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Abstract: Detecting instruments in a music signal is often used in database indexing, song annotation,
and creating applications for musicians and music producers. Therefore, effective methods that
automatically solve this issue need to be created. In this paper, the mentioned task is solved using
mel-frequency cepstral coefficients (MFCC) and various architectures of artificial neural networks.
The authors’ contribution to the development of automatic instrument detection covers the methods
used, particularly the neural network architectures and the voting committees created. All these
methods were evaluated, and the results are presented and discussed in the paper. The proposed
automatic instrument detection methods show that the best classification quality was obtained for
an extensive model, which is the so-called committee of voting classifiers.

Keywords: convolutional neural network; music information retrieval; audio features; sound analysis;
Mel-Frequency Cepstral Coefficients—MFCC; recognizing musical instruments; classifier committee;
Medley-solos-DB; artificial neural network

1. Introduction

Detecting instruments in a signal is often used for indexing databases, annotating
songs, and creating applications for musicians and music producers [1]. Detecting and
classifying musical instruments in a signal is a non-trivial issue. This is due to the fact that
any item that is the source of sound phenomena can be considered a musical instrument.
Another important factor complicating the problem is the multitude of types of instruments.
Moreover, the sound characteristics of two seemingly different types of instruments can be
very similar. It may depend on the manner of articulation or even the degree of tuning [2].

The work aims to create methods for discovering which musical instrument appears
in a given sound signal. Depending on one’s predispositions and experience in listening
to music, a person is able to indicate what instruments were used in a given piece. These
predispositions and the musical experience influence the precision with which one can
detect the instruments heard. The created methods should, therefore, work similarly to
those of an experienced listener in a way that, after the learning process with a selected set
of values representing/describing the sound, they will recognize instruments in the musical
signal with sufficiently high efficiency. Instrument recognition itself is based primarily on
the timbre and tone of the sound.

Sound timbre is a phenomenon that allows a person to distinguish what type of in-
strument the sound comes from, recognize speech, ambient sounds, etc. The sound coming
from musical instruments is, in fact, the result of overlapping many simple vibrations
with different frequencies and intensities, thus creating a complex, multidimensional phe-
nomenon. The parameter values of these individual component tones determine the timbre
of the sound. Determining sound timbre involves analyzing the acoustic spectrum, which
can be obtained using the Fourier transform.

The term timbre may be related to the resemblance to the sound of a musical instru-
ment (e.g., clarinet or cello), the image of temperature (e.g., warm or cold), shape (e.g.,
round or flat), or color (e.g., light or dark color) [2,3].

Appl. Sci. 2024, 14, 6330. https://doi.org/10.3390/app14146330 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14146330
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-2781-3709
https://orcid.org/0000-0001-7127-0989
https://orcid.org/0000-0001-6764-6656
https://doi.org/10.3390/app14146330
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14146330?type=check_update&version=1


Appl. Sci. 2024, 14, 6330 2 of 15

In the described system, as in other systems related to recognizing sound components
and analyzing sound signals, the key element is the appropriate extraction of selected
features from the signal [4,5]. Building a model that detects instruments in an audio signal
requires multi-step transformations to extract relevant information from the signal. The
most popular and widely used method for mapping a parametric acoustic signal is the
Mel-Frequency Cepstral Coefficients (MFCC). They were initially used in echo detection in
seismic waves [6], but they are also used in speech detection problems [7]. MFCC parame-
ters are also used to determine the genre and timbre of a musical piece [8]. The effectiveness
of MFCC has also been confirmed in terms of music recommendations [9–11].

In this work, the extraction of sound components was also achieved by using MFCC
coefficients, which are a mathematical representation of how the human ear perceives
music. The role of classifiers was played by artificial dense neural networks, convolutional
neural networks, and derivative models—the voting committees based on the above-
mentioned ones.

There are two main ways to generate the final result of the classification of the created
ensemble. One of them is to combine the outputs of individual base models with another
dense layer (or layers), which adjusts its weights to the final generation of the classification
result in the process of training the entire created assembly. The second method is to attach
a voting system to the basic models to determine the classification result based on the
outputs of the basic models. Such a voting system does not adjust its weights while training
the entire ensemble but generates the result in accordance with the voting rules imposed
on it.

