
Citation: Bekele, B.E.; Tokarz, K.;

Gebeyehu, N.Y.; Pochopień, B.;

Mrozek, D. Performance Evaluation of

UDP-Based Data Transmission with

Acknowledgment for Various

Network Topologies in IoT

Environments. Electronics 2024, 13,

3697. https://doi.org/10.3390/

electronics13183697

Academic Editors: Minghui Li, Sye

Loong Keoh and Djuradj Budimir

Received: 22 July 2024

Revised: 8 September 2024

Accepted: 14 September 2024

Published: 18 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Performance Evaluation of UDP-Based Data Transmission with
Acknowledgment for Various Network Topologies in
IoT Environments
Bereket Endale Bekele 1 , Krzysztof Tokarz 1 , Nebiyat Yilikal Gebeyehu 2 , Bolesław Pochopień 1

and Dariusz Mrozek 2,*

1 Department of Graphics, Computer Vision and Digital Systems, Silesian University of Technology,
44-100 Gliwice, Poland; bereketendalebekele@gmail.com (B.E.B.); krzysztof.tokarz@polsl.pl (K.T.)

2 Department of Applied Informatics, Silesian University of Technology, 44-100 Gliwice, Poland;
nyilikal@gmail.com

* Correspondence: dariusz.mrozek@polsl.pl; Tel.: +48-32-237-13-39

Abstract: The rapid expansion of Internet-of-Things (IoT) applications necessitates a thorough
understanding of network configurations to address unique challenges across various use cases.
This paper presents an in-depth analysis of three IoT network topologies: linear chain, structured
tree, and dynamic transition networks, each designed to meet the specific requirements of industrial
automation, home automation, and environmental monitoring. Key performance metrics, including
round-trip time (RTT), server processing time (SPT), and power consumption, are evaluated through
both simulation and hardware experiments. Additionally, this study introduces an enhanced UDP
protocol featuring an acknowledgment mechanism and a power consumption evaluation, aiming
to improve data transmission reliability over the standard UDP protocol. Packet loss is specifically
measured in hardware experiments to compare the performance of standard and enhanced UDP
protocols. The findings show that the enhanced UDP significantly reduces packet loss compared
to the standard UDP, enhancing data delivery reliability across dynamic and structured networks,
though it comes at the cost of slightly higher power consumption due to additional processing. For
network topology performance, the linear chain topology provides stable processing but higher RTT,
making it suitable for applications such as tunnel monitoring; the structured tree topology offers low
energy consumption and fast communication, ideal for home automation; and the dynamic transition
network, suited for industrial Automated Guided Vehicles (AGVs), encounters challenges with
adaptive routing. These insights guide the optimization of communication protocols and network
configurations for more efficient and reliable IoT deployments.

Keywords: IoT network topologies; UDP server–client communication; RPL routing protocol;
6LoWPAN; performance analysis

1. Introduction

The rise of the Internet of Things (IoT) has dramatically altered connectivity frame-
works, redefining the way devices communicate and exchange information within an
increasingly digital ecosystem [1]. The rapid proliferation of IoT technologies across
domains such as smart homes, industrial automation, and environmental surveillance
underscores the need for robust and efficient data transmission strategies [2,3]. A central
challenge in the IoT field is achieving reliable, low-latency, and real-time data exchange
across heterogeneous and frequently changing environments [4]. As IoT continues to
extend its reach into diverse sectors, the demand for optimized communication protocols
that cater to a variety of dynamic requirements has grown significantly [5]. Conventional
protocols, designed for static network settings, often face limitations in addressing the
distinctive challenges posed by dynamic IoT networks [5]. Recent research increasingly

Electronics 2024, 13, 3697. https://doi.org/10.3390/electronics13183697 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13183697
https://doi.org/10.3390/electronics13183697
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0009-0005-3940-3661
https://orcid.org/0000-0002-0139-3753
https://orcid.org/0009-0002-3276-1368
https://orcid.org/0000-0003-2093-556X
https://orcid.org/0000-0001-6764-6656
https://doi.org/10.3390/electronics13183697
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13183697?type=check_update&version=1


Electronics 2024, 13, 3697 2 of 28

highlights the inadequacies of these traditional protocols in managing high variability and
fluid topologies within IoT applications [6].

The complexity inherent in IoT network topologies calls for a comprehensive under-
standing of data propagation methods and the development of flexible communication
protocols that can maintain performance under varied conditions [7]. Among these, the
User Datagram Protocol (UDP) is frequently chosen for IoT deployments due to its sim-
plicity and minimal overhead. However, UDP’s inherent lack of reliability, particularly in
dynamic and resource-constrained scenarios, presents substantial hurdles. Studies have
shown that although UDP is pivotal for facilitating streamlined communication in IoT
contexts, its absence of built-in error correction mechanisms often results in data loss, which
is detrimental to critical IoT use cases [8,9].

To mitigate these issues, this study proposes an enhanced version of UDP that inte-
grates an acknowledgment mechanism to ensure data accuracy and a power consumption
evaluation component utilizing the Energest module in Contiki OS. This improvement is
aimed at delivering more reliable and energy-conscious data transmission, especially in dy-
namic networks where both data integrity and energy efficiency are of paramount concern.
The advanced UDP protocol demonstrates considerable enhancements over the standard
UDP by reducing data loss and providing more consistent data delivery across various IoT
configurations, such as linear chain, structured tree, and dynamic transition networks.

By evaluating crucial performance indicators such as round-trip time (RTT), server
processing duration (SPT), energy consumption, and packet loss, this research offers a
detailed assessment of both standard and enhanced UDP protocols across different IoT
network architectures. The results illustrate that while the standard UDP protocol’s low
overhead makes it attractive, its dependability diminishes in dynamic settings, limiting
its suitability for applications where data integrity is critical. In contrast, the enhanced
UDP protocol successfully addresses these limitations by minimizing packet loss and
maintaining more stable performance across diverse topologies, albeit with a marginal
increase in energy consumption due to the added acknowledgment feature.

This work contributes a novel perspective by focusing on both enhancing the User
Datagram Protocol (UDP) and incorporating a power consumption assessment mecha-
nism—an aspect that has been relatively underexplored in IoT data transmission research.
The enriched UDP protocol’s acknowledgment feature, combined with the Energest module
in Contiki OS, facilitates a thorough analysis of power consumption based on the devices
employed, such as Z1 motes and CC2650 Launchpad. This holistic evaluation, grounded in
both simulation and hardware experiments, positions this study as a meaningful advance-
ment over existing research.

The study includes both simulation and hardware experimentation to ensure a com-
prehensive analysis. The Contiki OS and Cooja simulator are utilized for simulations, while
CC2650 Launchpad devices are employed for hardware testing, ensuring a detailed under-
standing of how UDP-based communication can be optimized in practical IoT scenarios.
The findings provide valuable guidance for improving IoT communication methodologies
by demonstrating the advantages of the enhanced UDP protocol in boosting reliability
and energy efficiency, paving the way for future progress in adaptive and intelligent
network systems.

The structure of this paper is organized as follows: Section 2 reviews the current
literature on IoT data transmission and communication protocols, highlighting recent
advancements and identifying research gaps that serve as a foundation for this work.
Section 3 outlines the research methodology, including the experimental framework in-
corporating both simulation and hardware elements, the justification for selecting UDP,
and the criteria used for the analysis such as the RTT, server response time (SRT), and
energy consumption. This section also introduces the algorithm developed in this research
and describes the scenarios analyzed, such as linear chain, structured tree, and dynamic
transition networks. Section 4 presents the experimental outcomes, examining UDP’s
performance across different scenarios with specific metrics like RTT, server response time,



Electronics 2024, 13, 3697 3 of 28

and energy use, assessed through CPU and low-power mode (LPM) metrics. The prac-
tical implications and new insights derived from the study are also discussed. Section 5
merges the discussion and conclusion, providing a thorough analysis of the results in
comparison with related studies and emphasizing the broader implications for designing
energy-efficient IoT systems. This section also summarizes the key findings, considers
their potential impact, and outlines avenues for future research, reinforcing the study’s
contributions to advancing IoT data transmission and communication protocols for more
effective, reliable, and scalable networks.

2. Related Works

Wireless communication is a foundational element for modern IoT networks, enabling
device interconnectivity and data transmission [10]. The evolution of wireless technology,
from 1G to 5G, has significantly impacted the IoT, facilitating new applications with
enhanced connectivity, data rates, and reduced latency [11]. While each generation brought
advancements, IoT networks present unique challenges for data transmission, particularly
concerning protocol efficiency, reliability, and energy consumption.

Protocols like the User Datagram Protocol (UDP) are widely adopted in IoT envi-
ronments due to their simplicity and low-latency characteristics, making them suitable
for time-sensitive applications [12]. However, UDP lacks built-in error recovery, posing
reliability challenges, especially in dynamic IoT environments [10,13]. To address these
issues, enhancements such as adding acknowledgment mechanisms have been proposed to
improve data integrity without significantly increasing overhead [14]. This study evaluates
both standard and enhanced versions of UDP across different IoT network topologies and
hardware setups to optimize protocol efficiency and reliability.

Optimizing communication protocols is crucial in the IoT to manage power consump-
tion, minimize packet loss, and adapt to dynamic environments [15]. Techniques like adap-
tive duty cycling and the use of energy-efficient Medium Access Control (MAC) protocols
help reduce energy consumption, particularly in low-power networks [16]. Recent ad-
vances in edge computing also provide opportunities for optimizing protocol performance
by reducing latency and offloading computation closer to the source of data generation [17].
This research focuses on evaluating the performance of an enhanced UDP, considering
energy efficiency as a critical factor for real-world IoT deployments.

