available yet. As part of our future work, we want to enlarge it
significantly, which will then be published. Furthermore, the outcome
of the present research is very encouraging, and no doubt, the results
obtained will form the basis for further experiments. We plan to focus
on anomaly detection based on the signal prediction made as well as
on further improving the quality of the prediction itself.
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