The remainder of the paper is as follows: Section 1 introduces the undertaken issue.
Section 2 presents the related works and highlights the contribution. Section 3 provides
an overview of automatic instrument detection methods, describes the used database,
and details of the built system. Section 4 describes the method of conducting and
evaluating experiments. The conducted experiments and received results are presented
in Sections 5 and 6. The paper is concluded in Section 7, where the future work is
also outlined.

2. Related Work

The popularity and spread of machine learning, artificial intelligence, and similar
solutions also have an impact on the field of acoustic signal analysis and processing [12–16].
Machine learning methods, in particular, artificial neural network (ANN), are an alternative
to classic methods such as the k-nearest neighbor or the random trees algorithms. Their
effectiveness mainly contributed to improving the quality of speech recognition applications
and automatic music recommendation systems [17]. Compared to other deep learning tech-
niques, especially convolutional neural networks (CNN) are considered extremely effective
in the context of audio processing [18–21]. Apart from those mentioned, other applications
of the CNN network include transcription, voice detection, chord recognition, beat detection,
defining time signatures, frequency response analysis, and articulation recognition.

Convolutional networks [22–24] are also widely used in automatic instrument recog-
nition systems. In [22], research was carried out consisting of carrying out the constant
Q transform (CQT) of the signal, thus obtaining the input matrix for the convolutional
network, which consisted of an input layer, two convolutional layers, and two dense lay-
ers. Moreover, the Rectified Linear Unit (ReLU) [25] was used as an activation function.
The ReLU function works in the way that if the input x is less than 0, the output is equal
to 0; if the input x is greater than 0, the output is equal to the input. The training set
(Medley-solos-db, which is described in Section 3.1) consisted of 158 min of recordings of
eight different instruments: clarinet, electric guitar, flute, piano, tenor saxophone, trumpet,
violin, and a female voice, which in this context can be treated as a stringed instrument.
The test set contained tracks with a total length of 208 min. These sets were unbalanced, so
the recordings of some of the instruments constituted only a small percentage of the total set.
Ten different configurations were tested, which signaled the general trend that increasing
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the number of network parameters led to better network performance. The maximum
efficiency of the algorithm that was achieved was 74% correct decisions.

In [26], the authors developed a deep learning architecture that is relatively small (in
terms of a number of parameters). The main idea was to create an autoencoder to discover
a set of embedded representations of the instrument’s sound and then provide them to
the specialized prototype layer. The mean accuracy obtained for the model based on the
Medley-solos-db dataset is 67.3%.

Dubey et al. presented a relatively simple architecture that consists of a few steps [27].
Firstly, they generated Mel-spectrograms and a set of MFCC values, and then (due to
a noticeable class imbalance in the Medley-solos-db dataset), the SMOTE algorithm was
performed. The outcome of SMOTE was transmitted to the convolutional network for clas-
sification. The authors obtained stunning accuracy of over 99%. However, they provided
the numerical results only for the training and validation subsets, so the real test accuracy
is still unknown.

The actual state of the art is [28]. The authors developed a very sophisticated multi-
level deep architecture. They are using it for creating a kind of foundation model for
different music-oriented tasks, which is further prepared inter alia for instrument recogni-
tion tasks. The final accuracy for Medley-solos-db is 76.1%.

Other works on instrument detection in sound signals can also be found [29–31].
However, these are works carried out on different datasets. They differ in the number
of different instruments, the number of samples, the degree of balance, the sound of
selected instruments, the length of a single recording, and the method of recording (e.g.,
MIDI—containing individual notes, wav—containing the actual sound). Also, the purpose
of these studies is often different.

Contribution

Several existing works in sound analysis and other domains show that using an en-
semble of classifiers [32] leads to the improvement of classification efficiency [33–36]. This
motivated the authors to apply this idea in the domain of instrument detection in two
different approaches, namely through the concatenation of light classifiers within one
complex neural classifier committee architecture and through a committee of voting classi-
fiers [37–39].

The contribution of the paper consists of 3 elements. The first one is the creation of
different architectures and testing of different parameters for the dense and convolutional
neural network with the aim of instrument detection. The entire network architecture
improvement path is described in Section 5. The second one is the creation and use of
voting committees for automatic instrument detection. The third one is a comparison of the
voting committees to the neural classifier committee, created from the same base models.

3. Data Pre-Processing

This section describes the database used and preliminary data preparation.