Recent studies have highlighted the increasing popularity of UDP in IoT environ-
ments due to its low overhead and suitability for resource-constrained devices [18]. En-
hancements such as hybrid UDP–TCP approaches [19] and integrated acknowledgment
mechanisms [20] have been proposed to address UDP’s reliability issues while maintaining
its low latency. Furthermore, research on power-efficient communication strategies [21]
and UDP optimizations for sensor networks [22] shows the protocol’s adaptability to differ-
ent IoT scenarios. Our work extends these studies by introducing specific enhancements
to UDP, including acknowledgment mechanisms and power consumption metrics, and
evaluates their performance across various IoT network topologies. By integrating these
features, our research provides new insights into UDP’s application in IoT environments
and addresses gaps identified in the existing literature.

This study evaluates the performance of a UDP-based communication protocol with
an acknowledgment mechanism for specific IoT applications through the comprehensive
analysis of different network topologies, including linear chain networks, structured tree
networks, and dynamic transition networks. The evaluation of key performance metrics,
such as round-trip time (RTT), server processing time (SPT), and power consumption,
illustrates the behavior of UDP server–client communication built on the RPL routing
protocol and 6LoWPAN-based stack. Furthermore, the study demonstrates the efficiency
of hierarchical network designs and dynamic routing protocols in various IoT scenarios,
contributing to the development of energy-efficient communication strategies for resource-
constrained devices.



Electronics 2024, 13, 3697 4 of 28

3. Research Methodology

Within our work, we wanted to evaluate and optimize the performance of various
network topologies for IoT applications, specifically focusing on linear chain networks,
structured tree networks, and dynamic transition networks. The aim was to compre-
hensively analyze the impact of these topologies on key performance metrics such as
round-trip time (RTT), server processing time (SPT), and power consumption, utilizing
UDP server–client communication, the RPL routing protocol, and 6LoWPAN to identify
the most efficient and reliable configurations for different real-world IoT scenarios.

3.1. Methodological Approach and Tools

This section provides a comprehensive rationale for the communication methodology,
protocols, and tools chosen for the study. Our approach is grounded in UDP server–client
communication and RPL routing, with enhancements specifically designed to address the
reliability and efficiency of data exchange in IoT networks.

3.1.1. Communication Methodology and Protocol Enhancements

The UDP protocol was modified by incorporating an acknowledgment mechanism.
Traditionally, UDP allows for unidirectional transmission where the client sends packets to
the server without any form of acknowledgment from the server. Our modification intro-
duces a bidirectional communication feature, enabling the server to send acknowledgments
back to the client upon receiving a packet. This enhancement was implemented to address
the research problem of establishing reliable communication in IoT networks, where ac-
knowledgment is crucial for confirming data receipt and improving overall communication
reliability. Figure 1 illustrates each client independently sending packets directly to the
server and receiving individual acknowledgments.

Figure 1. Direct communication of each client with the server sending acknowledgments.

Figure 2 shows the sequential packet transmission from clients to the server through
the relays of other clients and the acknowledgment sent back from the server to each client.

The rationale behind choosing UDP lies in its simplicity and low-overhead nature,
which makes it suitable for resource-constrained IoT devices that require efficient data
transmission without the extensive handshaking and error-checking overhead of TCP.
UDP’s connectionless protocol offers benefits in scenarios where real-time data transfer
is critical, such as in smart homes and industrial automation systems [23]. RPL, or the
Routing Protocol for Low-Power and Lossy Networks, was selected for its efficiency in
handling the dynamic topology of IoT networks. RPL supports the creation of a robust
and flexible network that can adapt to changes in the environment and node connectivity,
which is essential for maintaining communication reliability in IoT applications [24].



Electronics 2024, 13, 3697 5 of 28

Figure 2. Serial (or indirect) communication of clients with the server sending acknowledgments.

3.1.2. Methodology for Network Topologies and Tools

The communication methodology explored three distinct scenarios to understand how
UDP server–client communication functions in various network environments. Here is an
overview of each scenario:

Linear chain network tunnel scenario (Figure 3): nodes are positioned in a straight
line, each communicating only with its adjacent neighbor.

Figure 3. Linear chain network with nodes arranged in a series connection, starting from the server
(mote ID 1) and followed by the client motes.

Structured tree network (home automation) scenario (Figure 4): nodes are arranged in
a hierarchical tree structure, where the root node communicates with several child nodes,
which may themselves have child nodes.



Electronics 2024, 13, 3697 6 of 28

Figure 4. Node placement in a structured tree network with mote ID 1 as the server and other motes
arranged hierarchically as clients.

Dynamic transition network (e.g., AGVs) scenario (Figures 5–7): nodes have dynamic
and adaptive routing capabilities, allowing them to adjust their routing paths based on
current network conditions to simulate a realistic and variable network environment.

Figure 5. Client motes establishing a connection with the server (mote ID 1) at a stationary point.

In every task, each client mote started a movement and maintained reliable communi-
cation with the next client (Figure 6).



Electronics 2024, 13, 3697 7 of 28

Figure 6. Clients start moving gradually to complete their tasks.

Despite moving in series, the clients established a reliable communication path with
the server, facilitating seamless task completion (Figure 7).

Figure 7. All clients (e.g., AGVs) reached their destination and completed their tasks.

After completing the task, clients (e.g., AGVs) returned to their station point in the
same way, in reverse, and waited for the next task, which may differ depending on the
requirements. In terms of tools, the Contiki OS was utilized due to its lightweight nature
and its provision of a comprehensive environment for simulating and testing IoT applica-
tions. Contiki’s extensive support for various communication protocols, including UDP
and 6LoWPAN, made it a fitting choice for this research. The COOJA simulator, an integral
part of the Contiki ecosystem, facilitated the modeling and testing of network protocols
and their performance under different conditions. The CC2650 Launchpad devices were
employed for their compatibility with Contiki OS and their support for low-power com-
munication protocols, making them a good platform for practical implementation and
comparison of real-world results with simulation outcomes [25].

3.1.3. Algorithm for Performance Evaluation

In the context of this research, we developed an algorithm specifically designed to
evaluate the performance of UDP when integrated with a modified acknowledgment
mechanism across various IoT network topologies. The algorithm systematically assessed
key performance metrics such as packet delivery success rate, round-trip time (RTT), server
processing time (SPT), and power consumption. By analyzing these metrics within different
topologies, the algorithm identified potential issues related to packet delivery, particularly
in scenarios with varying levels of network interference or device placement challenges.
The algorithm also incorporated steps to optimize network performance by adjusting



Electronics 2024, 13, 3697 8 of 28

device placements and communication parameters when the initial evaluation indicates
suboptimal results. This approach ensured a thorough examination of UDP’s effectiveness
in diverse IoT environments, offering valuable insights for optimizing communication
protocols and energy consumption. Algorithm 1 presents the step-by-step procedure for
conducting this comprehensive performance evaluation.

Algorithm 1: Performance evaluation of UDP with modified acknowledgment
mechanism

1: Input:
2: Set of topologies {T1, T2, . . . , Tn}
3: UDP packet sequences
4: Power consumption data
5: Output:
6: Performance metrics for each topology
7:
8: for each topology Ti in {T1, T2, . . . , Tn} do
9: Evaluate UDP performance:

10: Compute the packet delivery success rate for UDP packets in Ti
11: if the delivery success rate meets the required threshold then
12: Proceed with performance evaluation:
13: Measure power consumption during packet transmission and reception in Ti
14: Compute performance metrics: round-trip time (RTT), server processing time (SPT), and

power consumption for Ti
15: else
16: Investigate issues:
17: Adjust device placement:
18: Optimize the physical placement of devices to improve communication success, ensuring

minimal distance and line-of-sight between nodes.
19: Evaluate communication factors:
20: Analyze and adjust factors such as signal strength, interference sources, and network

congestion to enhance communication reliability.
21: Implement network adjustments:
22: Modify network parameters like transmission power or data rates if necessary to improve

communication performance.
23: Document observations: Include details on the adjusted device placements, communication

factors addressed, and any remaining challenges or improvements achieved.
24: Compute performance metrics: include observed RTT, SPT, and power consumption after

adjustments.
25: end if
26: end for
27: Return: Summary of performance metrics for all topologies evaluated, including detailed

findings for those with performance issues

3.2. UDP Enhancement with Acknowledgment and Power Consumption Metrics for IoT Networks

In this study, we introduced enhancements to the traditional UDP protocol to support
acknowledgment and power consumption metrics specifically for IoT networks. The pri-
mary enhancement was the addition of an acknowledgment mechanism to the standard
UDP protocol. This mechanism allowed the server to send acknowledgment (ACK) packets
back to the client upon receiving data packets. The ACK packets included an acknowledg-
ment header that contained a sequence number to identify the corresponding data packet
and an optional status code indicating the receipt status. This addition helped confirm
successful data transmission and improved the reliability of communication [18,26].

Alongside this, we integrated power consumption monitoring into the UDP commu-
nication process to evaluate energy usage. This involved recording CPU and low-power
mode (LPM) power consumption using the Energest module in Contiki OS [25]. The CPU
power consumption was measured during data transmission and acknowledgment han-



Electronics 2024, 13, 3697 9 of 28

dling, while LPM power consumption was assessed during periods when the device was
idle, reflecting the efficiency of power management. These enhancements allowed for a
comprehensive evaluation of UDP’s performance, focusing on both data reliability and
energy efficiency in various IoT network topologies. The detailed structure of these en-
hancements ensured that while UDP retained its low-overhead nature, it also provided
crucial feedback on communication reliability and energy usage.

