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1. Introduction 

In today’s world, electronic systems have become indispensable in technologies 

spanning the Automotive and Robotics sectors. Electronic-based safety systems (EBSS) play 

a crucial role in autonomous solutions, ensuring stability and precision in their operation. For 

instance, in autonomous vehicles, EBSS enable the integration of sensor data and AI 

algorithms, supporting collision avoidance systems and real-time decision-making 

optimization. Similarly, in robotics, EBSS are responsible for the reliable functioning of key 

features, such as navigation in dynamic environments and execution of precise tasks, 

ensuring user safety. Innovations based on artificial intelligence, deep learning, robotics, and 

computer vision have the potential to revolutionize the design and validation of these systems.  

A critical challenge lies in ensuring their reliability and predicting their long-term performance. 

This article aims to present state-of-the-art solutions in the application of artificial 

intelligence to electronic-based safety systems, with a particular focus on robotics, computer 

vision, and large language models (LLMs) in the context of environmental perception and 

autonomous systems. The technologies discussed aim to reduce development cycles and 

enhance system reliability, translating to resource optimization and the implementation of 

cutting-edge solutions in the Automotive and Robotics sectors. 

 

2. Application of Artificial Intelligence and Deep Learning in Electronic-based 

Systems  

 

a. Sensor data analysis for a real-time diagnostics 

The integration of Artificial Intelligence (AI) and Deep Learning (DL) into Electronic-

Based Systems (EBS) significantly enhances real-time diagnostics, particularly in safety-

critical applications such as robotics and autonomous vehicles. Sensors play a crucial role in 

EBS by providing real-time data essential for monitoring system performance and detecting 

anomalies. These sensors measure various parameters, such as temperature, pressure, and 

vibration, generating voluminous and complex data that require advanced analytical 

techniques for meaningful insights. 
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AI and DL methodologies are particularly effective in analyzing sensor data. One of 

the primary applications is anomaly detection, where machine learning algorithms identify 

patterns within the data to establish a baseline of normal operating conditions. Deviations from 

this baseline can indicate potential failures or safety hazards. For instance, predictive 

maintenance models utilize historical sensor data to forecast equipment malfunctions before 

they occur, thereby preventing accidents. 

In the context of robotics and autonomous vehicles, the ability to analyze sensor data 

in real-time is critical. Autonomous systems rely on a multitude of sensors, including LiDAR, 

cameras, and ultrasonic sensors, to perceive their environment accurately [1]. AI algorithms 

process this sensor data to make instantaneous decisions regarding navigation, obstacle 

avoidance, and safety measures. This capability is vital for ensuring safe operation in dynamic 

environments where quick responses are necessary. 

Predictive analytics is another critical area where AI enhances diagnostics. By 

leveraging historical sensor data alongside real-time inputs, AI systems can predict future 

system states, which is vital for maintaining operational safety in environments where 

equipment failure could lead to catastrophic outcomes. Techniques such as regression 

analysis and time-series forecasting are commonly employed to achieve this. 

Moreover, data fusion techniques allow AI systems to combine data from multiple sensors, 

enhancing the reliability of diagnostics. Deep learning architectures can learn complex 

relationships across different data sources, providing a comprehensive view of system health 

and improving decision-making processes. In autonomous vehicles, for example, fusing data 

from various sensors helps create a more accurate representation of the vehicle's 

surroundings. 

However, several challenges remain in the application of AI for sensor data analysis. 

High-quality labeled datasets are essential for training effective AI models; yet obtaining 

sufficient labeled data can be difficult due to operational constraints or the rarity of failure 

events. Additionally, many AI models operate as "black boxes," making it challenging to 

understand their decision-making processes, which is particularly problematic in safety 

applications where transparency is critical. Furthermore, the need for real-time analysis 

imposes stringent requirements on computational resources and algorithm efficiency. 

Looking ahead, the future of sensor data analysis in EBS will likely involve 

advancements in hybrid models that combine traditional engineering approaches with modern 

AI techniques. Integrating probabilistic machine learning with physical models can enhance 

reliability while adhering to safety constraints inherent in high-risk environments. Ongoing 

research into explainable AI (XAI) aims to improve model transparency, fostering trust among 

users in safety-critical applications [2]. 

In summary, the application of AI and deep learning for sensor data analysis represents 

a transformative approach to real-time diagnostics in electronic-based systems. By addressing 

current challenges and leveraging emerging technologies, these systems can significantly 

enhance safety outcomes across various industries, including robotics and autonomous 

vehicles. 

 

b. Predictive maintenance of robots, vehicles and other EBSs 

Predictive maintenance (PdM) is a crucial strategy for enhancing the reliability and 

efficiency of robots, autonomous vehicles, and other EBSs. By utilizing advanced data 

analytics and machine learning techniques, PdM anticipates equipment failures before they 
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occur, minimizing downtime and maintenance costs. This approach is particularly significant 

in high-stakes environments such as manufacturing, transportation, and critical infrastructure. 

The essence of predictive maintenance lies in the continuous monitoring of 

objects/equipment through embedded sensors that collect real-time data on operational 

parameters. This data includes metrics such as temperature, vibration, and operational cycles. 

By analyzing this information, predictive models can identify patterns indicative of potential 

failures. For instance, a study on autonomous vehicles highlighted how integrating Internet of 

Things (IoT) technology with machine learning algorithms can enhance the predictive 

capabilities of vehicle systems, allowing for timely interventions before failures occur [3]. 

In the context of robotics, predictive maintenance has shown substantial benefits. 

Autonomous mobile robots equipped with advanced sensors can perform inspections in 

hazardous or hard-to-reach areas, collecting high-quality data that informs maintenance 

decisions. These robots not only gather data but also process it using AI algorithms to 

generate actionable insights. Research indicates that such systems can significantly reduce 

mean time to repair (MTTR) by predicting equipment malfunctions before they lead to 

unplanned downtime. 