3.1. Dataset

The choice of the dataset was determined by several factors. Firstly, the criteria for
assessing the built model included, among others, a comparative analysis of the results
obtained and those presented in other scientific works. Therefore, the dataset should be
publicly available to find works based on it. Moreover, the set should be large enough to
avoid the model adapting to a specific, narrow set of data. Taking into account the field
under consideration, the collection should contain recordings from various instruments,
preferably many types.

Therefore, the current work uses the Medley-solos-DB [22,40] dataset, which has also
been used in other scientific works described in the Section 2. This collection contains
recordings of the following instruments (Table 1): clarinet, electric guitar, flute, piano,
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tenor saxophone, trumpet, violin, female voice (which, in this context, can be treated as
a stringed instrument).

Table 1. Number of recordings for each instrument.

Instrument Number of Recordings—Samples

clarinet 1311

electric guitar 1854

female voice 1744

flute 3555

piano 6032

tenor saxophone 477

trumpet 627

violin 5971

in total 21,571

As can be seen, the set includes representatives of woodwind instruments (clarinet,
flute, tenor saxophone), brass instruments (trumpet), string instruments (violin), hammer
string instruments (piano), plucked string instruments (guitar), and female vocals. More-
over, the mentioned instruments have different sounds, even those belonging to the same
group. Therefore, it can be concluded that the set used is well-diversified.

The sound of a live instrument is recorded in the form of wav files, which is a recording
of not only individual notes but also the transitions between them.

The collection contains 21,571 audio recordings and is divided into three subsets
by default:

• training (5841 samples),
• validation (3493 samples),
• test (12,237 samples).

The collection is not balanced—the number of samples for each instrument differs.
The number of recordings of the tenor saxophone and trumpet is significantly smaller than
for other instruments. The number of recordings of clarinet, electric guitar, and female
voice is also significantly smaller compared to flute, piano, and violin.

Each recording is assigned an appropriate identifier and labels indicating the type of
sample and the recorded instrument. The frequency of each recording is 22,050 Hz, and the
length is 2972 milliseconds, which gives over 65,500 discrete values per recording.

3.2. Considered Features

The popularity of MFCC coefficients results from the multitude of possibilities they
offer. First of all, they allow the extraction of a lot of different information from the signal,
such as the timbre of the voice, the way the instrument is played, the type of instrument,
or the musical genre. Therefore, this method is well suited for speech recognition systems,
instruments, and other parameters related to music and sound. In the context of the topic of
this work, it is important that they are a mathematical representation of the actual reception
of sound by the listener. The disadvantage of the described algorithm is its high level of
complexity—the path to obtaining the final matrix from the input signal is multi-stage and
requires some experience in signal analysis. Moreover, MFCC coefficients are characterized
by low resistance to noise [4].

Mel-cepstral parameters are great for extracting the necessary information from a sound
signal, so instruments can be classified based on them. The choice of model and classifier
remains crucial. While implementing this work, we decided to use artificial neural networks.

One of the basic phases of using artificial neural networks is data pre-processing.
In this case, this means converting the audio file into a matrix of MFCC coefficients. An arti-
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ficial neural network has a permanent structure, so to function properly, it must be ensured
that the dimensions of the training, validation, and test data samples are the same. The use
of the dataset (Section 3.1) ensures that the sound signals have the same waveform length.
Otherwise, a procedure that would equalize the duration of all recordings should be imple-
mented, preferably without losing valuable information. Due to the fact that the set used
has recordings lasting 2972 milliseconds and the sampling frequency is 22,050 Hz, assuming
the default and recommended value of the hop length parameter is 512, it is possible to
calculate the width of the matrix taken at the network input. (Equations (1) and (2))

width o f the matrix =
sample rate · duration

hop length
(1)

22,050 · 2.972
512

≈ 128 (2)

The height of the mentioned matrix is equal to 13, i.e., the number of MFCC parameters
extracted from the signal, which constitute a set representing frequency power in different
ranges, and in this work, the full frequency spectrum is divided into 13 MFCC.

In summary, the input data fed to the first layer of the network have dimensions of
128 × 13.

4. Research Methodology

The initial process enabling conducting the research was the loading and appropri-
ate processing of wav files and their gradual transformation until obtaining the MFCC
coefficients, which serve as the model’s input data.

The type of model, the optimal configuration of its parameters, and the degree of
complexity were the essence of the tests performed. These elements are described in more
detail in Section 5. Then, the model’s decisions (musical instrument recognition results
obtained on a given model) were subject to effectiveness assessment.