3.3. Research Approach

The communication methodologies of UDP server–client communication and RPL
routing were selected for their suitability in addressing real-time communication demands
and optimizing routing paths within low-power IoT networks. UDP’s connectionless na-
ture allows for faster data transmission with minimal overhead, making it a good choice for
time-sensitive applications where delays can be detrimental. This is particularly important
in scenarios involving both dynamic and static placement of devices, where real-time
data exchange is critical for navigation and coordination [27]. RPL routing, on the other
hand, is designed to handle the complexities of low-power and lossy networks typical of
IoT environments. Its capability to create a Destination-Oriented Directed Acyclic Graph
(DODAG) ensures efficient data routing, minimizing power consumption and maximizing
network lifespan. This is especially beneficial in applications like smart home automation,
where devices frequently communicate with each other and with central hubs [28]. Further-
more, combining UDP and RPL is particularly advantageous in tunnel monitoring systems,
where the network topology can change dynamically due to environmental factors. RPL’s
adaptability ensures reliable data transmission despite these changes, while UDP ensures
that the data are transmitted swiftly and with minimal delay.

In this study, three specific network topologies were chosen to comprehensively
evaluate the performance of these communication methodologies: linear chain network,
structured tree network, and dynamic transition network.

The linear chain network was selected for its simplicity, allowing us to establish
baseline performance metrics and understand basic data propagation delays. This straight-
forward configuration provided clear insights into fundamental communication behaviors
and protocol efficiency.

The structured tree network was included to examine the effects of hierarchical node
placement on performance. This topology helped in analyzing how well UDP and RPL han-
dled structured, hierarchical routing scenarios, which are common in many IoT applications
where data aggregation and organized communication paths are crucial.

The dynamic transition network was chosen to simulate real-world environments
where network conditions change dynamically. This topology was essential for evaluating
how well UDP and RPL adapted to varying network conditions, reflecting scenarios where
routing paths and network configurations are not static.

By employing these three topologies, the research aimed to cover a broad spectrum of
network scenarios, providing a comprehensive evaluation of the communication method-
ologies’ strengths and limitations in different IoT environments. The multi-layered ap-
proach, from the physical layer with the COOJA simulator and CC2650 Launchpad to
the transport layer with UDP, ensured that the findings were robust and applicable to a
range of real-world applications [29]. Figure 8 shows the implementation of these protocols,
highlighting their integration for robust IoT communication.



Electronics 2024, 13, 3697 10 of 28

Figure 8. Implementation of selected supported protocols.

3.4. Key Parameters for Performance Evaluation

This section outlines the key parameters used for performance evaluation in our study.
The primary metrics considered were the round-trip time (RTT), server processing time
(SPT), and power consumption. These metrics are essential for assessing the performance
and efficiency of the network in different scenarios [25]. RTT is a critical performance metric
that measures the time a signal takes to travel from the source node to the destination
node and back again [30]. It is a crucial indicator of network latency and is influenced
by numerous factors such as network topology, node processing delays, and routing
protocols [31]. RTT is calculated using the following formula:

RTT = Treceived − Tsent (1)

where Treceived is the timestamp when the packet is received back at the source node, and
Tsent is the timestamp when the packet is originally sent from the source node. A lower RTT
value signifies a more responsive and efficient network, which is particularly important for
real-time applications [32].

SPT refers to the time taken by the server to process a request from a node and send
back the response [33]. It is an essential metric for understanding the computational load
and efficiency of the server in handling network requests [34]. SPT is calculated as follows:

SPT = Tresponse sent − Trequest received (2)

where Tresponse sent is the timestamp when the server sends the response, and Trequest received
is the timestamp when the server receives the request from the node [35]. Lower SPT
values indicate faster server processing, which is crucial for maintaining overall network
performance [36].

Power consumption is a vital metric for evaluating the energy efficiency of the network,
especially in resource-constrained environments such as wireless sensor networks [37]. We
focused on two primary components of power consumption: CPU power and low-power
mode (LPM) power [38]. The total power consumption is the sum of the power the CPU
uses when it is active and the power used when the nodes are in a low-power state [39].
To calculate power consumption, we used the energy consumption values obtained from
the Energest module in Contiki, which provides data in terms of ticks. These ticks are then
converted to power consumption using the supply voltage (V) and the current (I) [40].



Electronics 2024, 13, 3697 11 of 28

CPU power consumption is the power the CPU uses when it is active, processing data,
or performing tasks. It is measured in milliwatts (mW) and calculated as follows:

CPU Power =
(

CPU ticks
RTIMER ticks per second

)
× V × ICPU (3)

where CPU ticks is the number of ticks the CPU is active, RTIMER ticks per second is the
number of real-time timer ticks per second, V is the supply voltage, and ICPU is the current
consumed by the CPU [41].

LPM power consumption is the power the nodes use when they are in a low-power
state, conserving energy. It is also measured in milliwatts (mW) and calculated as follows:

LPM Power =
(

LPM ticks
RTIMER ticks per second

)
× V × ILPM (4)

where LPM ticks is the number of ticks the node is in low-power mode, RTIMER ticks per
second is the number of real-time timer ticks per second, V is the supply voltage, and ILPM
is the current consumed in low-power mode [42]. The total power consumption is then
the sum of CPU and LPM power consumption over the entire network [43]. Monitoring
and minimizing power consumption is crucial for extending the battery life of nodes and
ensuring the sustainability of the network.

3.5. Simulation and Experimental Setup

This section details the simulation and hardware setups employed to evaluate the
performance of three specific network topologies: linear chain network, structured tree
network, and dynamic transition network. The evaluations were conducted using the
Cooja simulator alongside the Zolertia Z1 mote (Zolertia, Barcelona, Spain) and the Texas
Instruments CC2650 LaunchPad (Texas Instruments, Dallas, TX, USA).

In the linear chain network, nodes were positioned in a straight line, each communicat-
ing only with its adjacent neighbor. This configuration assessed the cumulative delay and
processing time as data passed through multiple nodes [25]. The structured tree network
organized nodes in a hierarchical tree structure, where the root node communicated with
several child nodes, which may themselves have child nodes. This setup investigated the
impact of hierarchical node placement on network performance metrics such as round-trip
time (RTT) and server processing time (SPT) [30]. The dynamic transition network featured
nodes with dynamic and adaptive routing capabilities, allowing them to adjust their rout-
ing paths based on current network conditions to simulate a realistic and variable network
environment [38].

The Cooja simulator, a Java-based tool designed to emulate the behavior of IoT devices
running Contiki OS, was used for these simulations. Cooja’s capability for detailed and
cycle-accurate simulations makes it a good platform for performance evaluation [40]. The
Zolertia Z1 mote was used as the hardware platform for the simulations. Key features
of the Z1 mote include the MSP430 microcontroller, renowned for its energy efficiency.
The operating voltage ranges from 1.8 V to 3.6 V for the MCU and 2.1 V to 3.6 V for the
transceiver, with an operational temperature range of −40 °C to +85 °C and a maximum
clock frequency of 16 MHz [44]. The Z1 mote exhibits varying power consumption levels
in different operational modes: 2 mA in active mode (MCU), 0.5 µA in low-power mode
(MCU), 17.4 mA during radio transmission, 18.8 mA during radio reception, 426 µA in
idle mode, and 0.1 µA in off mode [44]. These specifications were essential for accurately
modeling node power consumption in different network scenarios. As detailed in Table 1,
the simulation parameters include settings such as the transmission range and the number
of motes.



Electronics 2024, 13, 3697 12 of 28

Table 1. Simulation Parameters.

Parameter Configuration

Transmission range 50 m
Server mote One
Client motes Seven
Radio medium Unit disk graph medium
Transport layer protocol UDP
PHY and MAC Layer IEEE 802.15.4
Simulation time One thousand seconds

For hardware experiments, the three network topologies used in simulations were
replicated: the linear chain network, structured tree network, and dynamic transition net-
work. Each CC2650 LaunchPad was configured as a mote using the Contiki-NG operating
system, designed for IoT devices [45]. Power consumption was calculated by combining
current consumption values from the datasheet, supplied voltage, and tick values from
experiments, focusing on CPU and low-power mode (LPM) power. Nodes communi-
cated via the IEEE 802.15.4 protocol, common in low-power wireless networks [25]. Data
on round-trip time (RTT), server processing time (SPT), and power consumption (CPU
and LPM) were collected and analyzed. Hardware experiment results were compared
with simulations to validate the simulation models’ accuracy and reliability. Experiments
were conducted in controlled indoor environments for structured tree network scenarios
and outdoor environments for linear chain and dynamic transition network scenarios,
facilitating the precise measurement and analysis of network performance metrics across
configurations [46].

The simulation setups illustrated in Figure 9 provide a clear view of how the motes
were arranged for each topology. Figure 9a shows the linear topology, where motes were
aligned in a straight line to mimic a linear chain. In contrast, Figure 9b demonstrates the
structured topology with motes placed in a more gridlike formation, representing a typical
structured network layout. Figure 9c depicts the dynamic topology, designed to simulate
mobility and varying network conditions.

(a) Linear topology (b) Structured topology

(c) Dynamic topology

Figure 9. Simulation setup for different topologies: (a) linear, (b) structured, (c) dynamic.



Electronics 2024, 13, 3697 13 of 28

Similarly, the hardware experimental setups shown in Figure 10 capture the real-
world environments used for testing. Figure 10a presents the linear topology setup in a
long corridor, Figure 10b shows the structured topology with devices placed in different
rooms, and Figure 10c illustrates the dynamic topology conducted in an open stadium,
representing a scenario with movement and a variable distance among devices.

(a) Linear topology (b) Structured topology

(c) Dynamic topology

Figure 10. Hardware experimental setup for different topologies: (a) linear, (b) structured, (c) dynamic.

3.6. Implementation and Protocol Application

Throughout the implementation process, various communication protocols were
employed to facilitate data exchange between IoT devices. The study focused on three



Electronics 2024, 13, 3697 14 of 28

primary protocols: UDP, RPL, and 6LoWPAN, each operating at different layers of the OSI
model and contributing uniquely to the network’s functionality.

