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Abstract: All carbon-based sensors play a critical role in ensuring the sustainability of
smart packaging while enabling real-time monitoring of parameters such as humidity,
temperature, pressure, and strain during transit. This systematic review covers the literature
between 2013 and 16 November 2024 in the Scopus, Web of Science, IEEE Xplore, and Wiley
databases, focusing on carbon-based sensor materials, structural design, and fabrication
technologies that contribute to maximizing the sensor performance and scalability with
particular emphasis on food and pharmaceutical product packaging applications. After
being subjected to the inclusion and exclusion criteria, 164 studies were included in this
review. The results show that most humidity sensors are made using graphene oxide (GO),
though there is some progress toward cellulose and cellulose-based materials. Graphene
and carbon nanotubes (CNTs) are predominant in temperature and mechanical sensors.
The application of composites with structural design (e.g., porous and 3D structures)
significantly improves sensitivity, long-term stability, and multifunctionality, whereas
manufacturing methods such as spray coating and 3D printing further drive production
scalability. The transition from metal to carbon-based electrodes could also reduce the cost.
However, the scalability, long-term stability, and real-world validation remain challenges
to be addressed. Future research should further enhance the performance and scalability of
carbon-based sensors through low-energy fabrication techniques and the development of
sustainable advanced materials to provide solutions for practical applications in dynamic
transportation environments.

Keywords: carbon-based sensors; humidity sensors; temperature sensors; mechanical
sensors; multifunctional sensors; smart food packaging; smart pharmaceutical product
packaging; real-time monitoring
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1. Introduction
The rapid expansion of global trade and online shopping is coupled with an in-

creased challenge in maintaining product quality, safety, and integrity during storage and
transportation. Packaging plays an important role in maintaining product characteristics,
especially for food and medical or pharmaceutical products, which are susceptible to con-
tamination, degradation, spoilage, and physical damage leading to health risks, economic
losses, and environmental impacts [1–4]. Indeed, GBP 14 billion of food is wasted annually
in the UK [5], and the UK Health Security Agency, UKHSA (2022), reported GBP 5.7 million
worth of vaccines wasted in 2019 and that 76% of these losses could have been prevented
with better control of logistics, transportation, and storage conditions. At a global level, an
estimated 1.3 billion tons of food are wasted throughout the food supply chain [6]. This
waste corresponds to approximately 3.3 gigatons of CO2 equivalent emissions each year [7],
accounting for 8–10% of total global greenhouse gas emissions [2]. If it were considered as
a country, food waste would represent the third biggest source of these emissions world-
wide [6]. These statistics underscore the urgent need for advanced packaging solutions to
ensure product safety, minimize waste, and promote sustainability. This need is already
exemplified by the expected smart packaging market growth from USD 23.33 billion in
2023 to USD 40.02 billion by 2032 [8], with food/beverages having the largest market share
(34.6% share) when compared to other segments (Figure 1).
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Smart packaging encompasses a range of technologies that integrate embedded sen-
sors, identifiers, and various tools to enhance products safety, efficiency, sustainability,
traceability, and user experience. This includes intelligent packaging, which monitors
and communicates information about the product quality and state [9], and connected
packaging through the Internet of Things and cloud systems [10]. This review focuses
on sensors, which allow the monitoring and response of smart packaging to the dynamic
transportation environments, where products are exposed to various fluctuating conditions
such as humidity, temperature, and mechanical stress, thereby compromising their quality,
safety, and integrity.

Packaging for food and medical/pharmaceutical products is designed to accommodate
different internal pressures based on the packaging type, such as vacuum-seal packaging
(0.1–100 kPa) [11], modified atmosphere packaging (5–50 kPa) [12], flexible or semi-rigid
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packaging (0.1–50 kPa) [13], and bulk packaging (1–500 kPa) [14]. Additionally, packaging
is likely to encounter various mechanical stresses, including vibrations, compression and
impacts from drops during storage, handling, and transportation (Table 1). These mechani-
cal stresses can be monitored using mainly pressure and strain sensors. Pressure sensors
measure the force per unit area of the material, helping to detect internal pressure changes
to identify product leakage, packaging sealing damage, or defects, such as in blisters in-
complete sealing and delamination. They also monitor external forces for preventing bursts
and supporting the monitoring of packaging integrity under transportation stresses such
as stacking, handling, and impacts. Conversely, strain sensors detect the deformation of
the material [15] and can find applications in detecting cracks, fatigue, or tears that may
jeopardize the packaging barrier properties and compromise the product safety, quality,
and economical value.

Table 1. Sensing range and storage conditions for the safe transportation of food and medi-
cal/pharmaceutical products.

Category Condition Type Range Reference

Humidity

- Dried food 10–65%RH [16]

Cold chain Perishable food 75–95%RH [17]

Ambient Pharmaceuticals <60%RH [18]

Temperature

Frozen
Food −40–−18 ◦C [19]

Medical −40–−18 ◦C [19]

Cold chain
Food 0–4 ◦C [19]

Medical 2–8 ◦C [20]

Chilled
Food 4–8 ◦C [19]

Medical 5–25 ◦C [21]

Ambient
Food 8–40 ◦C [21]

Medical 15–25 ◦C [18]

Mechanical
stress

Compression
Pressure 34–344 kPa

[22]
Strain 1–15%

Impact/shock
Pressure 5–40 G

[23]
Strain 1–10%

Vibration
Pressure 3–200 Hz

[24]
Strain 0.1–2% over time

Humidity sensors play vital roles in maintaining optimal moisture levels, issuing
real-time alerts to prevent microbial growth and dehydration that could compromise
product texture, potency, or freshness. Similarly, temperature sensors monitor thermal
conditions, providing immediate feedback to prevent spoilage, protein denaturation, loss
of functionality, and degradation. Multifunctional sensors integrate multiple detection
capabilities, such as humidity, temperature, and mechanical sensing, into single platforms.

While acknowledging the key role of smart packaging in ensuring products quality
and safety during transportation, reducing waste, extending shelf life and improving
supply chain management [10], their general adoption is hindered by challenges related to
cost, scalability, and environmental sustainability.

Recent advancements in sensor technology, particularly using carbon-based materials,
offer a pathway to overcoming these challenges. These materials including graphene (G),
graphene oxide (GO), reduced graphene oxide (rGO), carbon nanotubes (CNTs), carbon
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nanohorns (CNHs), graphene quantum dots (GQDs), and carbon black (CB), which ex-
hibit exceptional properties, such as high electrical conductivity, mechanical strength and
flexibility, thermal stability, light weight, and large surface area [25]. These properties
enable enhanced sensing performance, miniaturization, and adaptability to diverse stim-
uli, including humidity, temperature, pressure, strain, and volatile organic compounds
(VOCs). In addition, carbon-based materials are generally more cost-effective and rela-
tively environmentally friendly compared to traditional high-performance materials such
as silver [26]. However, certain high-purity carbon-based material production processes,
particularly chemical vapor deposition (CVD), involve metal catalysts (nickel, iron, cobalt)
which may cause heavy metal contamination due to residual catalyst particles [27]. Effec-
tive purification methods, including acid treatments, oxidation, thermal annealing, and
magnetic separation, as well as employing low-toxicity or metal-free catalysts, have been
developed to remove residual metal catalysts from carbon-based materials [27,28]. Tech-
nologies proposing catalyst-free synthesis include mechanical exfoliation, liquid-phase
exfoliation, electrochemical exfoliation, Hummers’ process, plasma-enhanced catalyst-free
CVD, and laser-induced methods [28–31] or the use of biomass-derived carbons sources [32],
thus, offering environmentally friendly options. These technologies nevertheless still face
challenges regarding mass production and production efficiency. To fully harness the
environmental and economic potential of carbon-based materials, continued research is
essential in developing greener synthesis techniques, effective catalyst management, and
comprehensive lifecycle assessments. Although limited study has been performed on
the interaction of carbon-based material such as graphene with the environment, it has
been suggested that they can be biodegradable [33], therefore, offering the possibility of
end-of-life disposal without the need for complex separation and recycling processes, espe-
cially when used in composites with other biodegradable polymers such as cellulose-based
materials and polylactic acids.

While existing literature has reviewed carbon-based sensors, these reviews have typi-
cally focused on single-sensor functionalities (e.g., humidity, temperature, or mechanical
sensors) and broadly addressed diverse applications ranging from environmental mon-
itoring to healthcare wearables [34–40]. Existing reviews lack detailed discussions on
novel carbon-based composite materials and advanced fabrication techniques developed
specifically for packaging in relation to transportation conditions or transit. Equality, to
the best of our knowledge, no previous review has simultaneously examined multiple
sensing functionalities tailored to smart packaging for food and medical/pharmaceutical
products. Furthermore, recent regulatory changes [41–43] coupled with technological ad-
vancements, alongside the growth of online shopping, have heightened the demand for
specialized reviews on these applications to ensure compliance and efficacy. Consequently,
there is a clear gap in the literature and this review significantly contributes to filling that
by providing the first comprehensive and systematic analysis of recent advancements
(2013–2024) in carbon-based humidity, temperature, mechanical, and multifunctional sen-
sors for smart packaging applications for food and medical/pharmaceutical products that
meet the acceptable conditions for safe storage and transportation (Table 1). Our review
uniquely highlights the innovations in composite material design, structural optimization,
and fabrication techniques that could enhance sensor performance specifically in pack-
aging scenarios, offering new insights that bridge laboratory innovation with practical
industrial scalability and regulatory compliance. Finally, the review identifies current
research gaps and outlines potential future directions for cost-effective, scalable, and en-
vironmentally friendly on-package carbon-based sensors development in the food and
pharmaceutical sectors.
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2. Materials and Methods
The methodology for this review follows the guidelines of the Preferred Reporting

Items for Systematic Reviews and Meta-Analyses (PRISMA) and the Prisma Checklist can
be found in Supplementary Materials, Table S1. This offers a comprehensive review to
ensure a comprehensive and focused analysis of recent advancements in carbon-based
sensors [44]. It was registered in the Open Science Framework (https://doi.org/10.17605
/OSF.IO/DYX4H, accessed on 2 April 2025).