The model evaluation was based on several metrics:

• Accuracy, defining the ratio of the number of test samples that were correctly assigned
to a given instrument to the number of all test samples.

• Sensitivity—true positive rate, that is a value showing what percentage of recordings of
a specific instrument was correctly recognized in relation to the number of all record-
ings of only this instrument in the test set. This value is averaged for all instruments.

• Precision—positive predictive value, which expresses how many of the examples marked
as a specific instrument turned out actually to be that instrument. This value is
averaged for all instruments.

• F1-score, a measure of the harmonic mean (Equation (3)) of precision and sensitivity.
The closer this value is to one, the better it indicates the model’s performance. In the
ideal case, when it takes the value 1, the analyzed model shows perfect sensitivity
and precision.

F1-score =
2 · precision · sensitivity
precision + sensitivity

(3)

• The value of the loss function of the neural network for each learning epoch, which
should decrease throughout the entire learning process, after which this value should
be appropriately low.

• A confusion matrix, which is very suitable for analyzing results in the context of multi-
class problems such as the one discussed here. The matrix shows how many of the
solutions proposed by the network turned out to coincide with real values, how many
were misclassified, and how. Values represent the number of samples or the share
(sometimes percentage) in a given row compared to all samples in a given class.

The neural network base models used in the work are rather light. This is due to the
current choice of path to improve the results obtained. On the one hand, it is possible
to expand the base model with the expectation of improving the results. On the other
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hand, it is possible to use an ensemble containing relatively simpler base models. If the
computational load is not taken into account, it would also be possible to build ensembles
containing complex neural network structures. The current research focuses on creating
an ensemble containing relatively light base models. Nevertheless, the basic model will be
optimized through changes to its architecture.

5. Used Architectures and Experimental Results

This section presents the basic architectures of dense and convolutional neural net-
works, as well as conducted experiments and received results.

For the learning process of the used neural networks, the categorical cross-entropy was
chosen as the loss function, and the optimization method was set to the Adam algorithm.
The learning rate of the algorithm was set to 0.0001 (instead of the default value of 0.001),
and the remaining parameters had default values (β1 = 0.9, β2 = 0.999 and ϵ = 10−7). The
network was trained for 50 epochs with a fixed batch size of 32.

5.1. Dense Neural Networks

The first type of model constructed during the research was a dense neural network,
the simplified diagram of which is shown in Figure 1. The created MFCCs input data,
which is matrix 128 × 13 at the beginning, needs to be flattened into one-dimensional data,
which gives a vector of 1664 values (128 × 13). Such a vector of input data is processed
by four consecutive layers, for which the weights of individual neurons will be set during
the learning process. The last layer uses the activation function softmax, which causes the
values of all outputs to sum to one. In practice, each output neuron symbolizes one of eight
instruments, and their values indicate the probability of a given instrument appearing in
the recording, determined by the model. The final decision takes the form of the index of
the neuron with the highest value, i.e., the highest probability.

Figure 1. Dense network diagram.
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This network architecture is marked as Model ANN1. The trained model correctly
assigned 63% of the samples in the test set. This result is relatively satisfactory, but during
training, the model very quickly achieved high accuracy and low error for the training data,
but it failed to achieve similar results in relation to the validation data. Such dependence is
a typical symptom of overfitting.

One way to counteract overfitting is the so-called drop-out [41]. Therefore, drop-out
layers were added in the second experiment, and the drop-out rate value was selected
through testing. Too small values caused the overfitting phenomenon, and too high values
caused the network not to develop any patterns. The assessment of whether overfitting
was eliminated was based on the analysis of the change in accuracy and value of the loss
function during training and validation. The results are described in Table 2.

Table 2. The impact of the drop-out value on the efficiency of a dense network.

Drop-Out Rate Overfitting Accuracy Sensitivity Precision F1-Score

0.05 Yes 0.62 0.60 0.61 0.60

0.1 No 0.65 0.62 0.64 0.63

0.2 No 0.60 0.60 0.61 0.60

0.3 No 0.62 0.57 0.59 0.58

0.4 No 0.66 0.50 0.49 0.49

0.5 No * 0.48 0.12 0.01 0.02

0.6 No * 0.22 0.12 0.01 0.02
For each evaluation parameter, the best result obtained is presented in bold. * When the value of drop-out rate
was too high, the network weights became somewhat random because the network was not able to develop
appropriate patterns. So this architecture did not even work for the training data.