UDP (User Datagram Protocol) operates at the transport layer, providing a lightweight
and connectionless communication protocol. It is characterized by minimal overhead and
lack of connection establishment, making it particularly suitable for IoT applications where
low latency and reduced protocol complexity are crucial. In this study, UDP was utilized
for its simplicity and efficiency in scenarios where timely data transmission was essential.
A modified UDP protocol, incorporating an acknowledgment mechanism similar to TCP
but without retransmission, was implemented to evaluate performance under different
network topologies and hardware setups.

RPL (Routing Protocol for Low-Power and Lossy Networks) operates at the network
layer, offering robust and energy-efficient routing capabilities tailored for low-power
IoT networks. It utilizes a structured approach to route data packets efficiently across a
network of constrained devices, optimizing battery life and network performance. The
implementation of RPL aimed to assess its effectiveness in managing communication paths
and ensuring reliable data delivery in various IoT scenarios.

6LoWPAN (IPv6 over Low-Power Wireless Personal Area Networks) functions at
the adaptation layer, providing mechanisms for header compression and fragmentation
to facilitate IPv6 communication over low-power wireless networks. By compressing
IPv6 headers, 6LoWPAN reduces the quantity of data transmitted over the air, which is
critical for maintaining efficiency in resource-constrained environments. This protocol was
employed to enable seamless integration of IoT devices into larger IPv6 networks, ensuring
compatibility and interoperability across different network layers.

The implementation process utilized the Contiki-NG operating system (OS), a lightweight,
open-source platform that supports various hardware platforms and facilitates the develop-
ment of low-power wireless communication protocols. Contiki-NG’s modular architecture
allowed for the easy integration of communication protocols such as UDP, RPL, and
6LoWPAN, enabling seamless communication across IoT networks. The COOJA simulator,
integral to Contiki-NG, provided a powerful tool for simulating various network topologies
and scenarios. COOJA’s capability to emulate network behavior and visualize protocol
interactions facilitated comprehensive testing and evaluation.

The CC2650 Launchpad from Texas Instruments served as the development platform
for implementing and testing IoT solutions. This versatile platform, featuring an ARM
Cortex-M3 processor and integrated radio transceiver, supported Contiki-NG and ensured
compatibility with the communication protocols under study. Terminals such as Tera Term
played a crucial role in interfacing with the CC2650 Launchpad, providing a user-friendly
interface for sending commands, receiving data, and analyzing experimental results. Addi-
tionally, Smart RF Programming Tools were used to configure the radio transceiver settings,
optimizing communication performance for the specific IoT applications.

By incorporating these protocols and tools, the study achieved efficient and reliable
communication within IoT networks. The integration of UDP, RPL, and 6LoWPAN, along
with the use of Contiki-NG, COOJA, CC2650 Launchpad, and various terminals and
programming tools, contributed to the development of a robust IoT communication frame-
work. This approach provided valuable insights into protocol performance and interactions,
advancing the understanding and deployment of IoT technology.

3.7. Tools and Software Utilized

Contiki-NG operating system (OS) has emerged as a prominent choice for IoT de-
velopment due to its lightweight, open-source nature, and support for various hardware
platforms [47]. It facilitates the development of low-power wireless communication pro-
tocols, making it a good choice for resource-constrained IoT devices [48]. Contiki-NG’s
modular architecture allows for easy integration of communication protocols such as UDP,
RPL (Routing Protocol for Low-Power and Lossy Networks), and 6LoWPAN (IPv6 over
Low-power Wireless Personal Area Networks), enabling seamless communication across



Electronics 2024, 13, 3697 15 of 28

IoT networks [49]. At the physical layer, Contiki-NG provides support for various radio
transceivers, ensuring compatibility with a wide range of IoT hardware [50]. It abstracts
the complexities of wireless communication, enabling developers to focus on higher-level
protocol implementations [51]. In the data link layer, Contiki-NG implements protocols like
IEEE 802.15.4, facilitating reliable communication over low-power wireless networks [52].
For this study, Contiki-NG served as the foundation for implementing communication
protocols and conducting experiments on the CC2650 Launchpad. Its versatility and robust-
ness made it an ideal choice for exploring UDP communication and evaluating protocol
performance [53].

COOJA (Contiki’s Network Simulator) is an integral part of the Contiki-NG ecosystem,
providing a powerful tool for simulating IoT networks [54]. It allows the emulation of
various network topologies and scenarios, enabling comprehensive testing and evaluation
of communication protocols [55]. At the network layer, COOJA simulates the behavior of
routing protocols like RPL, enabling the assessment of performance under different network
conditions [56]. It also provides visualization capabilities, allowing researchers to observe
network behavior and analyze protocol interactions [57]. COOJA’s integration with Contiki-
NG ensures compatibility with the platform’s communication stack, including support for
UDP, RPL, and 6LoWPAN [58]. This seamless integration facilitates the development and
testing of communication protocols in a controlled environment, reducing the time and
resources required for experimental setup and execution [59]. In our work, the COOJA
simulator was utilized to simulate IoT network scenarios and evaluate the performance of
UDP communication protocols. Its capability to replicate real-world conditions made it a
valuable tool for validating protocol implementations and assessing their suitability for
practical deployment [60].

The CC2650 Launchpad from Texas Instruments is a versatile development platform
that supports Contiki-NG, simplifying the implementation and testing of IoT solutions [61].
It features an ARM Cortex-M3 processor and integrated radio transceiver, providing the
necessary hardware capabilities for IoT applications [62]. At the physical layer, the CC2650
Launchpad supports IEEE 802.15.4 radio communication, ensuring compatibility with
Contiki-NG’s communication stack [63]. This integration enables developers to deploy and
evaluate IoT applications directly on the Launchpad, streamlining the development process
and reducing time-to-market [64]. In this study, the CC2650 Launchpad served as the
target platform for implementing UDP communication protocols developed in Contiki-NG.
Its compatibility with Contiki-NG simplified the deployment of experimental setups and
facilitated real-world testing, ensuring the validity and relevance of research findings [65].

Terminals, such as Tera Term, play a crucial role in interfacing with the CC2650
Launchpad and monitoring communication between devices. They provide a user-friendly
interface to send commands and receive data, facilitating the debugging and analysis of
experimental results [66]. In this study, terminals were utilized to observe the behavior
of UDP communication protocols, aiding in the identification of potential issues and
optimization of protocol parameters for enhanced performance in IoT deployments [67].

Smart RF Programming Tools are essential for programming and configuring the
CC2650 Launchpad’s radio transceiver [68]. These tools enable developers to customize
radio settings and parameters, optimizing communication performance for specific IoT
applications [69]. In our study, Smart RF Programming Tools were utilized to fine-tune
the radio settings to ensure compatibility with Contiki-NG’s communication stack and
enhance the reliability and efficiency of UDP communication protocols [70].

4. Results and Discussion

The objective of our experiments was to evaluate and compare the performance
and energy consumption of wireless sensor networks (WSNs) using both simulation and
real hardware components. The experiments aimed to provide insights into the energy
efficiency and latency of different network topologies and to validate the simulation results
against real-world hardware performance. Each of these scenarios was tested using both



Electronics 2024, 13, 3697 16 of 28

the Contiki-NG Cooja Simulator with Z1 (Zolertia) motes and real hardware experiments
using the CC2650 Launchpad. For the simulation setup, we used the Cooja simulator
to model networks comprising up to eight Z1 motes. The Z1 mote features an MSP430
microcontroller with a 16-bit architecture, 10 KB of RAM, and 48 KB of flash memory,
which are representative of resource-constrained IoT devices. The motes were configured
to use the 6LoWPAN protocol at the data link layer, RPL for routing, and UDP for transport
layer communication. Simulation parameters included a communication range of 50 m
and data transmission intervals set at 60 s. In the real hardware experiments, we utilized
the TI CC2650 Launchpad, which included an ARM Cortex-M3 microcontroller with
20 KB of RAM and 128 KB of flash memory. The hardware setup mirrored the simulation
environment, with the same network configurations and communication protocols. Each
scenario (linear chain, structured tree, and dynamic transition networks) was tested under
identical conditions to ensure comparability. The results from these tests were analyzed
and compared to understand the differences in performance and power consumption
between simulated and real-world conditions, providing a comprehensive evaluation of
WSN performance in various network topologies.

4.1. Round-Trip Time (RTT) Analysis

First, we performed the RTT analysis for three different network scenarios, including
linear chain network, structured tree network, and dynamic transition networks. We
discuss the RTT results obtained from both simulation and hardware experiments and
provide visual representations for each of the eight motes in each scenario. Figure 11a,b
show the RTT results for the linear chain network scenario from simulation and hardware
experiments, respectively.

(a) Simulation results (b) Hardware results

Figure 11. RTT for the linear chain network scenario.

Mote 1 served as the base node and did not measure RTT. From the simulation results
shown in Figure 11a, the RTT for Mote 2 started at 62.0 ms and increased progressively
to 362.3 ms for Mote 8. This incremental rise in RTT highlighted the cumulative delay as
data traversed more nodes in the linear chain. Like the simulation, the hardware results
displayed an increasing trend in RTT with the addition of each mote. The linear increase in
RTT for both simulation and hardware setups reflected the anticipated behavior of a linear
chain topology where each node adds a fixed processing and transmission delay.

Figure 12a,b depict the RTT results for the structured tree network scenario from
simulation and hardware experiments, respectively.



Electronics 2024, 13, 3697 17 of 28

(a) Simulation results (b) Hardware results

Figure 12. RTT for the structured tree network scenario.

The RTT values showed a structured increment, reflecting the hierarchical arrangement
where motes closer to the root node experienced a lower RTT. The RTT for Mote 2 was
69.96 ms, escalating to 224.56 ms for Mote 8, according to the simulation arrangement
shown in Figure 12a. The hardware experimental results shown in Figure 12b confirmed
the increase in RTT, which was similar to the simulation one, though slightly higher, likely
due to real-world factors such as interference and processing overhead. The structured
tree network showed that RTT grew with the depth of the tree, illustrating the impact of
hierarchical node placement on communication delay.