2.1. Database Selection and Search Strategy

A comprehensive search was conducted across major academic databases, includ-
ing Scopus, Web of Science, IEEE Xplore, and Wiley to ensure a broad coverage of
relevant studies. The search strings were used to capture articles in all databases us-
ing a structured combination of keywords such as TITLE-ABS-KEY (‘carbon-based’ OR
‘graphene-based’ OR ‘graphene’ OR ‘carbon nanotube’ OR ‘graphene oxide’ OR ‘CNT’
OR ‘carbon’) AND TITLE-ABS-KEY (‘temperature sensor’ OR ‘humidity sensor’ OR ‘me-
chanical sensor’) AND TITLE-ABS-KEY (packaging AND food OR medical) AND PUB-
YEAR > 2013 AND PUBYEAR < 2025 AND (LIMIT-TO (DOCTYPE, ‘ar’)) AND (LIMIT-TO
(LANGUAGE, ‘English’)).

2.2. Screening

After initial searching, a multi-step screening process was conducted. Firstly, after
removing duplicates, each study was screened by titles and abstracts to access their potential
relevance based on predefined inclusion and exclusion criteria (Table 2).

Table 2. Inclusion and exclusion criteria for the screening iterations.

Inclusion Criteria Exclusion Criteria

Focus on carbon-based humidity, temperature, mechanical, and
multifunctional sensors for food and medical or pharmaceutical

smart packaging

Review articles, conference proceedings, books,
and inaccessible articles

Articles discussing sensor improvement with sufficient details on
sensor design, fabrication methods, and performance metrics

Unrelated to sensor performance or
improvements

English language Purely theoretical articles

The properties suitable for transportation in Table 1. Articles that present speculative, unvalidated, or
incomplete results

Access to full text via the authors’ institution Publication before 2013

Articles that met the inclusion criteria underwent a detailed full-text review to ensure
alignment with the research objectives. To ensure comprehensiveness, citation screening
was employed during the full-text review. References within selected articles were assessed
to identify additional relevant articles not captured in the database search. Newly identified
articles were subjected to the same screening and inclusion criteria.

2.3. Data Extraction

Data extraction was conducted by S.G. using Microsoft Excel for data synthesis and
presentation. For each study, the critical information like carbon-based material type,
sensor design, fabrication methods, and performance metrics (e.g., sensitivity, response
time, operating range, and durability) were recorded and compiled into tables. Owing to
the heterogeneity of study designs, only a qualitative assessment was employed.

https://doi.org/10.17605/OSF.IO/DYX4H
https://doi.org/10.17605/OSF.IO/DYX4H
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3. Results
A total of 953 articles were screened, and after excluding duplicates and studies that

did not meet the eligibility criteria, 163 relevant articles were identified. The complete
selection process is shown in Figure 2. The PRISMA flow diagram illustrates the systematic
review process, detailing the number of articles included and excluded at each stage.
Among the relevant articles, 72 deal with humidity sensors, 45 with temperature sensors,
23 with mechanical sensors (10 pressure sensors and 13 strain sensors), and 23 articles
related to carbon-based multifunctional sensors. Articles included in this review are largely
from Journals of Quartiles, Q1 and Q2.
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3.1. Humidity Sensors

Table 3 summarizes 72 carbon-based humidity sensors with potential application in
packaging for food and medical/pharmaceutical products, detailing the materials used,
production methods, and resulting properties.

Among the carbon materials studied, GO-based sensors were the most commonly used
(33 studies) [45–77], followed by graphene (17 studies) [78–94], rGO (8 studies) [95–103],
CNTs (7 studies) [68,76,104–108] and GQDs (4 studies) [109–112]. Sensor performance is
frequently enhanced by incorporating carbon-based materials with polymers, metal oxides,
specific dopants, and advanced nanostructural materials. A shift is noted from metal- to
carbon-based electrodes, such as graphene [67,84,85], GO [77], rGO [97], Laser induced
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graphene (LIG) [53,54,62,78], carbon [113], CNTs [72], and their composites [77], to support
cost reduction and improve flexibility and durability.

The fabrication techniques are diverse and tailored to different sensor configurations
and specific performance. Key methods include drop-casting, spin-coating, and screen-
printing created uniform films, whereas electrospinning, laser scribing, hydrothermal
techniques form 3D or textured structures. The main types of investigated humidity
sensors are resistive (29 studies), capacitive (18 studies), and impedance (11 studies), with a
growing interest in hybrid configurations, which combine different sensing mechanisms
for improved environmental adaptability.

Many carbon-based humidity sensors operate effectively across 10–97%RH, and some
sensors like oxidized carbon nanohorns/graphene oxides/Tin Oxide/Poly(vinylpyrrolidone)
(CNH/GO/SnO2/PVP) [47], GO/oxidized CNH/PVP [48], and molybdenum ditel-
luride/graphene (MoS2/graphene) [78], extended to 0–100%RH detection. In contrast,
several sensors, such as N-S co-doped GQDs, have a narrow range (40–90%RH) with opti-
mized performance [110]. Sensitivity varies significantly based on material composition
and structure, ranging from 0.022 for ZnO/PVP-rGO [96] to 9,750,000% for paper cellulose
fiber/GO [77].

The response and recovery time is essential for real-time monitoring and the val-
ues vary from 0.02 s for nanocrystalline graphite [114] to 333 s for TEMPO-oxidized
cellulose fibers/carbon nanotubes (TOCFs/CNTs) [106]. Capacitive sensors generally
show faster response times than resistive and impedance sensors. Notably, 18 sensors,
including ZnO/PVP-rGO nanocomposite demonstrated faster recovery than response
time [53–55,57–59,63,64,70–72,75,77,78,82,96,101,111].

The selectivity of carbon-based sensors is key in ensuring reliable sensor performance
under real-world conditions. The reviewed studies [46,52,55,59,62,88,113] demonstrated
high selectivity to water vapor through material modifications such as doping, composite
integration, and surface functionalization. The reusability, inferred from stable performance
under repeated humidity cycles, is indirectly supported by the stability and durability data,
though direct cyclic reuse metrics have not been reported.

Sensor stability is crucial for consistent sensor performance in different transportation
scenarios of products whereas low hysteresis is important for its long-term reliability. The
stability was up to 1095 days for laser-reduced GO/MWCNT sensors, fabricated using a 785
nm, 5 mW laser with a 50 µm spot size under Direct Laser-Scribed (DLS) conditions [97].
The reliability remains around 3–8% for most sensors, with the exception of Li-doped
GO achieving 0.83% [45]. Some sensors, such those with GO functionalized with hy-
droxyl groups [46], shellac-derived carbon thin film [113], oxidized CNH/GO/SnO2/PVP
nanocomposite [47], and GO-oxidized CNH-PVP [48] consuming 15 µW [46] to 2 mW, could
be ideal for prolonged monitoring. This is a very useful feature as low power consump-
tion sensors are advantageous in many respects from a sustainability and environmental
standpoint as well as for system miniaturization.
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Table 3. Summary of different humidity sensors reported in the literature with their resulting properties including the sensing range, sensitivity, durability, linearity,
response, and recovery time.

Material Fabrication
Technique Type Sensing Range

(%RH) Sensitivity
Response/
Recovery
Time (s)

Stability
(Days) Linearity Remarks/Comments Ref

Li-doped GO

Drop casting
Resistive

11–97 17.13–3038.16% 4/25 Not reported
(N) Yes Hysteresis is 0.83% and

thermal stability is 850 ◦C. [45]

GO functionalized
with hydroxyl groups 6–95 ~38.5 8.5/13 390 Yes

Hysteresis is 0.63%.
High selectivity to humidity.
Power consumption is 15 µW.

[46]

Oxidized
CNH/GO/SnO2/PVP
nanocomposite film

0–100 0.9021 Ω/% RH 42/164 N Yes
CNHox/GO/SnO2/PVP

mass ratio is 1/1/1/1.
Power consumption is

<2 mW.
[47]

GO-oxidized
CNH-PVP 0–100 0.15–0.2 40–90/62–73 N Yes

Optimal GO:CNH:PVP is
1:1:1.

Power consumption is
<2 mW.

[48]

Ultra-thin,
single-layer GO film 10%–95 120.57%/%RH 0.49/0.65 60 No

Optimal sensor has 300 nm
GO with 20 µm electrodes

spacing.
[49]

Oxidized
single-walled carbon
nanohorns (SWCNHs)

10–90
~2.1 × 107 Ω/RH (air) 3/N (air)

N Yes Surface area is
1300–1400 m2/g. [115]

~9.1 × 106 Ω/RH (N2) 8/N (N2)

GO/PVA composite Resistive
Frequency 20–80

−12,000 Ω/%RH
N N N It achieves ~1.8% RH

resolution.
[50]

0.0001 kHz/%RH

rGO/PVDF
composite Solution casting

Resistive
11–97 98.99% 21/26 90 Yes

Optimal is 30 vol%
rGO/PVDF.

Hysteresis is 5.5% and
decomposition from 434◦ C.

[95]

Endohedral
lithium-doped

SWCNT/sodium
dodecylbenzenesul-

fonate
(Li@SWCNT/SDBS)

Arc discharge
and drop
casting

11–97 4%/%RH N N No
Optimal sensor is five-layer
thin film (~5 µm thickness).

Hysteresis is 4.3%.
[104]

GQDs/Ag
nanoparticles

(AgNPs)

Hydrothermal
and drop
casting

25–95 98.14% 15/15 N No Optimal GQDs/AgNPs is
1:1. [109]
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Table 3. Cont.

Material Fabrication
Technique Type Sensing Range

(%RH) Sensitivity
Response/
Recovery
Time (s)

Stability
(Days) Linearity Remarks/Comments Ref

GO film

Drop casting

Capacitive

15–95 37,800% 10.5/41 30 Yes Hysteresis is ~5%. [51]

GO/Ag composite 11–97 25,809 pF/%RH ~8/~12 30 N
Optimal Ag content is 2 wt%.

Good selectivity for H2O
vapor.

[52]

GO 0–97 1800 pF/% RH 16/9 N Yes

Spiral LIG as electrodes.
Optimal GO thickness is

50 nm.
3.03% hysteresis.

[53]

GO 10–90 3862 pF/%RH 58/15 42 N

Hysteresis is 1.2%.
Optimal sensor used 60 µL

GO and 150 µm gap size for
LIG interdigitated electrodes

(IDE).

[54]

GO/MoTe2
composite nanosheets 11.3–97.3 94.12 pF/%RH 39/12 35 N

Optimal GO to MoTe2 ratio is
1:2.