The optimal value turned out to be a drop-out rate of 0.1, for which the accuracy of
the network with respect to the test data was 65%, and F1-score was 63%. This network
architecture is marked as Model ANN2 in Table 3.

Table 3. Efficiency of various dense neural networks.

Model Normalization Accuracy Sensitivity Precision F1-Score

ANN1 No 0.63 0.61 0.61 0.61

ANN2 No 0.65 0.62 0.64 0.63

ANN3 Yes 0.65 0.67 0.63 0.65

ANN4 Yes 0.68 0.67 0.64 0.65
For each evaluation parameter, the best result obtained is presented in bold.

At this point, it is necessary to consider how the overall accuracy is distributed among
individual classes, i.e., instruments. The confusion matrix is included in Figure 2. Analyzing
this matrix, we can see that clarinet samples are incorrectly recognized, mainly as piano
and violin; electric guitar samples are 90% correctly recognized; female voice samples
are correctly recognized in 84%; flute samples are only in 34% correctly recognized, but
22% and 39% of samples are incorrectly recognized, mainly as piano and violin; piano
samples are 99% correctly recognized; tenor saxophone samples are incorrectly recognized
mainly as electric guitar but also as piano and violin; trumpet samples are incorrectly
recognized mainly as violin; violin samples are in 88% correctly recognized. In summary,
we can say that the model rarely indicates clarinet, saxophone, and trumpet. The highest
effectiveness was recorded for singing, electric guitar, piano, and violin. The model shows
good sensitivity for these classes, but only for female singing can good precision be noted.
The reasons for this state were seen in the so-called dying ReLU.
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Figure 2. Confusion matrix (dense network, ANN1).

Dying ReLU appears when the sum of inputs for a large number of neurons has nega-
tive values. Considering its characteristics, the ReLU turns off such neurons by resetting
their outputs. This results in the loss of valuable information encoded in negative values.
The MFCC matrices obtained from the analyzed instruments may indeed contain negative
values. Therefore, the dying ReLU problem may indeed concern the built model. One
solution to this problem is to minimize or completely exclude negative values. This can
be obtained, among others, by normalizing the data to the range 0–1 using the min-max
method. Such normalization was performed separately for the MFCC coefficients of all
rows, taking into account only the training set.

The previously described ANN2 Model was retrained this time based on the nor-
malized set and was marked as the ANN3 Model in Table 3. The accuracy obtained was
65%, which is the same as in the previous case, but this time, it was spread over more
instruments, indicating better model precision. The network maintained its tendency to
recognize guitar, vocals, piano, and violin well and also improved its performance for
saxophone, clarinet, and especially trumpet.

Another technique that is effective in solving the dying ReLU problem is to use the
LeakyReLU [25] activation function. The test was performed again on a network with such
an activation function and marked as Model ANN4 in the Table 3. The accuracy obtained
was 68%, and the confusion matrix indicates improved performance—particularly for
the violin.

Table 3 summarizes the quality of models ANN1 to ANN4.
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5.2. Convolutional Neural Networks

In the next phase of experiments, research was carried out on the effectiveness of con-
volutional networks. Although mainly used in image processing, convolutional networks
also work well in the audio field. The purpose of the tests was to check whether the CNN
network would also be effective in the analyzed problem.

The convolutional networks used for testing were based on the architecture presented
in Figure 3. The created MFCCs matrix 128 × 13 is an input data of evaluated convolutional
neural networks. Such a matrix is processed by consecutive layers of three convolutional
blocks, and then the data are flattened into one dimension so that it can be fed to the
dense layers. The last layer contains 8 neurons according to the number of recognized
instruments, and, as in the previous model, the sofmax activation function is used.

The first convolutional network that was built was marked as Model CNN1. Compared
to the Figure 3 architecture, Model CNN1 does not have drop-out layers.

Figure 3. Diagram of a convolutional network.

It is worth paying attention to the batch normalization. This is a technique that allows
to speed up the calculation process and improves the quality of the network. Knowing that
data normalization brought the expected results in dense networks, it was decided to check
whether it would be similar in the case of CNN networks using this technique. Unlike
the normalization performed in the previous cases, batch normalization does not involve
transforming the raw input data but normalizes the signals sent between the network
layers. The model was trained using parameters with values similar to those used in the
case of dense networks. The network with the given configuration was able to achieve
an accuracy of 66%. The initial configuration of the CNN network, as in the case of dense
networks, is characterized by overfitting.