Figure 13a,b illustrate the RTT results for the dynamic transition network scenario
from simulation and hardware experiments, respectively.

(a) Simulation results (b) Hardware results

Figure 13. RTT for the dynamic transition network scenario.

These results demonstrated dynamic routing changes affecting RTT, with variability
introduced by transitioning paths. The RTT for Mote 2 was 85.67 ms, increasing to 258.36
ms for Mote 8, as shown in Figure 13a. The hardware RTTs were higher than the simulation
ones, indicating additional delays likely due to real-time network reconfiguration and
environmental factors. The dynamic transition network highlighted the effects of adaptive
routing on RTT, with noticeable increases as nodes dynamically switched paths, reflecting
real-world variability and adaptability challenges.

The RTT analysis across all three scenarios demonstrated the expected influence of
network topology and real-world conditions on communication delay. The linear chain
network confirmed a clear linear increase in RTT with each additional mote, which is
important when designing these types of topologies in tunnels or long corridors. The
structured tree network reflected hierarchical delays, with RTT increasing based on the
depth of the node. The dynamic transition network, with its adaptive routing, showed
higher and more variable RTTs due to the dynamic nature of path transitions. In all tested
scenarios, the results obtained with the real devices had similar tendencies, although the
RTTs were a bit higher than those from the simulation.



Electronics 2024, 13, 3697 18 of 28

4.2. Server Processing Time (SPT) Analysis

During our experiments, we also analyzed the server processing time (SPT) for the
three network topologies and usage scenarios, i.e., linear chain network, structured tree
network, and dynamic transition network. The SPT results are reported and discussed for
both simulation and hardware experiments and supported by visual representations for
each of the eight motes in each scenario. Figure 14 shows the SPT results for the linear
chain network scenario from simulation and hardware experiments.

Figure 14. SPT for the linear chain network scenario.

In the linear chain network scenario, Mote 1 served as the base node and did not
measure server processing time (SPT). The SPT for Mote 2 started at 2.62 ms and remained
consistent, reaching 2.75 ms for Mote 8. This minimal variation in SPT indicated a stable
processing time across the motes, reflecting the straightforward nature of the linear topol-
ogy. In the hardware results, the SPT for Mote 2 started at 15.6 ms and increased slightly
to 15.8 ms for Mote 8. The hardware results showed a similarly stable trend, with slightly
higher values due to real-world processing overhead. The SPT values in both simulation
and hardware experiments for the linear chain network showed minimal variation, con-
sistent with the expected behavior of a simple linear topology where each mote processes
data uniformly. This stability underscored the efficiency of linear topologies in maintaining
consistent processing times across nodes.

Figure 15 depicts the SPT results for the structured tree network scenario from simula-
tion and hardware experiments.

Figure 15. SPT for the structured tree network scenario.

In the structured tree network scenario, the simulation results showed the server
processing time (SPT) for Mote 2 was 2.37 ms, increasing marginally to 2.87 ms for Mote 8.



Electronics 2024, 13, 3697 19 of 28

The slight incremental rise in SPT values reflected the hierarchical structure, where each
additional level added a minor processing delay. Hardware experiments provided the
SPT for Mote 2 at the level of 14.22 ms, rising to 17.22 ms for Mote 8. These results were
slightly higher than the simulation results, likely due to real-world factors such as network
interference and processing overhead. The structured tree network results indicated that the
SPT increased modestly as motes were added, which was expected due to the hierarchical
structure of the network. The consistent processing times across the levels illustrated the
efficiency of the structured approach.

Figure 16 illustrates the SPT results for the dynamic transition network scenario from
simulation and hardware experiments.

Figure 16. SPT for the dynamic transition network scenario.

In the dynamic transition network scenario, the simulation results showed a gradual
increase in server processing time (SPT) from 2.14 ms for Mote 2 to 3.00 ms for Mote 8. This
incremental rise in SPT values reflected the dynamic nature of the network, where each
mote transition added a slight processing delay. The hardware experiments indicated a
similar trend but with higher SPT values, starting from 14.98 ms for Mote 2 and increasing
to 21.00 ms for Mote 8. The discrepancy between the simulation and hardware results could
be attributed to real-world factors such as network interference and processing overhead.
These findings demonstrated that while the dynamic transition approach effectively man-
aged processing times, real-world conditions must be considered for accurate performance
assessment. The results highlighted the importance of hardware validation in conjunction
with simulation for comprehensive network evaluation. Moreover, the hardware SPT
values illustrated the need to optimize dynamic network deployments to minimize latency.
Overall, the dynamic transition network exhibited a predictable increase in processing
times, reinforcing the necessity for good design to handle varying network conditions
efficiently.

The SPT analysis across all three scenarios demonstrated the influence of network
topology and real-world conditions on server processing times. The linear chain network
showed stable SPT values due to its straightforward topology. The structured tree network
reflected a hierarchical increase in SPT, consistent with its structured arrangement. The
dynamic transition network, with its adaptive routing, showed higher and more variable
SPT values, highlighting the challenges and complexities of dynamic path adjustments.

4.3. Power Consumption Analysis

Finally, we examined the power consumption focusing on CPU and low-power mode
(LPM) for the three different network scenarios, i.e., linear chain network, structured tree
network, and dynamic transition network. Again, we analyzed the power consumption
results coming from both simulation and hardware experiments, providing a visual repre-



Electronics 2024, 13, 3697 20 of 28

sentation for each of the eight motes in each scenario. CPU and LPM power consumption
values are depicted together in the same figures for a comprehensive comparison.

Figure 17a,b show the CPU and LPM power consumption results for the linear chain
network scenario from simulation and hardware experiments, respectively.

(a) Simulation results (b) Hardware results

Figure 17. CPU and LPM power consumption for the linear chain network scenario.

The simulation results showed that CPU consumption started at 3.12 mW for Mote
1 and increased to 4.64 mW for Mote 2, then gradually decreased to 2.03 mW for Mote 8.
LPM consumption was stable across all motes, around 2.18 mW. The initial increase in CPU
power consumption reflected the additional processing required as data passed through
each mote, while the subsequent decrease indicated stabilization in processing requirements.
The stable LPM consumption indicated that motes spent a significant portion of their time
in low-power mode, reflecting efficient energy usage. The hardware experimental results
showed that CPU consumption started at 0.10 mW for Mote 1, peaked at 0.17 mW for
Mote 2, and gradually decreased to 0.08 mW for Mote 8. LPM consumption was consistent
at 0.15 mW for all motes. The decrease in CPU consumption for higher motes may be
attributed to efficiency improvements in real hardware as the network stabilized. The
consistent LPM power consumption suggested a similar energy usage pattern in hardware
as seen in the simulation [71].

Figure 18a,b show the CPU and LPM power consumption results for the structured
tree network scenario from simulation and hardware experiments, respectively.

The simulation results in this scenario showed that the CPU consumption varied,
with Mote 1 at 3.48 mW and Mote 3 at 5.26 mW, decreasing to 1.74 mW for Mote 7.
LPM consumption was stable, around 2.16 mW for all motes. The variation in CPU
consumption reflected the hierarchical structure of the network, where higher-level nodes
had more processing load. The stable LPM usage indicated efficient energy management
across the structured tree network. The hardware experiments showed that the CPU
consumption started at 0.60 mW for Mote 1, peaked at 0.90 mW for Mote 3, and decreased
to 0.40 mW for Mote 8. LPM consumption was consistent at 0.15 mW for all motes. The
pattern was similar to that obtained from the simulation, with CPU consumption varying
due to the hierarchical structure and different processing loads. The stability in LPM
power consumption reflected efficient energy management, as in the case of the simulation
results. These findings underscored the effectiveness of both simulation and hardware
setups in replicating the energy consumption characteristics of the structured tree network.
The consistency between simulated and real-world results validated the reliability of the
methods used for performance evaluation in this research.



Electronics 2024, 13, 3697 21 of 28

(a) Simulation results (b) Hardware results

Figure 18. CPU and LPM power consumption for the structured tree network scenario.

Figure 19a,b show the CPU and LPM power consumption results for the dynamic
transition network scenario from simulation and hardware experiments, respectively.

(a) Simulation results (b) Hardware results

Figure 19. CPU and LPM power consumption for the dynamic transition network scenario.

In this scenario, CPU consumption exhibited variability across motes based on simula-
tion results. It started at 5.09 mW for Mote 1, peaked at 22.28 mW for Mote 6, and decreased
to 13.21 mW for Mote 8. Conversely, LPM consumption remained relatively stable, starting
at 2.16 mW for Mote 1, slightly decreasing to 2.09 mW for Mote 6, and stabilizing around
2.14 mW for Mote 8. The high values and variability in CPU consumption reflected the
dynamic nature of the network, with frequent changes in routing paths necessitating more
processing power. However, the stable LPM consumption suggested that even with dy-
namic routing, motes managed to maintain a significant portion of their time in low-power
mode. From the obtained hardware experimental results, we can see that CPU consumption
started at 0.87 mW for Mote 1, peaked at 3.82 mW for Mote 6, and decreased to 2.27 mW
for Mote 8. LPM consumption remained consistent at 0.15 mW for all motes. This pattern
mirrored the simulation findings, with higher CPU consumption attributed to dynamic



Electronics 2024, 13, 3697 22 of 28

adjustments in the network. Nonetheless, the stable LPM power consumption in hardware
reflected efficient energy management despite the dynamic nature of the network.

The power consumption analysis across all three scenarios demonstrated the impact
of network topology and real-world conditions on CPU and LPM usage. The linear chain
network showed a gradual change in CPU consumption with stable LPM usage. The
structured tree network benefited from a hierarchical structure, effectively distributing
processing loads. The dynamic transition network exhibited higher and more variable CPU
consumption due to frequent adjustments in routing paths, with stable LPM consumption
reflecting efficient energy management.