Automotive manufacturers are increasingly adopting predictive maintenance solutions 

as well. With the rise of connected vehicles—expected to comprise 95% of new cars sold by 

the end of the decade—automakers are leveraging AI and virtual sensors to monitor vehicle 

health continuously. This capability allows for proactive maintenance alerts based on real-time 

usage data, improving vehicle reliability and safety while reducing costs associated with 

repairs and insurance. 

Despite its advantages, implementing predictive maintenance poses challenges. Data 

quality is critical; noisy or incomplete datasets can lead to inaccurate predictions. Moreover, 

many predictive models function as "black boxes," making it difficult for users to interpret their 

outputs. Future research is focused on developing more robust algorithms that can handle 

imperfect data and improve model transparency. In [4], a comprehensive literature review on 

predictive maintenance is presented, covering the methods, standards, and application 

examples commonly used in this field. 

In conclusion, predictive maintenance represents a transformative approach for 

ensuring the operational integrity of robots, autonomous vehicles, and other electronic-based 

systems. By addressing current challenges and leveraging emerging technologies such as AI 

and IoT, organizations can significantly enhance their maintenance strategies, leading to 

improved safety outcomes and operational efficiency. 

 

c. Automated log analysis using Large Language Models 

Large Language Models have emerged as powerful tools for analyzing system logs, 

providing significant advantages in extracting insights and automating responses in various 

electronic-based systems. System logs, which record events and transactions within software 

and hardware environments, are crucial for monitoring performance, diagnosing issues, and 

ensuring security. However, the sheer volume and complexity of log data can make traditional 

analysis methods inefficient and time-consuming. 

LLMs excel in processing natural language and structured data, enabling them to 

interpret log entries effectively. By leveraging their capabilities, organizations can automate 

the parsing of logs to identify patterns, anomalies, and trends. For instance, LLMs can be 

trained to recognize specific error messages or unusual activity that may indicate system 
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failures or security breaches. This capability not only accelerates the troubleshooting process 

but also enhances the accuracy of incident detection. 

One notable application of LLMs in log analysis is their ability to generate human-

readable summaries of complex log data. This feature allows IT teams to quickly grasp the 

state of a system without sifting through extensive log files. Additionally, LLMs can assist in 

predictive maintenance by analyzing historical log data to forecast potential future issues 

based on past patterns. For example, the study [5] presents an approach to applying LLMs for 

log analysis, demonstrating significant potential for practical applications. 

Despite their advantages, employing LLMs for log analysis presents challenges. The 

models require substantial amounts of high-quality labeled training data to achieve accuracy 

in specific domains. Furthermore, concerns regarding interpretability arise, as LLMs may 

produce outputs that are difficult for users to understand or validate. 

In conclusion, the application of Large Language Models for system log analysis 

represents a transformative approach for enhancing operational efficiency and security within 

electronic-based systems. By automating log interpretation and providing actionable insights, 

LLMs can significantly improve incident response times and overall system reliability. 

 

3. Robotics and Computer Vision in Safety Applications 

Perception is a key element in robotics, especially in systems where safety is critical. 

It allows robots to understand their surroundings and make decisions based on the data they 

collect. This section focuses on perception methods used in robotics, with examples from 

areas like autonomous vehicles, industrial robots, and human-robot cooperation. It also looks 

at the challenges of making perception systems reliable, accurate, and fast enough for real-

world use. Perception in robotics relies on sensors such as cameras, LiDARs, and radars, 

which provide diverse data about the environment. Using this data, various algorithms can be 

applied to interpret the surroundings, including object detection and semantic segmentation. 

To achieve a coherent understanding of the world, data from multiple sensors is often fused. 

This data fusion enhances the reliability and effectiveness of individual algorithms, ensuring 

more robust and accurate perception in complex environments. An example of perception in 

robotics is the extensive use of various sensors in precision agriculture [6], where they enable 

tasks to be performed efficiently and, most importantly, in a safe manner. 

 

a. Object detection 

Object detection is a fundamental task in robotic perception, aimed at identifying and 

localizing objects within an environment. This process typically involves analyzing data from 

sensors such as cameras and LiDARs to detect objects and estimate their positions. 

Traditional vision-based methods are associated with overcoming challenges such as varying 

lighting conditions, occlusions, and environmental complexity. Modern approaches to object 

detection often rely on deep learning, particularly convolutional neural networks (CNNs), which 

enable high accuracy and real-time performance. Popular techniques include single-stage 

detectors like YOLO (You Only Look Once) and SSD (Single Shot MultiBox Detector), as well 

as two-stage detectors such as Faster R-CNN, which combine region proposal networks with 

classification modules. In [7], available neural network architectures are presented in the 

context of perception and object detection.  

Object detection is particularly important in safety-critical applications. Recent 

research focuses on improving detection accuracy in challenging conditions. The YOLO-TC 
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model has been optimized for safety monitoring in tower crane operations, addressing issues 

related to complex lighting and cluttered backgrounds [8]. 

Contemporary research also focuses on enhancing detection accuracy in complex and 

dynamic environments. Article [9] proposes an innovative model fusion approach by 

integrating object detection with large language models. The models are fused using a single 

layer, which provides YOLOv8-n's object detection probabilities to the LLaMA2 (Large 

Language Model Meta AI). The authors achieved an improvement in autonomous vehicle 

responses, specifically in detecting small objects crossing the road and identifying narrowed 

or merged lanes. 

Accurate and reliable environmental perception is one of the most critical aspects of 

autonomous driving and robotics research. Article [10] presents an advanced approach to 

object detection and tracking, combining the deep learning-based YOLOv8 object detection 

algorithm with LiDAR data fusion, resulting in improved accuracy and reliability in autonomous 

applications. The authors leveraged the strengths of both technologies where LiDAR provides 

precise distance measurements and 3D spatial information, regardless of lighting conditions 

whereas YOLOv8 enables fast object detection and classification in RGB images in real time. 