The overfitting phenomenon was again partially eliminated by implementing drop-out
(Figure 3). This model with the drop-out rate parameter set to 0.1 is marked as Model CNN2.
However, it should be noted that this technique proved to be more effective for dense
networks. The effectiveness of the network increased to 68%, and although precision for
some instruments actually increased slightly, there was a significant drop in sensitivity for
the clarinet.

The next set of tests was performed for different values of the drop-out parameter.
The Table 4 confirms a relationship analogous to that occurring in dense networks: too
high a drop-out rate value causes deterioration of results, although this time, the drop in
effectiveness is not so drastic. Moreover, it should be noted that the optimal value of
this parameter for CNN networks is slightly larger than for dense networks (0.2 and 0.1,
respectively). Therefore, the network with a drop-out of 0.2 was marked as Model CNN3,
for which the accuracy is 69%.
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Table 4. The impact of the drop-out value on the efficiency of the convolutional network.

Drop-Out Rate Accuracy Sensitivity Precision F1-Score

0.1 0.68 0.63 0.58 0.60

0.2 0.69 0.61 0.64 0.62

0.3 0.65 0.59 0.59 0.59

0.4 0.61 0.51 0.57 0.54

0.5 0.56 0.47 0.53 0.50
For each evaluation parameter, the best result obtained is presented in bold.

Guided by the experience gained from previous tests, it was decided to use normaliza-
tion to reduce overfitting and improve the results. There are already normalizing elements
in the network structure, but they operate based on individual batches of data, not the entire
set. The test was to see whether normalizing the entire batch along with batch normalization
would improve the results or if it would lose some information by scaling too frequently.

This network architecture with a drop-out rate equal to 0.1 is marked as Model CNN4
in Table 5. The network again made 68% accurate predictions, overfitting was slightly
reduced, and based on the confusion matrix, it can be concluded that it managed to
modestly increase sensitivity in relation to the clarinet and saxophone (by about 20%).

A network analogous to CNN4 was also tested, but this time with a dropout of 0.2.
This network architecture is marked as Model CNN5 in Table 5. The network made 64% of
its predictions accurate.

The next step was to check whether, as in the previous tests, the LeakyReLU activation
function would improve the results. The network was built according to the diagram in
Figure 3, replacing the activation function ReLU with LeakyReLU, and the training process
was started based on normalized input data. This network architecture is marked as Model
CNN6 in Table 5. The obtained efficiency was 63%, and the confusion matrix indicates that
the distribution of accuracy among individual instruments has not changed.

Table 5 summarizes the performance of various CNN network configurations.

Table 5. Efficiency of various convolutional neural networks.

Model Norm. * Drop-Out Accuracy Sensitivity Precision F1-Score

CNN1 No 0.1 0.66 0.66 0.62 0.64

CNN2 No 0.1 0.68 0.63 0.58 0.60

CNN3 No 0.2 0.69 0.61 0.64 0.62

CNN4 Yes 0.1 0.68 0.67 0.63 0.65

CNN5 Yes 0.2 0.64 0.63 0.58 0.60

CNN6 Yes 0.1 0.63 0.64 0.63 0.63
For each evaluation parameter, the best result obtained is presented in bold. * Normalization of input data.

Analyzing Table 5, it can be concluded that the CNN4 model has the highest F1-score
efficiency. This network achieved an accuracy of 68% and a F1-score of 65%. The confusion
matrix associated with the results of this model is similar to all other models tested to
date. The networks achieve the best results for five classes: piano, singing, guitar, trumpet,
and violin. The remaining three, i.e., clarinet, saxophone, and flute, are correctly assigned
much less often—the accuracy for these instruments does not exceed 50%. The clarinet and
flute are usually confused with the piano. The model more often defines these instruments
as pianos than labels them correctly. However, the saxophone is accurately classified the
least frequently for most of the tested models. The vast majority of saxophone recordings
are labeled as electric guitars.
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Similar results were achieved by the CNN3 model. It has the highest accuracy of all
models at 69%, but the F1-score is 3% lower than the CNN4 Model.