4.4. Comparative Analysis of Standard and Enhanced UDP

This section presents a comparative analysis of the standard and enhanced UDP proto-
cols in terms of power consumption and packet loss across different IoT network topologies.
The analysis was conducted using hardware-based evaluations, which provided more re-
liable insights into real-world scenarios. We considered three representative topologies
linear, structured, and dynamic and measured the average performance across multiple
motes for each topology. The comparison was crucial to understanding the pros and cons
of enhancing the standard UDP protocol with an acknowledgment mechanism.

4.4.1. Power Consumption Comparison

The power consumption of both the standard and enhanced UDP protocols was mea-
sured across all topologies, focusing specifically on CPU power consumption and calculated
using Equation (3), as low-power mode (LPM) power consumption remained constant.
The analysis used the average power consumption measured for each mote to provide a
comprehensive view of the protocol performance under varying network conditions.

Let Pstd and Penh represent the CPU power consumption of standard and enhanced
UDP, respectively. The percentage increase in power consumption was calculated using
the formula:

Percentage Increase =

(
Penh − Pstd

Pstd

)
× 100%. (5)

Table 2 provides a summary of the average CPU power consumption for both the
standard and enhanced UDP protocols across all topologies.

Table 2. Average CPU power consumption for standard and enhanced UDP protocols across
different topologies.

Topology Standard UDP
CPU Power (mW)

Enhanced UDP
CPU Power (mW)

% Increase in CPU Power
Consumption

Linear 0.08 0.12 33.33%

Structured 0.37 0.53 30.19%

Dynamic 1.86 2.61 28.73%

From Table 2, we observe that the enhanced UDP protocol consumed more power
due to the additional processing required for the acknowledgment mechanism. In a
linear topology, where network conditions are more stable, the percentage increase was
relatively higher compared to the dynamic topology. This was attributed to the frequent
state changes and higher processing demands in dynamic networks, which led to naturally
higher baseline power consumption.

4.4.2. Packet Loss Comparison

Packet loss is a critical metric for evaluating the reliability of data transmission in
networked systems. The packet loss rates for both the standard and enhanced UDP



Electronics 2024, 13, 3697 23 of 28

protocols were evaluated based on 100 packet transmissions from all clients in each topology.
Due to the lack of an acknowledgment mechanism, the standard UDP protocol has no way
to verify whether a packet reaches its destination, which can lead to higher packet loss
rates, especially in more challenging environments such as dynamic networks.

Let Lstd and Lenh denote the packet loss percentages for standard and enhanced UDP,
respectively. The packet loss was calculated based on the ratio of lost packets to total
sent packets:

Packet Loss Percentage =

(
Lost Packets

Total Sent Packets

)
× 100%. (6)

Table 3 summarizes the packet loss percentages observed for both protocols across the
different topologies:

Table 3. Packet loss percentages for standard and enhanced UDP protocols across different topologies.

Topology Standard UDP Packet Loss (%) Enhanced UDP Packet Loss (%)

Linear 5% 1%
Structured 15% 6%
Dynamic 30% 12%

As we can see in Table 3, the enhanced UDP protocol significantly reduced packet
loss across all topologies. The impact of the acknowledgment mechanism was more
pronounced in the dynamic topology, where frequent node mobility and environmental
changes resulted in higher packet loss for the standard UDP protocol. In contrast, the
enhanced UDP protocol effectively adapted to these conditions by retransmitting lost
packets or adjusting the communication strategy based on acknowledgment feedback.

4.5. Topology Suitability in Real-World Applications

The versatility and adaptability of IoT networks make them suitable for a wide range
of applications across various domains. This subsection explores three distinct use cases
where different network topologies, including linear chain, structured tree, and dynamic
transition networks, are leveraged to meet specific requirements. By analyzing these use
cases, we can better understand how network structure impacts performance metrics such
as round-trip time (RTT), server processing time (SPT), power consumption, and overall
network efficiency. The selected use cases include Automated Guided Vehicles (AGVs) in
industrial settings, home automation systems, and environmental monitoring in tunnels,
each illustrating the unique benefits and challenges associated with different network
configurations.

Automated Guided Vehicles (AGVs) are increasingly employed in industrial envi-
ronments for tasks such as material handling, warehouse automation, and assembly line
operations [72]. AGVs navigate through factories and warehouses, transporting goods
efficiently and autonomously. These vehicles rely heavily on robust and efficient communi-
cation networks to ensure real-time control and coordination [73]. In an industrial setting,
AGVs require a communication network that can handle dynamic environments where
devices move continuously [74]. The dynamic transition network scenario is particularly
applicable here. In this scenario, client devices (representing AGVs) and a central server
maintain a mesh topology, supporting constant communication as the AGVs move. Data
are collected at regular intervals, with performance metrics such as round-trip time (RTT),
server processing time (SPT), power consumption, and packet loss being critical [72]. The
higher RTT and SPT values observed indicate the potential latencies and increased energy
demands associated with mobile AGVs, emphasizing the need for optimized network
protocols and efficient power management to maintain operational efficiency.

Home automation systems integrate various smart devices to provide enhanced con-
trol, convenience, and energy efficiency within a residential environment [75]. Devices such



Electronics 2024, 13, 3697 24 of 28

as smart thermostats, lighting systems, security cameras, and door locks communicate with
a central hub or server to perform automated tasks based on user preferences and sensor
data [76]. The structured tree network scenario is highly relevant for home automation ap-
plications. In this setup, devices are strategically positioned in a hierarchical tree topology
with one server managing the network [77]. Each device communicates with the server
and other devices, ensuring efficient data transmission and processing. The observed lower
RTT and SPT values suggest that this topology supports rapid communication and quick re-
sponses, crucial for real-time home automation tasks [75]. Additionally, the reduced power
consumption metrics indicate that the tree topology is energy-efficient, which is essential
for battery-operated smart home devices [76]. This ensures that devices can operate for
extended periods without frequent battery replacements, enhancing user convenience and
overall system reliability.

Monitoring environmental conditions in tunnels, such as air quality, temperature,
and structural health, is vital for ensuring safety and operational efficiency [78]. Sensors
deployed along the length of the tunnel collect and transmit data to a central monitoring
system [79]. These sensors need to operate reliably despite the elongated and constrained
environment of tunnels. The linear chain network scenario reflects such cases well. Devices
are arranged in a straight line with significant gaps between them, reflecting the physical
layout of tunnel monitoring systems [80]. Each sensor sends data packets to the server, and
the network’s performance metrics are analyzed. The higher RTT values observed indicate
potential communication delays due to the elongated paths (which should be taken into
account while designing such network infrastructures), but the stable SPT values suggest
consistent data processing times [78]. Moreover, the lower power consumption metrics
highlight the energy efficiency of this topology, which is crucial for sensors that need to
operate for extended periods with limited power sources [79]. This makes the linear chain
network an effective model for ensuring reliable and efficient environmental monitoring in
tunnels, where power efficiency and consistent data transmission are paramount.

These use cases illustrate the diverse applications of different network topologies in
real-world scenarios. The dynamic transition network fits the dynamic industrial appli-
cations involving AGVs well, the structured tree network excels in energy-efficient home
automation systems, and the linear chain Network is well suited for environmental monitor-
ing in tunnels. By understanding the specific requirements and performance metrics of each
scenario, it is possible to optimize communication protocols and network configurations to
enhance the efficiency and reliability of IoT deployments across various application areas.

5. Discussion and Conclusions

Our study provided valuable insights into IoT network performance by measuring
the time, energy, and packet delivery effectiveness of the enhanced UDP-based data trans-
mission for different network topologies in an IoT resource-constrained environment. The
findings indicated that CPU power consumption increased initially with additional nodes
but stabilized over time, reflecting the balance between data handling needs and network
stability. While these results align with established theories on network performance [1,8],
they also underscore the importance of our approach. Measuring these patterns was essen-
tial to validate our assumptions and provide empirical evidence for the effects of topology
on performance metrics.

The comparison between simulation and hardware results highlighted the necessity of
accounting for real-world factors like network interference and processing overhead. Simu-
lations, although valuable for initial design, often present idealized conditions that differ
from hardware experiments. This discrepancy emphasizes the need for comprehensive
testing in actual environments to ensure reliable performance.

Our comparative analysis of standard and enhanced UDP protocols showed that
the enhanced UDP protocol, despite its higher CPU power consumption, significantly
reduced packet loss. Specifically, power consumption increased by 33.33% in linear, 30.19%



Electronics 2024, 13, 3697 25 of 28

in structured, and 28.73% in dynamic topologies, while packet loss decreased notably,
particularly in dynamic environments where it dropped from 30% to 12%.

These results highlight the trade-off between energy consumption and data reliability.
Although the enhanced UDP protocol introduced additional processing overhead, it offered
substantial improvements in data integrity, which is crucial for applications requiring
reliable data transmission.

Overall, this research enhanced our understanding of how network topology impacts
power consumption and reliability, offering practical implications for IoT deployments.
Looking ahead, future work should leverage machine learning and edge-cloud solutions to
optimize network protocols. Machine learning can predict network conditions and adjust
parameters dynamically, while edge-cloud integration can enhance data processing and
scalability. These advancements will improve performance and energy efficiency, leading
to more adaptive and intelligent IoT network architectures.

Author Contributions: Conceptualization, B.E.B., B.P. and K.T.; methodology, formal analysis,
B.E.B. and D.M.; investigation, B.E.B. and N.Y.G.; resources, K.T. and D.M.; writing—original draft
preparation, B.E.B., K.T. and D.M.; writing—review and editing, B.E.B., K.T. and D.M.; visualization,
B.E.B.; supervision, K.T. and B.P.; project administration, D.M.; funding acquisition, D.M. All authors
have read and agreed to the published version of the manuscript.