High humidity selectivity.
[55]

ZnO/PVP-rGO
nanocomposite 15–95 ~0.022 ~12/~3 87 Yes [96]

GO-Mn-doped ZnO
nanocomposite

Capacitive
10–90 N 4.5/21 30 Yes

95.7 times higher sensitivity
in capacitance and 97 times
in resistance compared to

conventional GO.

[56]

Resistive

GO-doped
P(VDF-TrFE)/LiCl

composite

Capacitive
change 25–95 1708.8 pF/%RH 7.8/4.5 N Yes

Pores from 300 nm to 1.1 µm.
Reduced hysteresis due to
GO and LiCl modification.

[57]

GO Resonant
frequency

10–90 0.719 kHz/%RH <78/54 30 No
Resolution (0.4% RH),
hysteresis (<4%), and

minimal response to CO2.
[58]

HGO/GO/Mg2+

composite membrane 11–97 0.0343 kHz/%RH 7/6 10 Yes Hysteresis is ~3.2% RH.
High humidity selectivity. [59]

GO Voltage 33–98 1.1–10.0 mV/%RH 0.28/0.3 2.5 Yes GO thickness is 10 µm. [61]

2D MoS2/graphene
nanocomposite foam Impedance 0–100 50,000–

385,000 Ω/%RH 4/2 N No
Sensor used LIG as

electrodes.
Hysteresis is 3.8%.

[78]

Laser-reduced
GO/MWCNT

Drop casting
and direct laser

scribing

Impedance
11–97

350,000 Ω/%RH
0.061/2.3 1095 Yes Sensor used rGO IDE.

Hysteresis is 3.1%.
[97]

Capacitance 798 pF/%RHc



Materials 2025, 18, 1862 10 of 50

Table 3. Cont.

Material Fabrication
Technique Type Sensing Range

(%RH) Sensitivity
Response/
Recovery
Time (s)

Stability
(Days) Linearity Remarks/Comments Ref

Thermally reduced
GO

Spin-coating
Resistive 32–65 5% 35/N N Yes Highly thermal-reduced GO

has the optimal performance. [98]

P(VDF-TrFE) with
graphene flower

composite

Capacitance
Impedance 8–98 0.0558 pF/% RH 0.8/2.5 15 Yes N [79]

GO
Impedance

6–97 182,068.791/%RH 0.8/0.9 1 Yes

Ti3C2Tx MXene-based sensor
exhibited faster response

than sensors using metallic
electrodes.

[60]

N-S co-doped GQDs Hydrothermal
and

spin-coating

40–90 N 15/55 90 N Optimal GQDs content is
10 mg with 2.2% hysteresis. [110]

GQDs/carbon nitride
(g-C3N4) composite 7–97 100,000 Ω/RH 44 /10 N Yes

Low hysteresis (<1%) and
high surface area (545 m2/g)

[111]

Bi-layered
PVA/graphene flower

composite film

Spin-coating
and

spray-coating

Capacitance
40–90 29,000 pF/%RH 2/3.5 15 N

Uniform dispersion of
PVA/GF layer with ~2.32 µm

thickness.
[80]

Impedance

Shellac-derived
carbon (SDC) thin

film

Spray coating
and thermal

annealing
Resistive 0–90 0.54/% RH 0.14/1.7 28 Yes

Carbon IDE.
High selective to humidity.

Power consumption is
~1 mW.

[113]

rGO-sodium dodecyl
sulfate (SDS)

composite film Drop-coating
Resistive

25–95 11.4143 Ω/% RH (RT) 9/10 10 Yes Hysteresis is 0.04852%. [99]

GO 11–97 1.113 Ω/Ω–%RH 2/35 N Yes

Sensor used 300 nm wrinkled
GO film on the LIG electrode.

Hysteresis is 3%.
High humidity selectivity.

[62]

GO

Quartz
crystal mi-
crobalance

(QCM)

11.3–97.3 0.1605 kHz/%RH 30/5 N Yes
The study used the finite
element analysis software
COMSOL Multiphysics.

[63]

Polydopamine-
coated cellulose

nanocrystals/GO
nanocomposite

(PDA@CNC/GO)

Drop-coating Resonance
frequency 11.3–97.3 0.05466 kHz/% RH 37/5 21 N

Optimal composition is
30 wt% PDA@CNC.

Hysteresis is 4.3% RH.
[64]
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Table 3. Cont.

Material Fabrication
Technique Type Sensing Range

(%RH) Sensitivity
Response/
Recovery
Time (s)

Stability
(Days) Linearity Remarks/Comments Ref

Graphene
flower/ZnO
composite

Sol–gel and
spray-coating Resistive 15–86 7.7 µA/%RH 0.4/4 N N High surface area to volume

ratio and pore composite. [81]

GO on tilted fiber
grating (TFG) Dip-coating

Resonance
wavelength

Intensity
30–80 0.0185 nm/%RH 0.042/0.115 N Yes GO thickness is 54 nm. [65]

GO/PVA composite
film Intensity 20–99.9 0.529 RH (%) 147/293 N Yes N [66]

Graphene–carbon ink

Screen printing
Resistive

25–91.7 12.4 Ω/%RH ~31/~8 120 N Optimal configuration is
single-layer sensor. [82]

G/polypyrrole/carbon
black (CB) composite 23–92.7 12.2 Ω/%RH 5/7 21 N

Durability is 100 bending
cycles

Single-layer is the most
effective configuration.

[83]

Graphite/WO3
nanocomposite 11–97 12.7–60.8% N N Yes

Optimal sensor using
graphite/WO3 ratio is 1:3,

with <1% hysteresis.
120◦ bending angles.

[116]

Multilayer GO

Resonance
frequency

Backscattered
phase

11–98 0.5◦/%RH N N N 30 µm GO film and printed
graphene antenna electrodes. [67]

Cellulose nanofiber
(CNF) and graphene
nanoplatelet (GNP)

composite

Mixing and
screen printing Resistive 30–90 240% 17/22 240 N Composite with 200 mg GNP

as electrode. [84]

Graphene ink
Inkjet printing

Capacitive 10–70 0.03 pF/%RH 2.46/2.63 10 N
Optimal sensor is six-layer

graphene film with graphene
IDEs.

[85]

GO/CNT−OH/Nafion
nanocomposite

Resonance
frequency 30–95 547 kHz/%RH 110/115 2.08 Yes Hysteresis is 3%. [68]

Functionalized
MWCNTs and
hydroxyethyl

cellulose (HEC)
composite

Gravure
printing Resistive 20–80 0.0485/%RH 20/35 0.4 Yes The optimal FMWCNT

concentration is 2.5 wt%. [105]
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Table 3. Cont.

Material Fabrication
Technique Type Sensing Range

(%RH) Sensitivity
Response/
Recovery
Time (s)

Stability
(Days) Linearity Remarks/Comments Ref

Carboxymethyl
cellulose@graphene
(CMC/G) composite

3D printed
groove mold Impedance 11–95 97% 300/N 16 Yes Optimal graphene content is

0.16 wt%. [86]

Graphene film
Liquid phase

exfoliation and
LB assembly

Resistive 8–95 5% 0.028/0.03 N Yes
The thickness is ~3.4 nm

(~ 10 layers).
Flexibility is 10◦ bending.

[87]

GO Self-assembly Capacitive 30–90 0.00565 pF/% RH 180/N 14 N Optimal sensor is 2 mg/mL
GO with 2.85% hysteresis. [69]

Pyranine
modified-rGO

composite

One-step
supramolecular

assembly
Impedance 11–95 IL/IH = 6000 <2/~6 N Yes Hysteresis is 8% RH.

Stable for 100 cycles. [100]

TEMPO-oxidized
cellulose fibers
(TOCFs)/CNTs

Electrostatic
self-assembly Current 11–95 87% 333/523 90 Yes

Optimal TOCFs-to-CNTs
ratio is 30:1 with a thickness

of 48.2 µm and 7.3%
hysteresis.

[106]

G with 3D flower-like
ZnO composite Hydrothermal Impedance 12–90 446 120/160 30 N

Optimal G content is 70 wt%
with 2.32% hysteresis.

High humidity selectivity.
[88]

PVDF
(polyvinylidene

fluoride) with 0.5 wt%
G

Electrospinning Capacitive
35–90 0.0463 pF/%RH N N Yes

PVDF/G with Ag electrode,
showed 21.3 times faster than

DHT11.
[89]

SnO2/rGO
nanocomposite 11–95 37,491% 80/4 N N

Optimal rGO doping content
is 2 wt%.

Durability is 1000 bending
cycles.

[101]

BP/G hybrid Electrospray Resistive 15–70 43.40% 9/30 28 Yes [90]

GO Electrospray
deposition

Resonant
frequency 11–97 1.74%/%RH 54–68/12–22 30 No Low thermal noise.

Optimal is 250 MHz sensor. [70]

Holey-reduced
graphene oxide

(HRGO)

H2O2-etching-
reaction-
assisted

hydrothermal
Impedance 11–97 −0.04317 log Z/%RH <3/29 28 Yes Surface area is 274.5 m2/g.

Hysteresis is 2.57%. [102]

GO Dripping and
vacuum heating Capacitive

20–90 1.77–164.98 pF/% RH 10/2 N N Hysteresis is 1%. [71]
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Table 3. Cont.

Material Fabrication
Technique Type Sensing Range

(%RH) Sensitivity
Response/
Recovery
Time (s)

Stability
(Days) Linearity Remarks/Comments Ref

GO Dripping and
coating 10–90 16.7 pF/%RH 0.0208/0.0199 80 N

The optimal sensor used 1
mg/mL GO and CNTs as

electrodes. Hysteresis
(<0.44%).

[72]

ZnO nanowires and
GQDs composite Dripping Resonance

frequency 30–90 40.16 kHz/%RH ~30/~35 N No
Optimal GQDs content is

2 mg/mL.
30◦ bending angle.

[112]

SWCNTs Vacuum
filtration Resistive

15–98 246.90% 290/510 N Yes

Optimal sensor is suspended
aligned. SWCNT beams,
with 36 µm suspension

lengths.

[107]

rGO/PANI composite Filtration 0–98 580% ~70/~139 N Yes
Hysteresis is 3%.

Optimal rGO to PANI ratio is
5%.

[103]

Laser-induced
graphene (LIG)

Laser Direct
Writing (LDW) Capacitive 30–90 N 8/10 N No

The porous, hair-like LIG
pattern was designed with

2-CAD.
[91]

Light-scribed GO Laser scribe
Impedance

7–97 1.67 × 106 Ω/%RH N 1 Yes Hysteresis is 0.3–7%. [73]

G/ZrO2
nanocomposite Sol–gel 12–90 4011 5/20 6 Yes Hysteresis is <1.95%.