Basically, the results achieved are satisfactory. Most well-configured models produce
results in the range of 0.6–0.7 for both accuracy and F1-score. Taking into account only the
group of five instruments mentioned above, the overall efficiency of the models would be
much higher. Therefore, in order to significantly improve the current results, the way of
classifying the clarinet, flute, and saxophone should be corrected.

6. Classifiers Committee

In order to obtain better results, it was decided to create the classifier committee. It
is a set of models, in this case, neural networks, combined into one larger model. In ideal
conditions, such a model takes advantage of the most effective properties of each of the
base models, thus achieving a better result than each of the component models would
achieve working alone.

6.1. Neural Classifier Committee

Initially, we decided to connect three CNN networks marked in the Table 5 with
numbers 2, 3, and 4. The diagram of the constructed committee is shown in Figure 4. Three
previously trained models (each with 8 outputs) were connected using a special concatenate
layer. Once the committee is built, the possibility of training previously trained models is
excluded. Later, the entire structure is trained for 100 epochs based on the same training
and validation data that were used to calibrate all base models. The exclusion mentioned
above of component models from training, as well as the process of additional training of
the output layers (after concatenation), is intended to tune the final layers of the model
to the signals sent to them from higher-order components in order to optimize the final
generation of the classification result of 8 instruments.

Figure 4. Model diagram—classifier committee.

Although, in theory, the described structure seems to have great potential, the results
obtained thanks to the creation of the classifier committee are not impressive. We achieved
63% correct classifications, a sensitivity of 0.60, a precision of 0.58, and an F1-score of 0.59.
Moreover, by analyzing the obtained confusion matrix, we could conclude that the problem
regarding three inaccurately recognized instruments (clarinet, flute, and saxophone) had not
been eliminated. Despite everything, the results still maintain a certain satisfactory level.

6.2. Committee of Voting Classifiers

In the further part of the tests, the model was rebuilt into the committee of voting
classifiers. Its operating principle is simpler than the previous model. A few classifiers are
first trained and then placed in a committee, where they analyze each subsequent sample
of the test set and vote for the class to which the sample is to be assigned. In the event of
a tie, when the number of votes cast for several classes is equal, the class chosen is the one
voted for by the model that is the most confident in its decision, i.e., with the highest value
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at the output of the neuron of the last layer of the network. The diagram of the committee
based on three classifiers is shown in Figure 5.

Figure 5. Diagram of the voting classifiers committee.

During the first tests, a committee was configured consisting of the CNN networks
marked in Table 5 as CNN2, CNN3, and CNN4. Later, the committee was expanded to
include one dense network marked in Table 3 as ANN4. The last voting committee model
additionally included the ANN3 dense network.

The result of the tests performed is placed in Table 6. As can be seen, for the first time
during the research, an accuracy of 70% was achieved. The values of other parameters are
also at a good level, especially with regard to sensitivity. There is a noticeable tendency
for some parameters to improve as the committee expands. However, in this case, these
differences are small.

Table 6. Results of voting classifier committees.

Number of Models Accuracy Sensitivity Precision F1-Score

3 0.70 0.65 0.59 0.62

4 0.70 0.67 0.59 0.63

5 0.70 0.68 0.60 0.64
For each evaluation parameter, the best result obtained is presented in bold.

7. Conclusions and Future Work

The results obtained during the research can be considered satisfactory. What is
good about the research is that as more and more advanced models were configured,
the effectiveness often improved. Table 7 summarizes the performance of the different
types of models tested. Figure 6 shows a comparison of accuracy parameter values for
different methods.

Table 7. Results of different classifiers.

Model Accuracy Sensitivity Precision F1-Score

Dense network 0.68 0.67 0.64 0.65

CNN 0.68 0.67 0.63 0.65

Classifiers Committee 0.63 0.60 0.58 0.59

Voting Classifiers * 0.70 0.68 0.60 0.64
* Committee of Voting Classifiers.

As can be seen, the highest accuracy was achieved by using a committee of voting
classifiers, but both dense networks and convolutional networks turned out to be good
tools for recognizing musical instruments. It is worth noting that compared to the work [26]
discussed in Section 2, the obtained accuracies of dense and convolutional networks are
better by about 1%. However, when comparing the result obtained by the committee of
voting classifiers to the work of [26], the improvement achieved is 3%. Compared to the
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work [22], the accuracy is lower by 4%, and to [28] by about 6%. This may be due to the
advanced sound pre-processing process based on the CQT transform, the use of Shepard
sounds, and building very sophisticated deep architecture.