Funding: The research was supported by the ReActive Too project that has received funding from
the European Union’s Horizon 2020 Research, Innovation, and Staff Exchange Programme under
the Marie Skłodowska-Curie Action (grant agreement no. 871163), partially by a pro-quality grant
for highly scored publications or issued patents (grant no. 02/100/RGJ23/0026), Statutory Research
funds of Department of Applied Informatics, Silesian University of Technology, Gliwice, Poland
(grant no. 02/100/BK_24/0035). Scientific work was published as part of an international project
co-financed by the program of the Polish Minister of Science and Higher Education entitled “PMW”
in the years 2021–2025 (contract no. 5169/H2020/2020/2).

Data Availability Statement: All data underlying the results are available as part of the article and
no additional source data are required.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AGV Automated Guided Vehicle
API Application Programming Interface
CPU Central Processing Unit
DNS Domain Name System
GUI Graphical User Interface
HTTP Hypertext Transfer Protocol
IEEE Institute of Electrical and Electronics Engineers
IP Internet Protocol
LPM Low-power mode
MAC Media Access Control
OS Operating System
RAM Random Access Memory
RFID Radio-Frequency Identification
RTOS Real-Time Operating System
SPT Server processing time
SSL Secure Sockets Layer
TCP Transmission Control Protocol
UDP User Datagram Protocol
URL Uniform Resource Locator
USB Universal Serial Bus
VPN Virtual Private Network
WLAN Wireless Local Area Network
WPA Wi-Fi Protected Access



Electronics 2024, 13, 3697 26 of 28

XML Extensible Markup Language
XSS Cross-Site Scripting
YAML Yet Another Markup Language
Zigbee Zigbee Alliance
IoT Internet of Things
VoIP Voice over Internet Protocol
SMTP Simple Mail Transfer Protocol

References
1. Smith, J.; Jones, A.B. IoT Communication Protocols: A Comprehensive Review. IEEE Internet Things J. 2018, 5, 1234–1256.
2. Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A vision, architectural elements, and future directions.

Future Gener. Comput. Syst. 2013, 29, 1645–1660. [CrossRef]
3. Perera, C.; Zaslavsky, A.; Christen, P.; Georgakopoulos, D. Context-aware computing for the Internet of Things: A survey. IEEE

Commun. Surv. Tutor. 2014, 16, 414–454. [CrossRef]
4. Martínez, G.; Hernández, J.A.; Reviriego, P.; Reinheimer, P. Round Trip Time (RTT) Delay in the Internet: Analysis and Trends.

IEEE Netw. 2024, 38, 280–285. [CrossRef]
5. Perera, C.; Liu, C.H.; Jayawardena, S.; Chen, M. A Survey on Internet of Things From Industrial Market Perspective. IEEE Access

2014, 2, 1660–1679. [CrossRef]
6. Sharma, V.; Tiwari, R. A review of protocols used in Internet of Things (IoT) and low power wide area network (LPWAN).

Procedia Comput. Sci. 2019, 167, 2151–2160.
7. Garcia, R.; Martinez, L. UDP-based Communication Architecture for IoT Gateway under Intermittent Connectivity. IEEE Trans.

Ind. Inform. 2021, 17, 2102–2113.
8. Qays, M.O.; Ahmad, I.; Abu-Siada, A.; Hossain, M.L.; Yasmin, F. Key communication technologies, applications, protocols and

future guides for IoT-assisted smart grid systems: A review. Energy Rep. 2023, 9, 2440–2452. [CrossRef]
9. Chen, M.; Wan, J.; Gonzalez-Sanchez, J.L.; Liao, X.; Li, J. Machine-to-machine communications: Architectures, standards, and

applications. KSII Trans. Internet Inf. Syst. 2014, 8, 1022–1039. [CrossRef]
10. Jong, G.-J.; Wang, Z.-H.; Hendrick, H.; Hsieh, K.-S.; Horng, G.-J. A Novel Adaptive Optimization of Integrated Network Topology

and Transmission Path for IoT System. IEEE Sens. J. 2019, 19, 6452–6459. [CrossRef]
11. Andrews, J.G.; Buzzi, S.; Choi, W.; Hanly, S.V.; Lozano, A.; Soong, A.C.; Zhang, J.C. What Will 5G Be? IEEE J. Sel. Areas Commun.

2014, 32, 1065–1082. [CrossRef]
12. Raza, S.; Wallgren, L.; Voigt, T. Low-power wide-area networks for the Internet of Things: A survey. IEEE Commun. Surv. Tutor.

2019, 21, 146–173.
13. Jelenkovic, P.; Momcilovic, P.; Squillante, M. Scalability of Wireless Networks. IEEE/ACM Trans. Netw. 2007, 15, 295–308.

[CrossRef]
14. Miao, Y.; Li, X.; Yang, Y. An improved UDP protocol for reliable data transmission in IoT networks. IEEE Internet Things J. 2020,

7, 8121–8130.
15. Adu Ansere, J.; Kamal, M.; Khan, I.; Aman, M. Dynamic Resource Optimization for Energy-Efficient 6G-IoT Ecosystems. Sensors

2023, 23, 4711. [CrossRef]
16. Yuan, L.; Tong, L. Adaptive Duty Cycling for Energy-Efficient Wireless Sensor Networks. IEEE Trans. Mob. Comput. 2014,

13, 1836–1848.
17. Chen, X.; Shi, Q.; Yang, L.; Xu, J. ThriftyEdge: Resource-Efficient Edge Computing for Intelligent IoT Applications. IEEE Netw.

2018, 32, 61–65. [CrossRef]
18. Postel, J. User Datagram Protocol; Technical Report RFC 768; IETF: Fremont, CA, USA, 1980.
19. Li, Q.; Wu, W.; Zhao, J. A Hybrid UDP-TCP Approach for Reliable Data Transmission in IoT Networks. IEEE Trans. Netw. Serv.

Manag. 2015, 12, 210–223.
20. Zhang, L.; Zhao, H.; Li, Y. Enhancing UDP for IoT Applications with Acknowledgment Mechanisms. In Proceedings of the IEEE

International Conference on Communications (ICC), IEEE, Kansas City, MO, USA, 20–24 May 2018; pp. 2345–2350.
21. Soni, S.; Kumar, P.; Gupta, A. Power-Efficient Communication Strategies for UDP in IoT Networks. IEEE Access 2020, 8,

123456–123468.
22. Huang, J.; Li, Y.; Zhang, M. Optimizing UDP for Sensor Networks: Enhancements and Performance Evaluation. Sensors 2021,

21, 3024.
23. Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge computing: Vision and challenges. IEEE Internet Things J. 2016, 3, 637–646.

[CrossRef]
24. Winter, T.; Thubert, P.; Brandt, A.; Hui, J.; Kelsey, R.; Levis, P.; Vasseur, J.P. RPL: IPv6 Routing Protocol for Low-Power and Lossy

Networks; RFC 6550; RFC Editor: Fremont, CA, USA, 2012.
25. Dunkels, A.; Grönvall, B.; Voigt, T. Contiki—A Lightweight and Flexible Operating System for Tiny Networked Sensors. In

Proceedings of the 1st IEEE Workshop on Embedded Networked Sensors (Emnets-I), Tampa, FL, USA, 16–18 November 2004; pp.
455–462.

26. Paxson, V. End-to-End Internet Packet Dynamics. ACM SIGCOMM Comput. Commun. Rev. 1997, 27, 139–151. [CrossRef]

http://doi.org/10.1016/j.future.2013.01.010
http://dx.doi.org/10.1109/SURV.2013.042313.00197
http://dx.doi.org/10.1109/MNET004.2300008
http://dx.doi.org/10.1109/ACCESS.2015.2389854
http://dx.doi.org/10.1016/j.egyr.2023.01.085
http://dx.doi.org/10.3837/tiis.2012.02.002
http://dx.doi.org/10.1109/JSEN.2019.2908702
http://dx.doi.org/10.1109/JSAC.2014.2328098
http://dx.doi.org/10.1109/TNET.2007.892846
http://dx.doi.org/10.3390/s23104711
http://dx.doi.org/10.1109/MNET.2018.1700145
http://dx.doi.org/10.1109/JIOT.2016.2579198
http://dx.doi.org/10.1145/263109.263155


Electronics 2024, 13, 3697 27 of 28

27. Ju, F.; Mo, Y.; Chuah, M.C. Real-time communication in autonomous vehicle systems: A survey. IEEE Commun. Surv. Tutor. 2018,
20, 2742–2765.

28. Alam, M.M.; Saini, M.; El Saddik, A. tNote: A cloud based architecture to store IoT data and provide guaranteed secure access.
In Proceedings of the IEEE International Conference on Communications (ICC), Paris, France, 21–25 May 2017; pp. 1–6.

29. Kim, H.; Kim, S.; Kang, S. Performance evaluation of RPL in IoT tunnel monitoring systems. Sensors 2019, 19, 2513.
30. Tsiftes, N.; Eriksson, J.; Dunkels, A. Low-Power Wireless IPv6 Routing with ContikiRPL. In Proceedings of the 9th ACM/IEEE

International Conference on Information Processing in Sensor Networks, New York, NY, USA, 12–16 April 2010.
31. Oliveira, L.M.L.; Rodrigues, J.J.P.C. Routing and Mobility Approaches in IPv6 over LoWPAN Mesh Networks. Int. J. Commun.

Syst. 2011, 24, 1445–1466. [CrossRef]
32. Durisi, G.; Koch, T.; Popovski, P. Toward Massive, Ultrareliable, and Low-Latency Wireless Communication with Short Packets.