Optimal is 40 wt% G/ZrO2
[92]

3D graphene foam
Modified
Hummers’

method
Resistive 0–85.9 N 0.089/0.189 N N

Energy structure of 3DGF
model analyzed via CASTEP

in Materials Studio 8.0.
[93]

Nanocrystalline
graphite

Plasma-
enhanced CVD

Resistive

15–85 0.0334%/%RH 0.02/N N Yes
Hysteresis is 5%.

It is meandered strip
structure.

[114]

SWCNT Immersion 20–80
54.7% (s-CNT)

40/100 N Yes
Hysteresis is 11.45%

(semiconducting-CNT) and
0.31% (metallic-CNT).

[108]
2.9% (m-CNT)

G/p-
aminophenol/poly-2-
hydroxyethyl acrylate

(G/p-AP/PHEA)

In situ
free-radical

polymerization
0–94 29% N N N N [94]

Etched GO film Etching
Capacitive

10–100 0.000106 pF/% RH 1.011/N N N The study using COMSOL
Multiphysics. [74]
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Table 3. Cont.

Material Fabrication
Technique Type Sensing Range

(%RH) Sensitivity
Response/
Recovery
Time (s)

Stability
(Days) Linearity Remarks/Comments Ref

Nanofibrillated
cellulose

(NFC)/GO/PDMS
aerogel composite

Ultrasonic
dispersion and
freeze-drying

11–97 6576.41 pF/% RH 57/2 N No Porosity is 99.6%. [75]

GO/MWCNTs hybrid
on tilted Fiber Bragg

Grating (TFBG)

Physical
precipitation

Optical fiber
Amplitude 30–90 0.377 dB/%RH 4/N N Yes Hysteresis is 0.7%. [76]

Paper cellulose
fiber/GO matrix

(PCFGOM)
N

Impedance
10–90

9,750,000% (1 kHz)
1.3 /0.8 1 Yes

The sensor used 0.15 w/w%
PCFGOM as active layer and

20 w/w% PCFGOM as
electrode layers.

[77]
Capacitance 1,442,500% (10 kHz)
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3.2. Temperature Sensors

Table 4 summarizes 45 carbon-based temperature sensors with their composi-
tion, production methods, and resulting properties. Graphene-based sensors were
predominant among the reported studied (19 studies) [117–135], followed by rGO
(11 studies) [123,136–145], CNTs (9 studies) [146–154], and GO (4 studies) [155–158].
Other carbon materials, including GQDs [159], carbon dots (CDs) [160], and amor-
phous carbon [161] were reported in only one study, respectively, highlighting their
limited exploration in this field. The incorporation of polymers and metals/metal ox-
ides into carbon-based materials has been extensively explored to enhance the perfor-
mance of temperature sensors. The combination with metal/metal oxides were pre-
dominantly applied to rGO [138,141,145] and graphene [128]. In contrast, polymers like
Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), polydimethylsilox-
ane (PDMS), and gelatine were widely combined with various carbon materials, including
graphene (6 studies) [118–122,135], GO (2 studies) [157,158], rGO (3 studies) [140,143,144],
and CNTs (5 studies) [146–148,150,151].

Chemical vapor deposition (CVD) was the most dominant method (10 studies) [123,
127–132,151–153], particularly for graphene and CNT sensors. Methods of coating
(12 studies) [117–124,136,137,146,155] including spray coating [117,123,124,136], drop cast-
ing (5 studies) [138,147,148,155,156], and printing (6 studies) [139–141,149,150,157] was
widely used in rGO, GO, and composite sensors, offering simplicity and scalability.

Graphene-based sensors fabricated via CVD exhibited the broadest detection ranges,
spanning from −266.55 ◦C [129] to 302 ◦C [130], quick response time of ~0.030 s in mul-
tilayer graphene [129], and high sensitivities, such as 2.15 Ω/◦C in micro-fabricated
single-layer graphene [127]. Similarly, rGO-based sensors demonstrated wide detec-
tion range of −196.15–299.85 ◦C in rGO sensor [137], with exceptional sensitivity val-
ues of up to 1999%/◦C for GQDs/rGO/alumina composite [142]. In contrast, GO-based
sensors [155–158] and CNT-based sensors [146–148,150–153] generally operate within nar-
rower ranges, typically starting at 20 ◦C, limiting their suitability for applications in chill-
and cold-chain environments. However, functionalization and advanced fabrication meth-
ods have shown potential in improving detection capabilities. For instance, carboxyl-
SWCNTs achieved a range of 0–80 ◦C but showed slow response (176.4 s) and recovery time
(316.8 s) [154] whereas CNTs produced using gravure printing demonstrated a broader
temperature range (−40–100 ◦C) and fast response (0.3 s) and recovery time (4 s) [149].

Response times varied significantly from 0.030 s for multilayer graphene produced by
CVD [129] to 306 s for uncovered drop-casted GO sensors [155] depending on the material
and encapsulation approach. Composite systems often outperformed pure carbon materials
in detection range, sensitives, and responsiveness, particularly those combined with metal
or metal oxides. For example, rGO/Ag exhibited extended temperature sensing ranges
(−60–80 ◦C), faster response times (0.47 s), and good sensitivity (0.555 Ω/◦C) [138].

Long-term stability was assessed in 10 studies [121,126,138,140,143,146,147,152,156,158],
rGO/Ag nanocomposite with Parylene encapsulation demonstrating exceptional longevity,
maintaining performance over 730 days durability [138].
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Table 4. Summary of different temperature sensors reported in the literature with their resulting properties including sensing range, sensitivity, stability, response,
and recovery time.

Material Fabrication
Technique Sensing Range (◦C) Sensitivity/TCR

(%/◦C)
Response/

Recovery Time (s)
Stability
(Days) Remarks/Comments Ref

GO

Drop casting 20–70 822 Ω/◦C 306/554
(uncovered)

N Encapsulation: PDMS [155]

Spray coating 20–60 N
0.525/0.35

(uncovered)

5.18/9.68
(covered)

rGO
Spray coating

30–100 0.6345%/◦C 1.2/N N
Encapsulation:

high-temperature transparent
insulating tape.

[136]

Multilayer graphene ink film 30–90 43.27 µV/K 0.15 /15 N

Optimal sensors have 108 nm
thickness and provide 300 µV

output voltage, and
signal-to-noise ratio is 35.

[117]

rGO
Spin coating

−196.15–299.85 −0.801–−32.04%/◦C 52/285 N Optimal rGO concentration is
3wt%, with 0.1 ◦C resolution. [137]

MWCNT doped in
polyethylene glycol and PU

(MWCNT-PEG-PU)
nanocomposites

25–50 ~80% N 7
Optimal MWCNT concentration

is 8 wt% and stable 30
bending cycles.

[146]

Graphene-coated microfiber
(GCM) Coating 22–40 2.1 dB/◦C N N Minimum resolution is

0.0005 ◦C. [118]

Polyaniline/graphene
(GPANI) embedded in

Polyvinyl Butyral (PVB)
composite film

Coating using Mayer
rod 25–80 ◦C −1.2%/◦C N N

Sensor also responds to external
pressures (0–30 kPa).

Encapsulation: Bezel tape
[119]
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Table 4. Cont.

Material Fabrication
Technique Sensing Range (◦C) Sensitivity/TCR

(%/◦C)
Response/

Recovery Time (s)
Stability
(Days) Remarks/Comments Ref

Graphene and gelatin
nanocomposite

Blade coating
−13–37 −5.3–−23 mV/◦C 10.4/N N Stable for 20 cycles. [120]

Graphene/gelatin
nanocomposite −13–37 −19 mV/K

41.8/N (pristine
sensor) 2

Energy consumption is 8.1 µWh
for pristine sensor. [121]

28.9/N (aged sensor) Energy consumption is 8.5 µWh
for aged devices.

PU/G Nanocomposite
In situ

polymerization and
dip coating

25–60 6 pm/◦C N N Thermal stability to 217 ◦C from
204 ◦C. [122]

rGO Air brush spray
coating

0–100

45.1% 121/N

N N [123]
Graphene nanoplatelets

(GNP) 52% 89/N

Plasma-grown graphene
(Gpl) Plasma discharge 20.5% 125/N

Graphene via CVD (Gcvd) CVD 27% 68/N

GO Post-COMS MEMS
Drop casting −70–40 155.73–58,555.26 pF/◦C Not reported (N) 30 Capacitance sensor. [156]

rGO/Ag nanocomposite Ultrasonication and
drop casting −60–80 0.555 Ω/◦C

0.47/N (cold)
730 Encapsulation: Parylene. [138]

3.45/N (hot)

CNT/PEDOT:PSS composite Drop casting 25–45
−1.97%/◦C (initial)

N 6
Encapsulation: PDMS

Optimal CNT/PEDOT ratios is
1:5.

[147]
−2.80%/◦C (6 days

aging)

CNT and methylcellulose
(CNT/MC) composite Solution casting 20–70 0.2%/◦C 6.1/3.1 (hot)

5.2/7.2 (ice) N Stable over 480 cycles. [148]

Graphene Nanoribbons
(GNRs)

Mask spraying or
direct handwriting 30–80 172%

TCR = 1.27%/◦C 0.5/0.5 N

Using MWCNT ink electrodes
and Scotch tape encapsulation.

0.2 ◦C resolution and stable 5000
bending cycles.

[124]

CNT Gravure printing −40–100 −0.4%/◦C 0.3/4 N
High accuracy (±0.5 ◦C).

Encapsulation: organic and
silver.

[149]
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Table 4. Cont.

Material Fabrication
Technique Sensing Range (◦C) Sensitivity/TCR

(%/◦C)
Response/

Recovery Time (s)
Stability
(Days) Remarks/Comments Ref

GO/PEDOT: PSS composite Mask printing 25–100 −1.09%/◦C 18/32 N Encapsulation: Kapton tape.
Stable 1000 bending cycles. [157]

Functionalized and reduced
graphene oxide via

sulfonated aromatic diamine
(f-rGO) Inkjet printing

30–82 −0.0164/◦C 176.4/316.8 N [139]

CNT/PEDOT-PSS composite 25–50 0.31%/◦C ~39/~196 N
Encapsulation: translucent
polyurethane welding tape.
Stable 1000 cycles bending.