However, this fusion introduces several research challenges including (i) filtering ground 

points from LiDAR point clouds; (ii) calibrating data from different sensors; (ii) managing 

computational complexity when processing large datasets. 

 

b. Segmentation 

Image segmentation is a crucial task in robotic perception. It aims at dividing an image 

into meaningful regions to better understand the environment. This process allows robots to 

identify and classify different parts of a scene, such as distinguishing objects, surfaces, or 

background. Semantic segmentation, for example, assigns a specific label to each pixel in the 

image, enabling detailed analysis and decision-making. This is particularly useful in tasks like 

navigation, obstacle avoidance, and object manipulation, where precise scene understanding 

is essential. Segmentation is often performed using deep learning techniques, including fully 

convolutional networks (FCNs) and architectures like U-Net or DeepLab, which excel in pixel-

level predictions. In [11], an overview of available methods is provided, highlighting current 

achievements and the challenges yet to be addressed. 

Recent studies focus on sensor data fusion to improve segmentation results. In article 

[12], the authors explored a method for fusing 2D images and 3D point clouds, leading to more 

precise semantic segmentation in complex scenes. The solution involves combining 2D and 

3D features, which are then further integrated using a shared multi-layer perceptron (MLP) 

and optimized through an attention mechanism. To enhance the model’s learning capability 

and segmentation accuracy in complex scenes, a knowledge distillation strategy was applied. 

In study [13], the authors reviewed radar-camera data fusion methods for semantic 

segmentation, emphasizing the benefits of integrating these two data sources in autonomous 

applications. Based on radar-camera fusion datasets and methods, the paper discusses key 

challenges and potential research directions related to multimodal data and multimodal fusion. 

In the field of image segmentation, recent trends include the integration of transformer-based 

models, which capture long-range dependencies in images, improving segmentation accuracy 

in complex scenes. Models such as Vision Transformers (ViTs) and Swin Transformers 

outperform traditional convolutional neural networks (CNNs) by better understanding global 
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context. Article [14] provides a comprehensive overview of transformer-based visual 

segmentation, summarizing the latest advancements in this field. 

Advancements in real-time semantic segmentation are crucial for applications such as 

autonomous driving and robotics. Techniques like model pruning, quantization, and the 

development of lightweight architectures enable efficient segmentation models to run on edge 

devices without compromising accuracy. In article [15], the authors introduced an improved 

version of Fast-SCNN, integrating an attention mechanism and optimized feature extraction 

modules, achieving a better balance between accuracy and efficiency in urban scene 

segmentation. 

 

c. Data fusion 

The rapid advancements in sensor technology and increased computational power 

have significantly improved real-time data collection, enabling precise monitoring of various 

phenomena and industrial processes. However, the large volume and complexity of 

heterogeneous data pose significant challenges in data processing. Traditional data analysis 

methods, such as aggregation, filtering, and statistical analysis, are increasingly being 

supplemented by data fusion techniques, which provide a more comprehensive approach to 

data interpretation. 

Data fusion in the context of environmental perception involves combining information 

from multiple sensors to create a more comprehensive and accurate understanding of the 

surroundings. By integrating data from sources such as cameras, LiDARs, and radars, fusion 

techniques can compensate for the limitations of individual sensors, such as poor lighting 

conditions for cameras or limited resolution in LiDARs. This process enhances the reliability 

and robustness of perception tasks, including object detection, semantic segmentation, and 

scene reconstruction. Common approaches to data fusion include early fusion, where raw 

sensor data is combined, and late fusion, which integrates high-level features or predictions. 

In [16], an example of data fusion is presented, showcasing the integration of object detection 

and segmentation results using data from a camera and a LiDAR. Data fusion techniques 

have evolved to enhance the resilience of perception systems in safety-critical applications. A 

comparative study of the latest automatic data fusion methods highlights the importance of 

integrating information from multiple sensors to improve classification performance in terms of 

accuracy and result stability [17]. In the context of autonomous driving, combining data from 

various sensors, such as cameras, LiDARs, and radars, helps compensate for the limitations 

of individual sensors. This integration enhances the reliability and robustness of perception 

systems, supporting tasks such as object detection and semantic segmentation. 

Data fusion plays a crucial role in creating an accurate and reliable environmental 

representation in safety-critical systems. Recent research focuses on advanced fusion 

methods using deep learning. In [18], the authors present an in-depth analysis of deep 

learning-based data fusion methods across various domains, emphasizing their evolution and 

applications in recent years. Autonomous vehicles represent an innovative technology with 

the potential to make transportation safer, more efficient, and more convenient. Although 

existing solutions demonstrate some success, effective methods for addressing challenges 

such as road debris accumulation, which can obscure lane markings and traffic signs, are still 

lacking. Additionally, extreme weather conditions, including heavy rain, snowstorms, fog, and 

dust storms, can significantly impair sensor functionality, limiting their ability to detect 

obstacles, pedestrians, and other vehicles, thereby posing potential safety risks. In response 
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to these challenges, [19] proposed a multi-sensor data fusion and segmentation method for 

multi-object tracking in autonomous vehicles using the Deep Q-Network (DQN). The proposed 

model integrates data streams from cameras and LiDARs and develops an intelligent object 

detection system by processing sensor images. The multi-sensor data fusion and 

segmentation approach for tracking multiple objects in autonomous vehicles enhances system 

performance and reliability. 