Figure 6. Comparison of accuracy parameter values for different methods (Zinemanas et al. [26],
Lostanlen and Cella [22], Zaiem et al. [28]).

The sound of the selected instruments may influence the quality of instrument detec-
tion, so that instruments with a similar sound may be confused with each other—incorrectly
classified. The analysis of the confusion matrix (Figure 2) shows just such a situation of
confusing one instrument with one or two others with a similar sound characteristic. The
imbalanced dataset also impacts the quality of instrument detection—instruments repre-
sented by a smaller number of recordings may be less well recognized due to insufficient
learning of the appropriate classification by the model. A comparison of Table 1 ‘Number
of recordings for each instrument’ and the confusion matrix (Figure 2) shows just such
a situation. Instruments with the largest number of recordings are classified with the best
accuracy, and those with the smallest number are classified with the worst accuracy. The
created model on some instruments (electric guitar, female voice, piano, violin) works
much better than the average, which was significantly reduced by the results for those
instruments for which there were a small number of recordings. For these four best clas-
sifiable instruments, we can see (confusion matrix—Figure 2) that 90% of electric guitar
recordings, 84% of female voice recordings, 99% of piano recordings, and 88% of violin
recordings were classified correctly.

Using an ensemble of classifiers not only improves the final result but also each basic
classifier can be trained and improved/changed independently of the others. In this way, it
is possible to improve the model by modifying its individual components.

Possible further development of work in the researched field could involve the use
of a complex implementation technique in the work [22] consisting of transforming input
signals using Shepard sounds. Another direction could be the introduction of an advanced
algorithm for high-quality data augmentation, for example, the random erasing method
proposed in the work [42], where its high effectiveness for convolutional neural networks
was proven. Another way to improve the result would be to use more advanced neural
network architectures. When creating voting committees, it would be possible to both
increase the number of classifiers participating in voting and use more sophisticated
voting methods.
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The field of automatic instrument detection is a relatively new field of research. How-
ever, our research allows us to draw preliminary positive conclusions, and the solution has
great potential for development.
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37. Onan, A.; Korukoğlu, S.; Bulut, H. A multiobjective weighted voting ensemble classifier based on differential evolution algorithm

for text sentiment classification. Expert Syst. Appl. 2016, 62, 1–16. [CrossRef]
38. Nanni, L.; Costa, Y.M.; Lumini, A.; Kim, M.Y.; Baek, S.R. Combining visual and acoustic features for music genre classification.

Expert Syst. Appl. 2016, 45, 108–117. [CrossRef]
39. Bahuleyan, H. Music genre classification using machine learning techniques. arXiv 2018, arXiv:1804.01149.
40. Lostanlen, V.; Cella, C.E.; Bittner, R.; Essid, S. Medley-solos-DB: A Crosscollection Dataset for Musical Instrument Recognition; Zenodo:

Meyrin, Switzerland, 2018.
41. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks

from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.
42. Zhong, Z.; Zheng, L.; Kang, G.; Li, S.; Yang, Y. Random Erasing Data Augmentation. In Proceedings of the AAAI Conference on

Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/app14020855
http://dx.doi.org/10.1007/s11257-018-9215-8
http://dx.doi.org/10.1155/2022/3387598
http://dx.doi.org/10.1049/el.2019.4202
http://dx.doi.org/10.3390/electronics10070850
http://dx.doi.org/10.1109/JSTSP.2022.3195430
http://dx.doi.org/10.3390/s22083033
http://dx.doi.org/10.1109/TASLP.2016.2632307
http://dx.doi.org/10.1016/j.engappai.2022.105151
http://dx.doi.org/10.1016/j.asoc.2021.108322
http://dx.doi.org/10.1016/j.jksuci.2021.11.001
http://dx.doi.org/10.16984/saufenbilder.901960
http://dx.doi.org/10.3390/app11135796
http://dx.doi.org/10.1016/j.eswa.2016.06.005
http://dx.doi.org/10.1016/j.eswa.2015.09.018

	Introduction
	Related Work
	Data Pre-Processing
	Dataset
	Considered Features

	Research Methodology
	Used Architectures and Experimental Results
	Dense Neural Networks
	Convolutional Neural Networks

	Classifiers Committee
	Neural Classifier Committee
	Committee of Voting Classifiers

	Conclusions and Future Work
	References