[150]

rGO with alkali lignin 25–135 0.59%/◦C N 180 Sensor used meander-shaped
rGO as electrode. [140]

rGO/Ag Aerosol jet printing 0–200 0.001162–0.001519/◦C N N Optimal four layers rGO/Ag.
Stable 1000 bending cycles. [141]

Porous LIG CO2 laser-induced
Direct laser writing 1–8 N 16/58 N Encapsulation: PDMS.

Stable 200 bending cycles. [125]

LIG Laser direct writing 24–80 −0.58%/◦C N 14
Sensors optimized by finite

element analysis photothermal
model.

[126]

Amorphous carbon films DC Magnetron
Sputtering 20–150 1.62 mV/◦C

TCR = 0.00128/◦C N N

DC magnetron sputtered
sensors are more stable and

practical than
ion-beam-deposited sensor.

[161]

Micro-fabricated single-layer
graphene

CVD

10–30

1.25 Ω/◦C
(SiO2/Si substrate)

N N
Sensor used graphene electrodes
and PDMS gasket encapsulation. [127]

2.15 Ω/◦C (SiN
substrate)

1.90 Ω/◦C (suspended
graphene substrate)

CNT forest-PDMS composite 30–90 0.55 Ω/◦C N N Encapsulation: PDMS. [151]

Graphene and Lithium
Niobate (LiNbO3) 10–70 −0.23 nm/◦C N N Encapsulation: PDMS. [128]
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Table 4. Cont.

Material Fabrication
Technique Sensing Range (◦C) Sensitivity/TCR

(%/◦C)
Response/

Recovery Time (s)
Stability
(Days) Remarks/Comments Ref

Multilayer graphene −266.55–26.85
−1 (THS < −243.15 ◦C)

~0.030/N N
Sensor made by seven layers of

single-layer graphene. [129]
<0.1 (THS > −173.15 ◦C)

Vertically aligned CNT film TCVD 20–110
4.74 µA/◦C (air)

N 30
Triple-electrode structure
enables long-term sensor

operation.
[152]

22.72 µA/◦C (N2)

MWCNT

CVD and wet
transfer

22–200 0.0033 V/◦C
TCR = 0.00103/◦C N N

2.7 µm MWCNT sensor had
carrier mobility

(−28.5574 cm2/Vs).
[153]

Single-layer graphene 27–302
0.00207/◦C (27–177 ◦C)

N N
Resistance is almost unaffected

by humidity. [130]
0.00239/◦C (177–302 ◦C)

Suspended few-layer and
multilayer graphene 25–120 1.07–3.5%/◦C N N N [131]

Graphene
CVD and AI

sacrificial layer
process

25–200 2.134 Ω/◦C N N Enhanced 41.93% consistency.
Encapsulation: SiO2 layer. [132]

GQDs embedded in a
rGO/alumina composite

film
Sol–gel −196.15–26.85

26.85–99.85
−1999%/◦C
−0.98%/◦C

~0.3/0.8
3.96/6.01 N Short-term stability is 50 cycles. [142]

CNC-assisted carbon dots
(CDs)-grafted SrAl2O4: Eu2+,

Dy3+ (SAO) phosphors
composite film

Sol–gel and vacuum
filtration −30–110 0.257 N N Short-term stability is 3.5 cycles. [160]

High-strength metallurgical
graphene (HSMG)

Modified
PMMA-based

transfer
−253.15–21.85 −0.007/◦C N N Encapsulation: transparent

polymer. [133]

Polyethyleneimine/reduced
graphene oxide (PEI/rGO) Spray dipping 25–45

0–60 1.3%/◦C 0.33–0.443/N 120
Encapsulation: PDMS.
0.1 ◦C resolution and

500 bending cycle stability.
[143]

GO/PEDOT: PSS
micro/nanowires Soft lithography 30–80 −0.007599/◦C 3.5 /13.4 30 Optimal GO doping ratio is 13:1. [158]

LIG CO2 laser irradiation 30–60 −0.04145%/◦C 30/N N High measurement accuracy
(±0.15 ◦C). [134]
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Table 4. Cont.

Material Fabrication
Technique Sensing Range (◦C) Sensitivity/TCR

(%/◦C)
Response/

Recovery Time (s)
Stability
(Days) Remarks/Comments Ref

PDA-rGO/sodium
alginate/polyacrylamide

composite organohydrogel

Solvent displacement
and cross-linking −20–60

97.6%/◦C (−20–−5 ◦C)

0.2/0.3 N Encapsulation: VHB tape.
Stable over 3 h.

[144]10.57%/◦C (−5–15 ◦C)

1.45%/◦C (15–60 ◦C)

Star-like rGO/SnO2/Co3O4
composite

Facile wet chemical
precipitation 25–125 0.561%/◦C N N [145]

GNP/PDMS nanocomposite Three-roll milling
and molding 30–80 0.052–11.7/◦C N N The optimal GNP concentration

is 6 wt%. [135]

Carboxyl-SWCNTs N 0–80 −225 Ω/◦C N N
Encapsulation:

thermos-reversible polymer.
Self-healing 30 bending cycles.

[154]

GQDs/hollow-core fiber N 10–80 −0.01375/◦C N N N [159]
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3.3. Mechanical Sensors

The review revealed 10 carbon-based pressure sensors that could be used to monitor
internal and external forces exerted on packaging as well as 13 carbon-based strain sensors.
These findings are summarized in Tables 5 and 6, respectively.

Similarly to temperature sensors, graphene-based sensors dominate the literature
(4 studies) [162–165] while other carbon materials, including GO [166], rGO [167],
CNTs [168], carbon-ink [169], and CB [170] were reported in only one study each. A
total of 70% of sensors were porous composite materials that mainly harness the high
conductivity and mechanical strength of carbon materials alongside the flexibility, stretcha-
bility, and durability of polymers. However, some pressure sensors were produced with
only graphene films via CVD [162,163]. The sensor production methods range from sim-
ple techniques such as molding [164,167,171], dip coating [169], self-assembly [166], and
solvent extraction [165] to relatively more advanced fabrication techniques such as laser
thermoforming [170], electrospinning and mechanical drawing [168].

The sensing range depends on materials and structure design, spanning from
20 kPa [167] to 20,000 kPa in a graphene N/MEMS mechanical sensor with crossbeam struc-
ture [163]. Porous structures such as porous PDMS [171], graphene/PDMS sponge [164],
and polyurethane/graphene (PU/G) foams [165] reach up to 500 kPa, while softer mate-
rials such as tannic acid-reduced graphene oxide combined with polyvinyl alcohol (TA-
rGO/PVA) hydrogel [167] and nitrogen-doped graphene oxide/dopamine/polyaniline
(GO/DA/PANI) aerogel [166] are limited to 20–25.48 kPa, which restricts their use to
low-pressure environments and modified atmosphere packaging. Film structures like
monolayer graphene have narrow sensing range, up to 80 kPa [162].

The sensor sensitivity also varies, with the formulation and production conditions
ranging from 0.0259 kPa−1 [169] to 2200 kHz/kPa [164]. High sensitivity was observed at
low pressures and this decreased as the pressure increased, particularly in composites with
wide detecting range. Indeed, the sensitivity of a graphene/PDMS composite decreases
from 2200 kHz/kPa at 0–10 kPa to 37.5 kHz/kPa at 200–500 kPa [164]. The incorporation of
carbon black and use of glucose monohydrate to form porous PDMS/graphene composite
contributed to improved flexibility and sensitivity (109.4 kPa−1) of the sensor [170]. Fluo-
ropolymers such as Poly (vinylidene fluoride) (PVDF) and its copolymer poly(vinylidene
fluoride-trifluoroethylene) (P(VDF-TrFE)) with SWCNTs or MWCNTs have also been used
with reasonable sensitivity. However, recycling or reusing PVDF components when they
reach the end of their useful lives is particularly challenging, whereas their disposal by
incineration poses an environmental issue because of the potential formation of hydrogen
fluoride at elevated temperatures [172].

The durability varies from 100 cycles for hydrogels [167] to 10,000 cycles for porous
composites like PDMS/graphene [171]. Response and recovery times varied across materi-
als and sensor structures, and graphene/PDMS sponge achieved fastest response time of
7 ms with 60 ms recovery time [164], while porous PDMS with MWCNT/PEDOT electrode
showed 1 s of response and recovery time [171].
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Table 5. Summary of different pressure sensors reported in the literature with their fabrication methods and resulting properties including the sensing range,
sensitivity, durability, response and recovery time.

Material Fabrication
Technique

Sensing Range
(kPa)

Sensitivity/Gauge
Factor (GF)

Response/
Recovery Time

(s)

Durability
(Cycles) Remarks/Comments Ref

Suspended monolayer
graphene (G) CVD 0–80

GF = 6.73 (circular
membrane)

Not reported
(N)

Not reported
(N)

An improved theoretical model was
developed to predict GF and

confirm their independence of
doping concentration and graphene

crystallographic orientation.

[162]GF = 3.91
(rectangular
membrane)

Graphene
Plasma-

enhanced
CVD

0–20,000
0.03313 mV/V/kPa

N 35 days

Encapsulation: Si3N4 film.
Error of hysteresis (2.0119%),

nonlinear (3.3622%), and
repeatability (4.0271%).

[163]
GF = ~1.35

Graphene/PDMS
sponge

Mixing and
molding 0.005–500 37.5–2200 kHz/kPa ~0.007/0.06 5000

LC technology used for
long-distance wireless transmission.

Optimal graphene concentration
is 20%.

[164]

Porous PDMS Sugar-cube mold 0–1200 360–1120 kPa−1 1/<1 10,000
Sensor used MWCNT/PEDOT

composite electrode and
low-pass filter.

[171]

Tannic acid
(TA)-rGO/PVA

hydrogel

Sonication,
molding via
freeze–thaw

0–20 2.2695 kPa−1 0.67/0.84 100 Optimal concentration is 2 mg/mL
and tensile strength is 440.213 kPa. [167]

Carbon ink-coated
filter paper Dip coating 0.1–100 0.0259–0.627 kPa−1 N 4000 N [169]

PU/G foams Solvent
extraction 0–500 0.05–7.62 kPa−1 0.81/0.81 1000 Optimal graphene content is

30 wt%. [165]
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Table 5. Cont.