 

4. Autonomous Safety Systems 

The roles of Autonomous Vehicles (AV) in our lives cannot be ignored. Self-driving 

cars, Unmanned Aerial Vehicles (UAVs), and Autonomous Robots are the areas where 

autonomous vehicles are mostly used. Thus, autonomous safety systems are a developing 

topic that needs to be discussed and researched in the fields of cybersecurity and physical 

security. These systems are developed to predict security vulnerabilities, detect threats or 

intervene. 

 

a. Autonomous Safety Systems for Self-Driving Cars  

Vehicles that have various driving features that minimize human intervention or do not 

require any and that drive automatically are called autonomous vehicles (Self-Driving Cars). 

A classification system was published by the Society of Automotive Engineers (SAE) in 2014 

to define and standardize the automation levels of autonomous vehicles. These levels consist 

of 6 classes, from level 0 (minimal automation, driver assistance) to level 5 (fully autonomous 

vehicles) [20]. Vehicles between levels 0 and 2 include driver assistance features. For 

example, level 0 has automatic emergency braking and blind spot warning, level 1 has lane-

centering or adaptive cruise control, and level 2 has lane-centering and adaptive cruise 

control. Even if these driver assistance features are activated, you must drive the vehicle. 

Autonomous vehicles between levels 3 (conditional driving automation), level 4 (high driving 

automation,) and level 5 (full driving automation) include automatic driving features. Level 3 

and 4 autonomous vehicles can drive under limited conditions. For example, level 3 has a 

traffic jam feature that takes over driving on highways and similar roads at speeds up to 60 

km/h. When the feature is requested, you must drive. Level 4 has a local driverless taxi feature. 

It should be noted that these features will not work if the necessary conditions are not met. 

Level 5 features are the same as level 4, but at this level of autonomy, vehicles can drive 

everywhere in all conditions. 

According to the Statista report, 60% of new cars sold globally are expected to have 

level 2 autonomy by 2025 [21]. Level 3 hit the road in Japan in 2021 with a small distribution 

by Honda. This was followed by Mercedes with certification in Germany and US in 2022 and 

2023, respectively [22]. Meanwhile, Mercedes-Benz has received approval for level 4 

autonomous driving testing on designated urban roads and highways in Beijing [23].  

Waymo, the world's most experienced driver whose mission is to be the world's most reliable 

driver, is also among the autonomous vehicles. Waymo One, the world's first fully autonomous 

ride-hailing service, began providing 24/7 service without a human driver in many major cities 

in the United States in 2018. Thus, with its Waymo One service, Waymo can be considered 

one of the leaders in Level 4 autonomous vehicle technology. Navya, a French company, is 

also used today as a shuttle service in controlled areas such as private indoor areas, usually 

in level 4 autonomous vehicles. Tesla's Autopilot system in autonomous vehicles is classified 

as an SAE level 2 system. Tesla is constantly working on software and hardware updates to 
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reach level 4 autonomous driving capabilities (Full Self-Driving). Unlike other autonomous 

vehicles, Tesla uses cameras and artificial intelligence-supported software systems instead of 

lidar and radar. This approach aims to reduce costs and create a human-like perception 

system. The role and functionality of autonomous vehicles in traffic are rapidly expanding. 

Thus, safety systems in autonomous vehicles have become a crucial area that needs to be 

developed and expanded in today’s world. 

Safety systems in autonomous vehicles have been developed to ensure the safety of 

passengers and people around the vehicle and to ensure a safe journey. Sensors such as 

radar, lidar, cameras, ultrasonic, and infrared are used in autonomous vehicles to detect 

dangers and increase awareness. For example, radar helps vehicles determine their distance 

and is used in collision avoidance systems. Ultrasonic sensors help when parking the vehicle 

by detecting obstacles at low speeds. Software and artificial intelligence-supported systems 

such as computer vision and machine learning algorithms analyze data from sensors and 

enable faster decision-making. The sensors, software algorithms, and artificial intelligence we 

mentioned above support the safety systems of autonomous vehicles. So, what are these 

Autonomous Safety Systems? 

 

b. Collision Warning System 

Certainly, as the levels of autonomy in vehicles increase, the capabilities of their safety 

systems also advance. Sensor-based warning systems, which can be seen even in Level 0-1 

autonomous vehicles, are the beginning of autonomous security systems. Fig. 1 gives 

examples of collision warning systems. Forward collision warning, lane departure warning, 

rear cross-traffic warning, and blind spot warning systems are systems that warn drivers 

against collisions. The forward collision warning system detects a possible collision with the 

vehicle ahead and warns the driver but does not intervene. The lane departure warning system 

warns the driver when the vehicle approaches or crosses the lanes. The rear cross-traffic 

warning system warns the driver of a possible collision in the area outside the rear-view 

camera's field of view. The blind spot warning systems alert the driver to the presence of a 

vehicle in the blind spot. 

 

 
Fig. 1. Collision Warning Systems 

 

In addition to warning systems, some autonomous vehicles have features such as 

adaptive cruise control, lane centering assistance, and lane keeping assistance that 
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automatically keep vehicles at a certain distance from other vehicles, keep the vehicle in the 

lane when it goes out of the lane and provide control by helping to prevent collisions and 

ensuring a safe journey. 

 

c. Autonomous Emergency Braking Safety Systems 

The emergency braking system forms the basis of safety systems in autonomous 

vehicles. These systems increase vehicle safety by reducing driver reaction time and help 

prevent collisions, providing a safer ride for passengers, pedestrians, and cyclists. 

As technology advances, safety systems in autonomous vehicles are transitioning from 

warning mechanisms to active intervention systems. The Autonomous Emergency Braking 

(AEB) system is one of the most common and effective intervention systems. The images in 

Fig. 2 are examples of automatic emergency braking systems applied in different collision 

scenarios. The images  from left to right  are: the automatic braking system in the event of a 

forward collision, the automatic braking system if the pedestrian in front of the vehicle is 

detected and the collision is imminent, the automatic braking system in the event of a possible 

collision while the vehicle is in reverse gear, and the automatic braking system when an 

attempt is made to change lanes if there is a vehicle in a blind spot.  