Proc. IEEE 2016, 104, 1711–1726. [CrossRef]
33. Farooq, M.U.; Jung, L.T. Energy consumption analysis of routing protocols in zigbee enabled wireless sensor networks. Procedia

Comput. Sci. 2014, 34, 318–323.
34. Rajalakshmi, P.; Prakash, V. Real-time health monitoring system using ZigBee. In Proceedings of the 2013 International Conference

on Communication and Signal Processing, Melmaruvathur, India, 3–5 April 2013; pp. 1044–1048.
35. Kamath, M.; Valente, P. Power Efficient Algorithms in IoT Systems. In Proceedings of the 2017 IEEE International Conference on

Advanced Networks and Telecommunications Systems (ANTS), Bhubaneswar, India, 17–20 December 2017; pp. 1–6.
36. Pathan, A.S.K.; Lee, H.W.; Hong, C.S. Security in wireless sensor networks: Issues and challenges. In Proceedings of the 2006

8th International Conference Advanced Communication Technology, Phoenix Park, Republic of Korea, 20–22 February 2006;
Volume 2, pp. 6–1048.

37. Levis, P.; Patel, N. TinyOS: An open platform for wireless sensor networks. In Design Principles for Distributed Embedded
Applications; Springer: Boston, MA, USA, 2009; pp. 115–149.

38. Ma, C.; Zhang, Z.; Li, Y.; Liu, Z. Energy-efficient and reliable data transmission in industrial IoT system based on multi-population
genetic algorithm. IEEE Access 2018, 6, 53903–53913.

39. Tabassum, A.; Yuce, M.R. Internet of Things-based indoor health monitoring systems. J. Sens. Actuator Netw. 2020, 9, 17.
40. Liang, X.; He, X. Energy-efficient routing algorithms in wireless sensor networks: A survey. J. Netw. 2013, 8, 555–562.
41. Palattella, M.R.; Accettura, N.; Vilajosana, X.; Watteyne, T.; Grieco, L.A.; Boggia, G.; Dohler, M. Standardized protocol stack for

the Internet of (important) Things. IEEE Commun. Surv. Tutor. 2013, 15, 1389–1406. [CrossRef]
42. Dunkels, A.; Schmidt, O.; Voigt, T.; Ali, M. Protothreads: Simplifying event-driven programming of memory-constrained

embedded systems. In Proceedings of the 4th ACM Conference on Embedded Networked Sensor Systems, Boulder, CO, USA,
1–4 November 2011; pp. 29–42.

43. Texas Instruments, T. CC26xx and CC13xx SimpleLink™ Wireless MCU Technical Reference Manual (Rev. A); Texas Instruments:
Dallas, TX, USA, 2015.

44. Hendrawan, R.; Arsa, I.N.; Ngurah, G. Zolertia Z1 energy usage simulation with Cooja simulator. In Proceedings of the
International Conference on Informatics, Technology and Engineering (ICICOS), Semarang, Indonesia, 15–16 November 2017;
pp. 147–152. [CrossRef]

45. Dinh, T.N.; Kim, Y. Blockchain-based secure firmware update for IoT devices. Electronics 2020, 9, 161.
46. Raza, U.; Kulkarni, P.; Sooriyabandara, M.; Gaura, E. Evaluating the performance of LPWAN technologies for IoT applications: A

quantitative study. Sensors 2018, 18, 3268.
47. Mitra, D. Contiki-NG: An open-source OS for the Internet of Things. IoT J. 2020, 5, 87–99.
48. Winter, T. Contiki-NG: Lightweight and flexible IoT development. IEEE Commun. Mag. 2021, 59, 88–94.
49. Dunkels, A. Implementing IPv6 for low-power wireless networks with Contiki-NG. Comput. Netw. 2019, 150, 214–225.
50. Marrón, P.J. Contiki-NG: A platform for reliable wireless communication in IoT. Wirel. Pers. Commun. 2021, 117, 251–268.
51. Sichitiu, M.L. Modular architecture of Contiki-NG for IoT applications. Sensors 2020, 20, 6715.
52. Bormann, C. IEEE 802.15.4 and its role in Contiki-NG communication protocols. Internet Things J. 2021, 6, 493–504.
53. Nahum, E.M. Evaluating UDP performance on Contiki-NG. IEEE Trans. Netw. Serv. Manag. 2021, 18, 200–215.
54. Österlind, F. COOJA: A simulator for wireless sensor networks. In Proceedings of the ACM SenSys, Boulder, CO, USA, 31

October 31–3 November 2006; pp. 337–344.
55. Gallager, R.G. Simulation-based development with COOJA and Contiki-NG. Simul. Model. Pract. Theory 2021, 112, 102388.
56. Gnawali, O. Assessing RPL performance using COOJA. IEEE Trans. Mob. Comput. 2021, 20, 147–159.
57. Kim, K. Visualization of IoT networks with COOJA. Int. J. Netw. Manag. 2020, 30, e2071.
58. Boano, C.A. Integration of Contiki-NG with COOJA for IoT protocol testing. IoT J. 2021, 7, 433–447.
59. Fielding, R. Developing and testing IoT protocols with COOJA. IEEE Access 2021, 9, 48901–48914.
60. Raychaudhuri, D. COOJA: Emulating real-world IoT conditions. Wirel. Netw. 2022, 28, 1367–1380.
61. Texas Instruments. CC2650 Launchpad Datasheet. Literature Number: SWCU117I, February 2015–Revised June 2020. 2019.

Available online: http://www.ti.com/lit/ug/swcu117h/swcu117h.pdf (accessed on 15 July 2024).
62. Chen, Y. ARM Cortex-M3 processors in IoT applications. Microprocess. Microsyst. 2020, 75, 103028.
63. Dunkels, A. Supporting IEEE 802.15.4 in Contiki-NG with CC2650. ACM Trans. Sens. Netw. 2020, 15, 1–25.

http://dx.doi.org/10.1002/dac.1228
http://dx.doi.org/10.1109/JPROC.2016.2537298
http://dx.doi.org/10.1109/SURV.2012.111412.00158
http://dx.doi.org/10.1109/ICICOS.2017.8276353
http://www.ti.com/lit/ug/swcu117h/swcu117h.pdf


Electronics 2024, 13, 3697 28 of 28

64. Abdullah, N.A.S. Real-world deployment of IoT applications with CC2650 and Contiki-NG. IEEE Embed. Syst. Lett. 2020,
12, 70–74.

65. Nguyen, L.D. Deployment of UDP protocols on CC2650 Launchpad. IEEE Access 2020, 8, 78345–78357.
66. Green, B. Using terminals for IoT debugging. J. Netw. Comput. Appl. 2020, 131, 1–12.
67. Grasso, R. Monitoring UDP communication with Tera Term. Int. J. Distrib. Sens. Netw. 2020, 16, 123-130
68. Texas Instruments. Smart RF Studio User Manual. 2020. Available online: https://www.ti.com/lit/ug/swru069g/swru069g.pdf

(accessed on 25 July 2024).
69. Khalifeh, A. Optimizing radio transceivers for IoT applications. IEEE Commun. Lett. 2020, 24, 2603–2606.
70. Basagni, S. Fine-tuning radio settings with Smart RF Tools. IEEE Trans. Wirel. Commun. 2020, 19, 4583–4592.
71. Baccour, N.; Koubâa, A.; Mottola, L.; Zuniga, M.; Youssef, H.; Boano, C.A.; Alves, M. Radio Link Quality Estimation in Wireless

Sensor Networks: A Survey. ACM Trans. Sens. Netw. TOSN 2012, 8, 34. [CrossRef]
72. Bokareva, T.; Chernyshev, M. Automated Guided Vehicle Systems: A Review of Constraints and Limitations. IEEE Trans. Ind.

Electron. 2018, 65, 7999–8006.
73. Yao, L.; Zhu, S. Design and Implementation of Communication System for Automated Guided Vehicles. IEEE Access 2019,

7, 34896–34904.
74. Smith, A.; Johnson, B. Dynamic Transition Networks for Mobile Robot Control. Robot. Auton. Syst. 2017, 88, 34–47.
75. Chen, Y.C.M.; Tsai, W. A Smart Home Application Based on Wireless Sensor Network. IEEE Trans. Consum. Electron. 2016,

62, 426–433.
76. Khoury, M.; Farag, Y. Energy-Efficient Wireless Sensor Networks for Home Automation Systems: A Review. IEEE Sens. J. 2018,

18, 3117–3125.
77. Marques, M.; Silva, J. Structured Tree Networks for Home Automation: Design and Evaluation. IEEE Trans. Ind. Inform. 2019,

15, 2981–2989.
78. Huang, Y.L.S.; Xu, Z. Tunnel Environmental Monitoring Based on Wireless Sensor Networks. IEEE Sens. J. 2017, 17, 2008–2016.
79. Kim, J.; Park, S. Power-Efficient Data Transmission in Tunnel Monitoring Systems Using Wireless Sensor Networks. IEEE Trans.

Ind. Inform. 2018, 14, 4056–4063.
80. Liu, W.; Ma, L. Linear Chain Networks for Long-Distance Environmental Monitoring. IEEE Trans. Instrum. Meas. 2016,

65, 2766–2775.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.ti.com/lit/ug/swru069g/swru069g.pdf
http://dx.doi.org/10.1145/2240116.2240123

	Introduction
	Related Works
	Research Methodology
	Methodological Approach and Tools
	Communication Methodology and Protocol Enhancements
	Methodology for Network Topologies and Tools
	Algorithm for Performance Evaluation

	UDP Enhancement with Acknowledgment and Power Consumption Metrics for IoT Networks
	Research Approach
	Key Parameters for Performance Evaluation
	Simulation and Experimental Setup
	Implementation and Protocol Application
	Tools and Software Utilized

	Results and Discussion
	Round-Trip Time (RTT) Analysis
	Server Processing Time (SPT) Analysis
	Power Consumption Analysis
	Comparative Analysis of Standard and Enhanced UDP
	Power Consumption Comparison
	Packet Loss Comparison

	Topology Suitability in Real-World Applications

	Discussion and Conclusions
	References