Material Fabrication
Technique

Sensing Range
(kPa)

Sensitivity/Gauge
Factor (GF)

Response/
Recovery Time

(s)

Durability
(Cycles) Remarks/Comments Ref

Nitrogen-doped GO,
dopamine, and

polyaniline composite
aerogel

Self-assembly,
freeze-drying,
and thermal

annealing

0–25.48 0.10 kPa−1 N 150
The optimal mass ratio of

GO:DA:PANI is 5:2:2, with 1.46%
nitrogen.

[166]

P(VDF-TrFE) matrix
with MWCNTs

Electrospinning
and mechanical

drawing
5–50 ~540 mV/N N N

Self-powered sensor achieved
piezoelectric coefficient of 50 pm/V

with 98% linearity.
[168]

PDMS/CB/graphene
nanosheets

Laser
thermoforming 0–100 109.4 kPa−1 0.079/0.055 5000 CB as an endothermic agent and

glucose as a porogen. [170]
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Table 6 summarizes 13 carbon-based strain sensors with potential application in food
and medical packaging-based monitoring during transportation.

Among the 13 carbon-based strain sensors with potential for application in food and
medical packaging-based monitoring during transportation/distribution, CNTs (seven stud-
ies) [173–179], rGO (four studies) [167,177,179,180], and graphene (three studies) [181–183]
are widely used. These materials were often combined with different highly stretchable and
durable polymers or elastomers (e.g., PDMS, PVA, PEI, chitosan, and agar) to improve flexibil-
ity and robustness. Several sensors were made of functionalized materials, such as carboxyl-
functionalized CNTs [176], polyetherimide-rGO [180], and tannic acid-modified rGO [167],
which provided unique features such as self-healing and biocompatibility. Carbon-based
strain sensors were generally in the form of layered and 3D composite structures employing
hybrid and functionalized materials to enhance sensor performance. Multilayer designs,
such as few-layer graphene films [181] has shown to improve sensor sensitivity and me-
chanical stability. Three-dimensional composites including fragmentized rGO sponge [177]
and rGO/MWCNT composites [179] broaden the detection range while also enhancing
sensors sensitivity.

Simple and relative cheap methods such as single-step Marangoni self-assembly [182],
layer-by-layer assembly [180], sonication [183], and solution casting [175] were used to
produce strain sensors which demonstrated low-strain detection (up to 10%) with high
sensitivity. Advanced techniques, including microelectromechanical system-assisted elec-
trophoretic deposition (EPD) [173], embedded 3D printing [184], direct writing [179], and
screen printing [181] enabled the production of sensors with precise control and broader
detection range.

Just for other sensor types, the strain-sensing range varies significantly with material
and sensor architecture. The values spanned from 2% in the ultrathin graphene film
sensor [182] to 1000% in the carboxyl-functionalized CNTs sensor [176]. Polymer-free
CNT sensors fabricated via CVD demonstrated a sensing range of 0–42,100 kPa with
high gauge factor (1461), suitable for high-strain applications [174]. Composite sensors’
detection range depends on polymers/elastomers flexibility or stretchability as well as
the filler concentration. This ranged from 2% for chitosan/graphene [183] to 280% for TA-
rGO/PVA [167]. Functionalized materials, such as carboxyl-functionalized CNTs provided
high stretchability and self-healing capability, achieving up to 1000% [176]. Layered and
network structure CNT/PDMS sensors achieved up to 100% strain [178].

The durability of carbon-based strain sensors varies significantly, from 100 [167] to
10,000 cycles [175]. The CNT/Agar composite sensor was particularly durable, withstand-
ing up to 10,000 cycles, and demonstrated an enhanced strain range and sensitivity due to
increased filler concentrations [175]. The TA-rGO/PVA hydrogel strain sensor exhibited
quick response and recovery times (670 ms and 840 ms, respectively), but its soft nature
limits its durability to 100 cycles [167].

Only four articles [167,175,177,178] reported any response and recovery time and
they vary from 20 ms for FGS/AgNPs/SBS composite [177] to 670 ms for TA-rGO/PVA
hydrogel sensor [167].
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Table 6. Summary of different strain sensors reported in the literature with their fabrication methods and resulting properties including the sensing range, sensitivity,
durability, response, and recovery time.

Material Fabrication Technique Sensing Range (%) Sensitivity
Response/

Recovery Time
(ms)

Durability
(Cycles) Remarks/Comments Ref

Patterned
MWCNT/PDMS

Microelectromechanical
system-assisted EPD 0–14 13–120 N N

Sensitivity tailored by
MWCNT film thickness

and entanglement.
Sensor adapted to an

arbitrarily curve surface.

[173]

Polymer-free CNTs Hot-wall atmospheric
CVD 0–42.1 MPa 1461 N N

Higher sensitivity in IDE
devices than single-gap

electrodes.
[174]

CNT/Agar composite Solution casting 0–118 0.28 160/250 10,000

Increasing filler
concentration improved

strain from 0.8 to 1.1, and
stress from 35.2 to

45.8 kPa.

[175]

PDMS-TDI (2,4′-Tolylene
diisocyanate)-carboxyl-

functionalized MWCNTs
nanocomposite

One-pot synthesis,
ultrasonication, and

casting
0–1000 0.65–2.43 N 1000

Sensor had 98.1%
self-healing efficiency at

60 ◦C over 9 h.
[176]

Fragmentized rGO
sponge

(FGS)/AgNPs/polystyrene-
butadiene-styrene (SBS)

composite

Multiple-step process 0–120 20.5–1.25 × 107 20/N 2000

Microcrack contributed to
sensitivity.

Sensor had 1521 S/cm
conductivity and 680%

break elongation.

[177]

CNTs/PDMS 0.007–100 87 65/N 1500
Optimal sensor had
network cracks and

15 layers of CNT.
[178]

rGO/MWCNTs
composite Direct writing printing 10–40 18.55 N 900 N [179]

Carbon grease Embedded 3D printing 400 3.8 N 1000
Up to 10% variation from

its original value after
large strains.

[184]
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Table 6. Cont.

Material Fabrication Technique Sensing Range (%) Sensitivity
Response/

Recovery Time
(ms)

Durability
(Cycles) Remarks/Comments Ref

Few-layer graphene Mechanical exfoliation
and screen printing 0–6 20.02 N

100,000
flexing cycles

Number of prepared
graphene layers was

2–5 layers.
[181]

1000
abrasion cycles

TA-rGO/PVA hydrogel Sonication and molding
via freeze–thaw cycles 0–280 1.936 78 670/840 100

Optimal concentration is
2 mg/mL and tensile

strength is 440.213 kPa.
[167]

PEI-rGO nanocomposite LBL self-assembly 0–5
(~800 kPa) N N 500

Rapid self-healing (~10 s),
and 98% efficiency at

room temperature.
[180]

Ultrathin graphene film Single-step Marangoni
self-assembly 2 1037 N N

Optimal thickness is 4.4
nm with 3.4%
failure strain.

[182]

Chitosan-graphene Bath sonication and
vacuum filtration 0–2 18.6 N N

Chitosan-G had better
graphene electrical

properties than pullulan
and alginate.

[183]
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3.4. Multifunctional Sensor

Table 7 summarizes 23 carbon-based multifunctional sensors with potential appli-
cations in packaging food and medical or pharmaceutical products. Among the studies
reviewed, 9 articles examined dual-functional sensors, detecting two stimuli simultane-
ously [185–193], 11 explored triple-functional sensors [194–204], and 3 quad-functional sen-
sors, focusing on humidity, temperature, pressure, and strain stimuli [205–207]. Graphene,
rGO, and CNT-based material were predominantly used, often in combination with differ-
ent polymers or other materials such as carbon black to enhance the multifunctionality of
the sensors. Fabrication methods often involve coating, CVD, molding, and printing, allow-
ing for simple and scalable production. Many sensors incorporated multiple fabrication
techniques to optimize performance.

The selective reactivity to specific stimuli was achieved by using different carbon ma-
terials or compositions [187,188,190,191,194,203]. For example, Bae et al. (2018) fabricated
a dual-mode sensor that utilized SWCNTs/PDMS for pressure sensing (0–25 kPa) and rGO
for temperature sensing (22–70 ◦C) with good sensitivity (0.7/kPa and 0.83%/◦C, respec-
tively), quick response (0.05 s and 0.1, respectively), and stability over 10,000 cycles [187].
Similarly, all carbon-based sensors with carbon nanocoils (CNCs) and CNTs for simultane-
ously sensing temperature, humidity, and strains have been developed by Li et al. [203].
The authors achieved a wide detection range from −266.15 to 126.85 ◦C (temperature), 10%
to 80% (relative humidity) and up to 100% strain with high strain resolution (0.01%) and
fast response time (16 ms) alongside a stability of 10,000 cycles. Li et al. [192] developed
a dual-mode temperature and strain sensor based on graphene/PEDOT:PSS hydrogel,
with a detection range of 7–60 ◦C for temperature and up to 1000% for strain. The sensor
demonstrated high sensitivity (gauge factor 8.1 for strain, −7.16%/◦C for temperature),
fast response (0.2 s), and stability over 10,000 cycles.

Other reported multiple sensing systems showed a temperature range starting from
20 ◦C [187–190,193,197,198,202,204–206] or lower pressure range below 0.6 kPa [195,201],
limiting their application for packaging when considering the stresses encountered in the
transportation/distribution chain.
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Table 7. Summary of different multifunctional sensors reported in the literature with their modes, fabrication methods, and resulting properties including the
sensing range, sensitivity, durability, response, and recovery time.