 

 
Fig. 2. Collision Intervention Systems 

 

In a study conducted in the USA, the effect of AEB with pedestrian detection was 

investigated, and a 30% reduction in pedestrian injury crash risk was observed due to this 

autonomous safety system [24]. The study also noted that there was no evidence that the 

system was effective at speeds of 50 mph or higher, in dark conditions, or while the vehicle 

was turning. This research actually shows that AEB studies will continue to improve according 

to various conditions. 

 

d. Predicting and Understanding Road Users' Behaviors 

Behavior Prediction is a system that enables autonomous vehicles to predict and 

understand the future movements (behaviors) of other vehicles, pedestrians, and cyclists on 

the road with the main aim to prevent collisions. This system allows autonomous vehicles to 

avoid potential collisions and provide a safer journey. This system consists of several stages. 

First, data such as the speed and location of surrounding objects are collected from the 

sensors (Radar, Lidar, ultrasonic sensors) and autonomous vehicles' cameras. Then, this data 
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is analyzed with mathematical models or machine learning, artificial intelligence models, such 

as whether a pedestrian is standing on the sidewalk or preparing to cross the road. After the 

system predicts and understands the behavior of the road user, it creates the safest action 

plan. The autonomous vehicle can then slow down, come to a complete stop, change lanes, 

etc. However, indeed, human or cyclist behavior is not always predictable. For this reason, 

these systems continue to be developed.  

Waymo's Safety Research and Best Practices team conducted a study on how to 

measure surprising road user behavior. This study examines approaches to measuring 

surprising road user behavior using a machine learning generative model based on behavior 

predictions [25]. Another study [26] proposes a road user behavior prediction system by 

combining the Large Language Model (LLM) and Knowledge Graphs (KG) with Retrieval 

Augmented Generation (RAG) techniques. The study was conducted using two approaches: 

estimation of pedestrian crossing actions and estimation of lane change maneuvers. This 

study also demonstrates the expressive capacity of LLM in the prediction of road user 

behavior. 

 

e. Autonomous Safety Systems for Autonomous Mobile Robots (AMR) 

Nowadays, there is another type of autonomous vehicle that is widely used in the 

industry, logistics, agriculture, health sectors, and restaurants called Autonomous Mobile 

Robots (AMR), which can perform their tasks by perceiving their environment, analyzing it, 

and acting accordingly. AMRs are capable of operating independently without the need for 

external human intervention, relying on sensors, cameras, artificial intelligence, and software. 

They collect data with lidar, radar, ultrasonic sensors, and cameras. They perceive their 

surroundings, obstacles, and objects with artificial intelligence, Simultaneous Localization and 

Mapping (SLAM) technology, and choose the most appropriate path. Thus, they can quickly 

adapt to changes in the environment, draw a new route, and ensure a safe journey. 

Lidar sensors have a major role in the safe movement of AMRs. Lidar sensors play critical 

roles in environmental perception, mapping, and detecting obstacles and avoidance in AMRs. 

For instance, the study [27] aims to increase operational efficiency and safety in industrial 

environments by leveraging Lidar-based collision avoidance to enhance Automatic Mobile 

Robot Transporters (AMR-T) with obstacle detection and avoidance capabilities. In another 

study [28], a dynamic navigation system using the Lidar sensor and stereo camera 

technologies was developed to increase the safety and efficiency of AMRs in industrial and 

urban areas.  

Lidar sensors also play an important role in increasing the reliability of SLAM 

technology, which allows an AMR to create a map in an environment it has not previously 

known and to determine its position on this map. The SLAM algorithm and localization maps 

play a critical role in ensuring safety in AMRs. By enabling real-time mapping and continuous 

updates of the environment, SLAM allows the robot to navigate through unknown spaces while 

precisely determining its position. This capability facilitates efficient path planning and reduces 

the risk of collisions. 

There are still challenges in designing control strategies to deal with collision 

avoidance and the absence of deadlocks in many applications of multi-robot systems. To 

address these issues, the online nonlinear Model Predictive Control (MPC) method was 

proposed to enable collision avoidance and deadlock-free navigation of multiple autonomous 

nonholonomic Wheeled Mobile Robots (WMRs) [29]. The simulations and experiments related 
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to the study can be watched online at [30] and [31], respectively. In addition, for the safe and 

efficient operation of AMR, it is important to develop collision avoidance algorithms. For 

example, a predictive collision avoidance algorithm that tracks multiple objects simultaneously 

and predicts their speed and future positions has been proposed, which enables AMRs to 

navigate safely and effectively [32]. It has increased the performance of the collision avoidance 

system and contributed to safe and efficient autonomous systems. 

 

f. Autonomous Safety Systems for Unmanned Aerial Vehicles (UAV) 

Another well-known autonomous vehicle widely used in many fields such as 

agriculture, entertainment, logistics, and military is Unmanned Aerial Vehicles (UAVs). Safety 

in UAVs is a critical issue to ensure a safe flight. Lidar, ultrasonic sensors, cameras, and 

radars are used in UAVs to detect obstacles by making precise distance measurements and 

transmitting sensors and visual data used to detect obstacles and objects at close range. 

Moreover, UAVs have algorithms used to prevent collisions in emergency situations called 

fail-safe operations. A safe landing system is one of them and allows the UAV to land by 

determining a safe landing point in case of emergency. Secondly, emergency stops ensure 

that the UAV's engines are stopped in case of emergency (crash, battery problem, etc.). 

Another operation, Return to Home (RTH), is a safety feature that allows UAVs to 

automatically return to the point from which they took off under certain (or emergency) 

conditions. RTH feature significantly increases the flight safety of UAVs [33]. The RTH feature 

is automatically activated when the connection between the UAV and the controller is lost or 

the battery drops below a certain level, ensuring the UAV can land safely. Additionally, some 

RTH systems can detect obstacles and avoid collisions. 