No.
Modes Carbon Materials Modes Fabrication Mechanism Working Range Sensitivity

Response/
Recovery Time

(s)
Durability

(Cycles) Ref

2

Monolayer graphene
Humidity CVD and oxygen

plasma etching

Capacitive
2–90%RH 17–32%/%RH ~8/~19 1000

[185]Resistive
Temperature Current 10–90 ◦C N ~4/~10 N

Cracked paddy-shaped
MoS2/graphene

foam/Ecoflex

Strain Thermal CVD,
dipping, and

annealing
Piezoresistive

0–22% GF = 24.1 N N
[186]

Pressure 0.6–25.4 kPa 3.28–6.06/kPa N 4000

SWCNTs/PDMS Pressure Coating and
molding Capacitance 0–25 kPa 0.7/kPa 0.05/N 10,000

[187]
rGO Temperature Spray-coating Resistive 22–70 ◦C 0.83%/◦C 0.1/N N

PDMS/SWCNT composite Pressure
Spray coating and

leather mold

Piezoresistive 0–400 kPa 0.03–7.76/kPa 0.132/0.12 10,000
[188]

PDMS/SWCNT composite
with thermochromic

material
Temperature Resistive 23–90 ◦C N N N

Graphene–CNT–Silicone
adhesive nanocomposite

Humidity Doctor blade and
drop casting

Impedance
36–94% RH

−84.5 Ω/%RH
26/74 N

[189]Capacitance 1336.7 pF/%RH
Temperature Impedance 37–87 ◦C −19.8 Ω/◦C 34/82 N

PU@CNT composite Temperature
Hot pressing

Resistive 30–110 ◦C −2.84 × 10−3/◦C N 5000
[190]

PU dielectric Pressure Capacitive 0.1–50 kPa 0.0549/kPa 0.094/0.134 5000

GO/SWCNTs/PDMS
composite Humidity Screen and inkjet

printing
Blading and
doctor blade

Resistive 25–80%RH 0.137–11.145%/%RH 0.5/0.3 N
[191]

SWCNTs/PDMS composite Pressure Piezoresistive 0.024–230 kPa 27.91–77.78 /kPa 0.03/0.03 6000

Graphene/PEDOT:PSS
hydrogel

Strain
One-pot method Resistive

1000% 8.1 0.2/N 10,000
[192]

Temperature 7–60 ◦C −7.16–−0.162%/◦C N N
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Table 7. Cont.

No.
Modes Carbon Materials Modes Fabrication Mechanism Working Range Sensitivity

Response/
Recovery Time

(s)
Durability

(Cycles) Ref

2 CNTs
sponge/PEDOT:PSS/PDMS

Pressure Soaking and oven
drying

Piezoresistive 0–40 kPa 26.8–902.2/kPa 0.063/0.071 500
[193]

Temperature Resistive 20–80 ◦C 0.84%/◦C 1.1/1.5 5 days

3

GO Humidity
Spray coating

Capacitive 20–90% 0.0589 pF/%RH N N

[194]
rGO Temperature Resistive 0–100 ◦C −3.4 kΩ/◦C N N

PDMS Pressure Lamination
Resistive

0–450 kPa 0.002/kPa 0.2/N 2000
Capacitive

rGO/CNCs

Compression
Strain Mixing, freezing,

freeze-drying, and
carbonization

Resistive
0–99% GF = 369.4 N 10,000

[195]Pressure 0.00075 kPa N N N
Bending 0.052–180◦ N N 10,000

Graphene-glycerol
Strain

Coating
Piezoresistive 0–1000% GF = 45.13 0.2/0.2 10,000

[196]Pressure
Resistive

0–50 kPa 80% N N
Twisting 0–180◦ 100% N N

PDMS-coated microporous
polypyrrole/graphene
foam (PDMS/PPy/GF)

Pressure

CVD,
electrochemical
deposition, and

dip-coating

Piezoresistive 0–50 kPa 2.01/kPa 0.02/N 10,000

[197]
Temperature Thermoelectric 25–70 ◦C 49.8 µV/K 1.5/8.3 N

Strain Resistive 0–50%
GF = −1.38 (<10%)

1/2.5 N
GF = −0.09 (10–50%)

Carbon fibers and
MWCNTs (CFs-MWCNT)

composite

Temperature Resistive 30–50 ◦C 1.49–2.46%/◦C N N
[198]Pressure

Piezoresistive
0–60 kPa 0.91–42.5/kPa 0.1/0.1 6000

Bending 0–180◦ 95.5%/rad N 1000

GO-doped-PU nanofiber
membrane coated with

PEDOT

Pressure Electrospinning,
in situ

polymerization,
low-temperature
oxygen plasma

Piezoresistive
0.001–20 kPa 0.15–20.6/kPa 0.012/N 10,000

[199]Strain 0–550% 10.1–193.2 N 10,000

Flexion 1.0 cm−1 N N 6000
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Table 7. Cont.

No.
Modes Carbon Materials Modes Fabrication Mechanism Working Range Sensitivity

Response/
Recovery Time

(s)
Durability

(Cycles) Ref

CNT/PDMS composite
Pressure Replica molding

and
ultraviolet-ozone

exposure
Piezoresistive

0–270 kPa 6.67/kPa 0.024/0.03 10,000
[200]Bending 1–6.5 mm 17.7/mm N N

Tensile strain 0–50% GF = 409 N N

Nanopapillae-decorated
carbon nanosheet

(NP-CNS)

Humidity
Pyrolysis and

screen printing

Resistive 0–96%RH 8.25 1.7/100.1 N
[201]Strain

Piezoresistive
0–500% GF = 21.9–99.9 0.07/N N

Pressure 0.005–0.6 kPa N 0.032/N N

3

rGO/polyorganosiloxane
aerogels

Temperature
Copolycondensation Resistive

20–100 ◦C 50.20% N
10,000 [202]Pressure 0.01–110 kPa 83.50% N

Strain 0.1–80% 84% N

CNC (10 mg)-CNT (30 mg)
buckypaper Strain

Mixed vacuum
filtration and

curing
Piezoresistive 0–100% GF = 352,085 0.033/0.016 10,000

[203]
Pre-stretched CNC (10

mg)-CNT (80 mg)
buckypaper

Temperature
Mixed vacuum

filtration,
pre-stretch, and

curing
Resistive −266.15–

126.85 ◦C 1.88%/◦C N 10

CNC-CNT on cellulose
filter paper (1:1) Humidity Dripping Resistive 10–80%RH N N 10

Graphene woven fabric
(GWF)/PDMS composite

Pressure Catalytic
decomposition

and dipping

Piezoresistive
0–20 kPa 0.0142/kPa N 1000

[204]Strain 0–140% GF = 582 N N
Temperature Thermoresistive 25–80 ◦C 0.0238/◦C N N

4 CB/rGO composite

Strain

Spray coating Resistive

N
GF = 14.6

(compression) ~0.34/N 1000

[205]
GF = 1.8 (tension)

Humidity 16–95%RH 2.04/%RH ~300/~80
NTemperature 20–60 ◦C 0.6%/◦C ~100/N

Pressure 0–250 kPa 0.09–0.59%/kPa ~0.25/N
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Table 7. Cont.

No.
Modes Carbon Materials Modes Fabrication Mechanism Working Range Sensitivity

Response/
Recovery Time

(s)
Durability

(Cycles) Ref

CB-PDMS

Strain

Spin coating Resistive

0–40%
GF = 81.2 (0–5%)

<0.05/N 4000

[206]
GF = 28.5 (5–40%)

Pressure 0–20 kPa 4 × 104% 0.1/0.1
NFlexion 0–150◦ N N

Temperature 25–150 ◦C 0.515 ppm/◦C 8.4/N

4

Polyaniline-coated
MWCNTs

Humidity

Two-step
assembly

Conductive 30–80% RH 4.80%
25/38

(Basal layer) 2500

[207]
56/55

(double layer)
Pressure

Piezoresistive
0.028–100 kPa GF = 10

0.11/0.13 10,000Bending strain 0–2.7% GF = 35.8
Twisting strain 0–90◦ GF = 20.8
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4. Discussion
There is growing research on carbon-based sensors for humidity, temperature, and

mechanical stress-monitoring to improve the ability to track food and medical products
during transit as illustrated by Figure 3. However, the demand for highly sensitive, durable,
and scalable carbon-based sensor technologies is increasing with the global emphasis
on real-time logistics monitoring. Challenges persist in translating these sensors from
laboratory settings to scalable, commercially viable solutions. This systematic literature
review critically assesses the recent advancements in carbon-based sensors designed to
monitor humidity, temperature, and mechanical stress, either individually or as part of a
multi-stimuli detection system, with potential applications in tracking food and medical
products during transit. The performance and reliability of carbon-based sensors are
significantly influenced by several factors, including materials selection, structural design,
fabrication techniques, electrode configuration, and encapsulation strategy. These factors
collectively determine the sensor’s sensitivity, responsiveness, durability, and applicability
in various transportation environments. A research roadmap developed from the studies
(Figure 4) shows some progress over time with efforts toward improving sensing modalities
with the integration of different sensing modes as well as enhancing the functionality
and properties of the sensing system, for example, with self-healing and lower power
consumption or self-powered features. Alongside the need for improving the above-
mentioned sensors’ performance and features, further investigation and innovations are
required especially for sustainable and cost-efficient large-scale production.

The performance and reliability of carbon-based sensors is largely determined by
the intrinsic properties and functional requirements of the material used. Among carbon-
based materials, GO stands out for humidity sensing (Table 3) due to its low cost, large
surface area and high hydrophilicity due to oxygen-containing functional groups which
enhance water molecule adsorption capacity and sensitivity. However, excessive oxygen-
containing groups can hinder recovery times and compromise long-term stability under
high-humidity conditions [208]. Furthermore, drawbacks include potential long-term drift
and low selectivity as carbon-based sensors may respond to other gases or contaminants,
affecting their specificity toward water vapor.

In contrast, graphene and rGO are better suited for temperature sensors, offering
exceptional electrical conductivity, thermal responsiveness, and stability. These properties
enable fast response, high sensitivity, and broad detection ranges, making them suitable for
most transit conditions for food and medical products including cold chain.