SLAM algorithms are also used to ensure the safety of UAVs. They allow the aircraft 

to determine its location by mapping its surroundings in situations where the global positioning 

system (GPS) is insufficient or disabled. 

Recent studies in the literature reveal that [34] analyzed large language model (LLM) 

architectures to enhance the capabilities of UAVs. The study suggests that LLM models can 

further advance the automation features and efficiency of UAVs by leveraging the potential of 

artificial intelligence. This, in turn, enables research efforts that aim at directly improving the 

safety of UAVs. 

In summary, the safety of UAVs is ensured through different technologies, sensors, 

and algorithms These safety systems automatically recognize and detect objects/obstacles 

and prevent collisions without the need for human intervention. 

 

g. Possible Future Collision Avoidance Systems for Autonomous Vehicles 

Research on autonomous vehicle safety as explored in both academic literature and 

industry encompasses collision avoidance and warning systems. Possible collision avoidance 

algorithms proposed for future investigation represent critical advancements in enhancing the 

safety of autonomous systems. The following section outlines future research directions 

identified in the existing literature. The study [35] highlights that if future work focuses on 

optimizing edge computing to process large sensor data across operations, it will reduce 

latency for AV applications and enable real-time decision-making. This would increase safety 

by allowing faster decisions to prevent collisions in dangerous situations. The study also 

mentions that future work should focus on improving simulation accuracy because differences 

in simulation and real-world environments pose difficulties for machine learning used in AVs. 
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In addition, the integration of artificial intelligence and EBS is used in autonomous 

vehicles to prevent collisions with different perception and decision-making mechanisms. The 

development of the safety of autonomous vehicles is directly proportional to the development 

and widespread use of these systems. For this reason, in future studies, many innovative 

systems can be developed, such as multi-modal detection systems (a weather-independent 

object recognition system by combining different technologies such as sensors and cameras), 

Vehicle-to-Infrastructure (V2I) Communication (providing communication between vehicles 

and the external environment such as traffic lights and road sensors and detecting potential 

dangers in advance).  

 

5. Integration of LLMs in human-robot interaction 

The integration of Large Language Models (LLMs) into human-robot interaction (HRI) 

has opened new avenues for enhancing the capabilities of robots in understanding and 

interacting with their environment and humans. This section explores the applications of LLMs 

in three key areas: (i) description of the environment in natural language, (ii) issuing 

commands to robots using natural language and (iii) applications of LLMs in humanoid 

assistive robots. 

 

a. Using Large Language Models to Describe the Environment in Natural 

Language 

Robots working in new environments often create maps that include detected 

obstacles. This process usually involves Simultaneous Localization and Mapping, where 

sensors like LiDAR or depth cameras help generate a spatial map of the surroundings. 

However, traditional SLAM focuses mainly on the shape of the space and doesn’t explain 

much about the objects within it.  

By integrating perception modules utilizing sensor data, robots can go beyond basic 

obstacle detection. For example, object detection and segmentation algorithms enable the 

robot to identify and classify certain objects within its field of view. This information can 

enhance the robot’s spatial representation, allowing it to distinguish between different types of 

obstacles such as furniture, walls, or people. 

Large Language Models take this capability further by transforming raw sensor data 

into detailed natural language descriptions. When applied to visual data from cameras, LLMs 

can provide context-rich descriptions of significant elements in the environment. For instance, 

an LLM-powered system can interpret and articulate that a room contains a sofa, a coffee 

table, and a television, thereby indicating it is likely a living room [36]. By generating this 

semantic understanding, the robot can create a "semantic map" of its environment, which links 

spatial locations with descriptive attributes. This semantic awareness allows robots to 

comprehend not only what objects are present but also the functional purpose of a space, 

such as recognizing a room with a sink and stove as a kitchen [37]. Such detailed mapping 

facilitates more intuitive interactions between humans and robots, paving the way for 

enhanced task planning and decision-making. 

 

b. Natural Language Command Execution 

With a semantically rich map of its surroundings, a robot becomes capable of 

responding to natural language commands issued by a human operator. Unlike traditional pre-

programmed commands, which require precise syntax, LLM-powered robots can interpret 
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more flexible and context-aware instructions. For example, a wheeled robot navigating an 

outdoor environment could be directed to “park near the red building” leveraging its semantic 

understanding to identify and act upon the specified location. Similarly, an indoor service robot 

could be asked to “bring me the book from the table” requiring it to recognize the specified 

objects and their relationships [38]. 

The ability to infer relationships between objects further simplifies command 

interpretation. For instance, when a human says, “I want to go to sleep; can you help me?”, 

then the robot can deduce that the appropriate action involves guiding the user to the bedroom 

- a space characterized by the presence of a bed. This contextual reasoning relies on the 

LLM’s capacity to understand both the user’s intent and the functional purpose of objects and 

spaces within its semantic map. 

LLMs also play a crucial role in speech-to-text transcription and voice generation, 

which are essential for voice-based communication with robots. This allows users to interact 

with robots using spoken commands, enhancing the user experience and making robots more 

accessible to a wider range of users [39]. 

 

c. Applications of LLMs in Humanoid Assistive Robots 

LLMs have significant potential in enhancing the capabilities of assistive robots, 

particularly those designed to aid elderly or disabled individuals. For instance, robots equipped 

with LLMs can assist with daily tasks such as feeding, dressing, or providing companionship. 

These robots can understand and respond to natural language commands, making them more 

user-friendly and accessible to those who need assistance [40]. 

Moreover, LLM-powered robots can potentially serve as cooks or household 

assistants, capable of preparing meals or performing chores based on voice commands. This 

application not only improves the efficiency of household tasks but also enhances the 

independence of individuals who may struggle with these activities due to physical or cognitive 

limitations [41]. 

In addition to these domestic applications, LLMs can be integrated into robots designed 

for healthcare settings. For example, they can aid patients at the bedside, monitor their 

condition, and provide personalized care instructions based on real-time data analysis. The 

versatility of LLMs in HRI opens up numerous possibilities for improving care delivery and 

enhancing the quality of life for individuals in need of assistance. 

Beyond caregiving and cooking, humanoid robots with LLMs can support a wide range 

of activities, including education, customer service, and hospitality. For example, in 

educational settings, they can act as interactive tutors, explaining concepts and answering 

questions conversationally. In customer-facing roles, they can provide detailed information 

about products or services, making interactions more engaging and personalized. 

In summary, the integration of LLMs into humanoid robots significantly broadens their 

range of applications, making them invaluable tools in diverse scenarios where natural and 

intuitive communication is essential. 

 

6. Integration of AI with V2X systems in autonomous vehicles 

Autonomous driving (AD) is anticipated to bring significant benefits to human society 

in the future 6G vehicular ad hoc networks (VANETs) [42]. Typically, dissemination of real-

time traffic information (e.g., HD map, parking guidance) is necessary to support emerging 

time-sensitive AD services (e.g., remote driving, metaverse). Most existing works [43] [44] 
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investigate the hybrid data dissemination with vehicle-to-infrastructure (V2I) and vehicle-to-

vehicle (V2V) transmissions among roadside units (RSUs) and vehicles. However, the burden 

and contention of data dissemination in 6G VANETs would be much heavier with the 

increasing number and more stringent requirements of emerging AD services, which brings 

significant challenges for existing data dissemination methods. On the other hand, semantic 

communication has recently shown significant advantages [45]. Unlike traditional 

communication, which focuses on bit accuracy, semantic communication concentrates on 

holistic meaning delivery. Semantic communication can significantly reduce communication 

traffic, integrated with an artificial intelligence (AI) model-enabled semantic encoder/decoder. 

However, in future VANETs with massive resource-limited vehicles, calculating complete 

semantic model updates on vehicles will lead to high computation costs. An energy-efficient 

semantic communication architecture is necessary for sustainable AD service [46]. Most 

recently, digital twin (DT) is a promising paradigm for 6G VANETs architecture innovation [47], 

[48]. In the DT-based 6G VANETs, each vehicle owns a synchronized twin object (vehicle 

twin) on the mobile edge computing (MEC) server for intelligent state analysis and decision-

making. These twin objects on MEC servers construct the DT networks via twin-to-twin (T2T) 

communication. In most cases, T2T occurs as inter-process communication (IPC) [49] 

between vehicle twins within the same MEC server, which is much faster and more stable than 

V2V and V2I communications. Considering this characteristic, we leverage the DT networks 

to disseminate data parallel to physical VANETs. In this way, the transmission contention in 

physical VANETs is mitigated, and the dissemination efficiency can be improved. 

 

Fig 3: DT-based semantic dissemination architecture for 6G VANETs. 

a. System architecture and system model 

DT-based Semantic Dissemination Architecture 
As shown in Fig.3, three types of entities exist in the proposed DT-based semantic 

dissemination architecture: RSU: The RSUs are the source of AD service data, which have 

enough storage but limited computation resources. Before data dissemination, each RSU 
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encodes the service data into semantic chunks with an AI model. The wireless communication 

radius of RSUs is limited, and they can only disseminate semantic data to the vehicles within 

their range. Each RSU builds a twin-to-infrastructure (T2I) link connected to a MEC server to 

access the DT networks. Vehicles: The vehicles can exchange semantics with neighbor RSUs, 

MEC servers, and others by onboard semantic encoders/decoders. For energy saving, we 

further divide them into (i) the general semantic encoder/decoder (GSD) for recognizing the 

common semantic characteristic and (ii) the task-oriented semantic encoder/decoder (TSD) 

for identifying the specific semantic of AD task on each vehicle. A vehicle only reports the local 

TSD loss to the MEC server through vehicle twin. 

The MEC server uses the collected TSD loss to update the GSD federally and return 

it to each vehicle. MECServer: An MEC server contains multiple vehicle twins: the vehicle twin 

can communicate with its physical vehicle, other vehicle twins, or the connected RSU. 

Besides, a macro base station (MBS) is linked to each MEC server for central analysis and 

decision-making. The workflow of the proposed architecture is shown in Fig. 4. 

  

Fig. 4. Workflow of the proposed semantic dissemination architecture 

In the information collection stage, MBS collects the state of physical vehicles, MEC 

servers, and RSUs. As for the analysis stage, the central MBS trains an optimizer for DT 

transfer and semantic transmission scheduling. In the dissemination stage, the MBS makes 

decisions for the involved entities in each time slot. The environment is updated and transits 

into the next cycle when the dissemination stage is over. 

The advantages of our proposed architecture are three-fold: 

1) Dissemination burden reduction: The entities exchange information with each other by 

semantic communication, which can reduce the disseminated data volume. 
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2) Transmission contention alleviation: For the sake of contention avoidance in 6G 

homogeneous networks, a physical vehicle cannot communicate with RSU and neighbor 

vehicles at the same time. However, when the physical vehicle is occupied, the vehicle twin 

can still request semantic chunks from RSU or other vehicle twins. Meanwhile, semantic 

dissemination in DT networks tends to be faster and more stable due to IPC. When the 

physical vehicle is free or drives off the range of RSU, it can continue to synchronize semantic 

chunks from the vehicle twin. Thus, the physical transmission contention is alleviated and 

improved dissemination efficiency. 

3) Energy saving: The semantic encoder/decoder of vehicles is divided into GSD and TSD. 

Vehicles only calculate local TSD updates and report them to vehicle twins for federal GSD 

updates, which saves energy costs for on-vehicle GSD updates. 

 

b. Performance evaluation 

Experiments were conducted on a computer with 2 Intel® Xeon® 5217 CPUs 

(3.0GHz), an NVIDIA RTX 3090 GPU, 128GB DDR4 RAM, and a 12TB disk. For the semantic 

communication simulation, a 4-layer convolutional neural network (CNN)-based general 

semantic encoder/ decoder (GSD) and a 6-layer transformer-based task-oriented semantic 

encoder/decoder (TSD) on the Cityscapes dataset were trained. The Cityscapes dataset 

focuses on the semantic understanding of urban streets for the VANETs scenario. We referred 

to OpenStreetMap for real-world road information and select a rectangle area around our 

campus in Shanghai, China. Besides, the 5G signal distribution based on the dataset provided 

by Shanghai Unicom, was used and all the RSUs and MEC servers were deployed within the 

signal coverage. The simulation of urban mobility (SUMO) was used to generate the vehicle 

mobility traces. Finally, a PPO-based agent on the Pytorch platform was deployed to interact 

with the simulated VANETs environment. The key simulation parameters are summarized in 

Table. I. PD3 was compared with the other three typical data dissemination schemes listed 

below.  

- Random data dissemination scheme: The random dissemination scheme is a typical 

benchmark method. It randomly determines whether to adopt V2I or V2V transmission for 

requesting vehicles in each time slot. 

- Offline hybrid data dissemination (OFDD) scheme:  The OFDD is one of the state-of-the-art 

data dissemination schemes proposed by Yang et al. in [44]. It prioritizes the most beneficial 

V2V transmission and then chooses V2I transmission if feasible. This was slightly modified to 

make it suitable for solving the problem in this report. 

- Pure PPO scheme: A pure-PPO learning scheme was set up for comparison to test whether 

the DT-aided data dissemination scheme brings additional advantages. 
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Table I: Key Simulation Parameters 

 

a. Experimental analysis 

The proposed semantic dissemination architecture's data volume and energy 

consumption were first investigated. As shown in Table. II, compared with the traditional 

JPEG2000-based [50] data encoding method, the CNN and transformer-based semantic 

encoding method disseminates fewer data bits while keeping the same minimum AD task 

accuracy. On the other hand, our proposed semantic model update method consumes lower 

energy costs than the complete on-vehicle model update scheme. 

   

Table II:  Evaluation of the proposed Semantic Dissemination architecture based on the 
Cityscapes Dataset. 

 
Fig. 5 (a)-(b) shows the performance of the proposed PD3 scheme with the number of 

training timesteps and the attributes of MEC servers. In Fig. 5 (a), the episode reward of the 

pure PPO scheme and our proposed PD3 scheme are compared. The density of deployed 

MEC servers for PD3 is set to 4 km2, the maximum twin capacity Pm for each MEC server is 

3, the number of vehicles requested during an episode is 800, and the average speed of 

vehicles is 40 km=h. As shown in Fig. 5 (a), the PD3 scheme achieves 74.35 % higher episode 

reward than the pure PPO scheme on average, which showed the advantage of DT-aided 

dissemination. Fig. 5 (b) describes the reward of the proposed PD3 schemes with the density 

of MEC servers under different twin capacities. As the density and computational capacity of 

MEC servers increase, the average reward exhibits a corresponding upward trend.   

In Fig. 6 (a)-(b), shows the impact of the quantity and velocity of requesting vehicles 

on normalized semantic dissemination delay and dissemination ratio. According to Fig. 6 (a), 

the normalized semantic dissemination delays increase for all schemes as the average vehicle 

velocity increases. At the same time, the proposed PD3 outperforms other schemes and 

achieves 18.36% lower dissemination delay than the scheme on average. As shown in Fig. 6 

(b), our proposed PD3 scheme outperforms other schemes and achieves a 4.51% higher 

semantic dissemination ratio on average than the OFDD scheme. When the number of 

vehicles is less than 400, the semantic dissemination ratio keeps increasing with the number 
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of vehicles due to more frequent V2V transmission. However, when the number of vehicles 

further increases, the dissemination ratio decreases because of the twin capacity limit of MEC 

servers [51]. 

 

 

 
Fig. 5(a): Reward V.S. Timesteps 

 

 

 
Fig. 5(b): Reward V.S. MEC server density 

 

 
Fig. 6(a): Delay V.S. Vehicle velocity 

 

 
Fig. 6(b): Ratio V.S. Number of vehicles 

  
 

7. Conclusions 

The development of artificial intelligence and data-driven electronic systems 

significantly impacts the safety of autonomous systems, particularly in the robotics and 

automotive sectors. The integration of deep learning techniques, sensor data analysis, and 

language models enhances real-time diagnostics, predictive maintenance, and system event 

analysis. In robotics and autonomous vehicles, advanced environmental perception 

methods—such as object detection, image segmentation, and multi-sensor data fusion—

enable more precise and reliable safety system operations. Autonomous safety systems play 

a crucial role in accident prevention, incorporating behavior prediction of road users, automatic 

emergency braking, and collision avoidance mechanisms. The advancement of language 
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models opens new possibilities in human-robot interaction, allowing for natural communication 

and intuitive command execution. Meanwhile, the application of artificial intelligence in vehicle-

to-everything (V2X) communication systems supports efficient data management and 

optimization of decision-making processes. Despite significant progress, further research 

should focus on improving AI model transparency, increasing computational efficiency, and 

integrating hybrid methods that combine classical engineering approaches with machine 

learning techniques. Ultimately, the growing role of artificial intelligence in safety systems 

contributes to enhancing the reliability of autonomous systems, and continued development 

in this field could lead to groundbreaking transformations in modern technologies. 
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