Mechanical sensors use the mechanical strength and piezoresistive properties of
graphene for pressure sensing [170], while strain sensors benefit from the flexibility [162],
conductivity, and deformation sensitivity of CNTs [173,174,176], rGO [167,177,179], and
graphene [181,182]. Nonetheless, these sensors often experience structural instability and
poor adhesion to substrates. The combination of GO/MWNT resulted in sensors with
1095-day stability and fast response time (0.061 s) [97]. The combination of these two
materials allowed the authors to harness their complementary strengths and help offset
each material’s individual limitations. Indeed graphene-based sensors typically offer faster
response times and greater sensitivity but require careful structural stabilization to maintain
long-term stability. In contrast, CNT-based sensors are inherently more stable, but generally
exhibit slower response times. Similarly, these carbon-based materials have been used
with polymers, such as PDMS [164] or PU [165], which resulted in enhanced flexibility
and durability. The evolution of carbon-based sensors has increasingly shifted toward
multifunctional sensing platforms, which enable simultaneous detection of multiple stimuli
(e.g., pressure, strain, temperature) or analytes (e.g., gases, ions) via distinct response
mechanisms, which hold significant potential for smart packaging.
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Figure 3. Schematic illustration of packaging with integrated carbon-based sensor systems capable of tracking humidity, temperature, pressure, and mechanical
shocks in real time for monitoring food and medical products throughout transportation and storage. As the products transit from the manufacturer to the consumers,
sensors continuously record environmental changes and transmit data to the centralized monitoring platforms. When deviations from set thresholds are detected,
the system generates immediate alerts, enabling timely interventions and corrective actions.
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Figure 4. Sensors develop roadmap for smart packaging. The evolution over time is not shown to scale, and each performance and function element is not depicted 
as a stage of development, but rather as a feature that research is actively progressing toward. Research in the future will focus on improving sensors performance 
(stability, selectivity, sensitivity, reusability) and sensor integration with different sensing modalities and miniaturized size supported by IoT and AI-driven signal 
processing for packaging with self-healing, low energy consumption, and self-power function. Although in many publications, durability and stability are esti-
mated by cycling tests, durability refers to the sensor’s ability to withstand physical stress, environmental conditions, and wear overtime without degrading, 

Figure 4. Sensors develop roadmap for smart packaging. The evolution over time is not shown to scale, and each performance and function element is not
depicted as a stage of development, but rather as a feature that research is actively progressing toward. Research in the future will focus on improving sensors
performance (stability, selectivity, sensitivity, reusability) and sensor integration with different sensing modalities and miniaturized size supported by IoT and
AI-driven signal processing for packaging with self-healing, low energy consumption, and self-power function. Although in many publications, durability and
stability are estimated by cycling tests, durability refers to the sensor’s ability to withstand physical stress, environmental conditions, and wear overtime without
degrading, whereas stability is sensor’s ability to maintain consistent performance and accuracy over time and, thus, with no drift or changes in sensitivity. However,
most research currently focuses on wearable applications, with dual-modal designs prevailing, as adding more sensing modes introduces challenges such as signal
interference/decoupling, increased fabrication complexity, and higher costs.
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Efforts to overcome these challenges have largely focused on structural design modifi-
cations and AI-driven signal processing. Multilayered architectures help minimize signal
interference by physically isolating sensing components, though controlling layer thickness
and interfacial properties remains a challenge. Ratiometric sensing improves accuracy by
analyzing signal ratios instead of absolute values, but its reliability depends on sensor
stability and calibration [209]. AI-assisted signal processing enhances detection precision
through real-time filtering, noise reduction, and pattern recognition. However, integrating
AI introduces challenges such as higher power consumption and computational demands,
which must be addressed for practical applications. To transition from prototypes to com-
mercial use, challenges in scalability, durability, and manufacturing must be addressed.
Collaboration across materials science, engineering, and AI experts will be key to develop-
ing robust, adaptable sensors and sensing systems for real-world deployment.

Nano-structuring carbon materials, such as laser-induced graphene (LIG), graphene
flowers, core–shell architectures, and nanoporous structures, have demonstrated signifi-
cant advantages in sensor applications. The choice between hierarchical (e.g., nanostruc-
tured hybrids), hybrid (multi-material composites), or single-element systems (e.g., pure
graphene) depends on the sensing targets and operational environments. These materials
enhance sensitivity and response time through an increased surface area for the analyte
interaction, improved electron transport at defect-engineered interfaces, good mechanical
stability, and plasmonic amplification of certain carbon (e.g., graphene quantum dots,
porous structure, or hybrid carbon–metal systems) via strong localized surface plasmon
resonance effects, thermoplasmonic effects, and charge transfer [128]. The performance
enhancements fundamentally stem from the intrinsic link between nanoscale architecture
and function. For example, zero-dimensional (0D) quantum dots utilize size-dependent
quantum confinement and unique optical properties, making them highly attractive for
fluorescence-based sensing and plasmonic enhancement. Whereas one-dimensional (1D)
and three-dimensional (3D) structures (e.g., carbon nanotubes, hierarchical porous carbons)
leverage strong π–π interactions, offer interconnected diffusion pathways, and enable hier-
archical analyte trapping to prevent aggregation, thereby ensuring efficient mass transport.
Two-dimensional (2D) structures (e.g., LIG, graphene flowers) prioritize efficient charge
transfer and expose abundant edge-reactive sites (such as dangling bonds and oxygenated
defects), resulting in rapid binding kinetics. However, while these nanoscale structures
provide clear advantages, they also introduce critical challenges. Particles below 20 nm
often exhibit aggregation due to high surface energy, which compromises active surface
accessibility and surface uniformity, ultimately affecting overall sensor performance [210].
Strategies like vertical alignment (e.g., CNT forests) or 3D carbon frameworks can partially
address these challenges by spatially confining nanostructures while retaining their quan-
tum confinement effects or plasmonic properties. Additionally, surface functionalization,
template-assisted synthesis, and dispersion control strategies are actively being developed
to improve uniformity and long-term stability. Although nanostructured carbon materials
demonstrate excellent sensitivity and tunable electronic properties, they face challenges
in processing complexity and stability compared to bulk carbon materials. Bulk carbon
materials tend to provide higher mechanical integrity and stability, while nano-carbon
materials are preferred for high-sensitivity and multifunctional sensing systems. From
an economic perspective, the cost of carbon nanomaterials varies significantly due to pro-
duction complexity, scalability, purity requirements, and applications [211,212]. GO is the
most economical due to scalable synthesis, while high purity materials and CVD graphene
command premium prices for specialized applications. rGO and MWCNTs offer a balance
between cost and performance for conductive composites [212]. However, challenges in
maintaining uniformity and quality during upscaling still exist (Figure 5). Advances in
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manufacturing technologies are critical to reducing costs and enhancing the scalability for
widespread commercial applications. GQDs remain expensive due to low yields and niche
use in biomedicine. As manufacturing techniques such as liquid-phase exfoliation, inkjet
printing, and low-temperature plasma processes continue to advance, the cost of scalable
materials like GO and rGO has stabilized. In the long term, the costs of high-purity carbon
nanomaterials (such as CVD graphene and GQDs) are expected to decline with improved
synthesis routes and increased market demand.
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Single-element systems (e.g., pure graphene or CNTs) generally offer simplicity and
cost-effectiveness but their limited tunability, low sensitivity and selectivity, and lack of
multifunctionality restrict their use. Composites provide a promising and cost-effective
approach to overcoming the limitations of single-material sensors by combining carbon
materials with other (nano)materials such as polymers, metals or metal oxides, and other
carbon additives. Hierarchical and hybrid systems enhance sensor capabilities by increasing
surface area, controlling porosity, and optimizing molecular interactions, allowing for
greater sensitivity and lower detection limits, while balancing complexity and scalability
remains challenging [213]. Silicon polymers, particularly PDMS, are widely used in carbon-
based sensors due to their exceptional chemical and thermal stability, biocompatibility,
corrosion resistance, flexibility, and ease of fabrication [214]. These properties make PDMS
an excellent choice for sensor substrates and encapsulation layers, allowing sensors to
sustain large mechanical deformations while maintaining the integrity of the carbon sensing
layer. Additionally, its hydrophobicity and chemical inertness protect sensitive materials
from environmental factors, enhancing long-term durability. PDMS’s adaptability further
enables the creation of complex structures and multifunctional sensing platforms. Despite
these benefits, PDMS’s non-biodegradability poses environmental concerns, particularly in
single-use applications, as its crosslinked structure makes recycling challenging [214]. Its
fabrication processes also require significant energy or organic solvents [215], increasing
its environmental footprint. Technically, achieving uniform carbon dispersion remains a
challenge as it results in inappropriate composition, potentially reducing sensor sensitivity
and reliability. Future research should explore alternative biodegradable polymers, such as
PLA and cellulose derivatives to address these issues.

Recent research trends have highlighted the significant potential of hybrid composites,
especially those that incorporate carbon materials with biopolymers, offering a promising
balance between performance and sustainability. Cellulose and its derivates, including
cellulose nanofiber (CNF) and cellulose nanocrystal (CNC), are promising candidates for
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enhancing the performance and sustainability of flexible carbon-based sensors. Cellulose’s
renewability, biodegradability, and biocompatibility align with sustainability goals and
ensure their safety for applications in food and medicine. Its abundant hydroxyl groups and
water insolubility enable efficient water molecule adsorption, improving sensitivity and
response times of carbon-based humidity sensors [84]. In addition to its role in composite
reinforcement, cellulose exhibits a strong nanoscale and microscale response to humidity,
which significantly impacts their mechanical properties. For example, a decrease in Young
Modulus of cellulosic films with increasing RH values has be reported with CNC films
showing smaller reduction, 15.6% (from 10.9 GPa to 9.2 GPa) when compared to other
films such as xylan hemicellulose that showed 32.9% reduction (from 7.6 GPa to 5.1 GPa)
for a change in relative humidity between 15% and 95% [216]. At the microscale, fiber
swelling weakens inter fiber bonding, increasing porosity and reducing tensile strength
and elastic modulus, leading to structural instability. While these moisture-induced effects
are generally seen as mechanical weaknesses, they are cleverly exploited in paper-based
humidity sensors. Humidity-induced cellulose swelling modifies the conductive network
of embedded nanomaterials (e.g., carbon nanotubes, graphene oxide), altering electrical
resistance or capacitance through nanoparticle separation or dielectric shifts [217]. This
phenomenon forms the underpinning mechanism behind the development of sustain-
able, flexible, and highly responsive paper-based humidity sensors. In this regard, Khan
et al., [77] produced a paper cellulose fiber/graphene oxide matrix (PCFGOM) humidity
sensor with an increase in response to humidity ranging from 10% to 90% at 1 kHz and
10 kHz, respectively. Although the response time (1.2 s) and recovery time (0.8 s) were
relatively good, further study is required as 24 h stability was reported. On the other
hand, the mechanical stability of cellulose with carbon-based materials enhances flexibility,
responsiveness, and durability of composites, as demonstrated in CNC-GO [64] and CNT-
MC [148]. However, cellulose’s lower elasticity and stretchability compared to synthetic
polymers like PDMS limits its application in mechanical sensors. Modifying cellulose,
such as nanofibrillated cellulose [75], polydopamine-coated CNC [64], and methylcellulose
(MC) [148], improve its compatibility with hydrophobic carbon materials like graphene,
while increasing surface area and hydrophilicity. These modification enable uniform and
strong integration with conductive carbon materials via hydrogen bonding or van der
Waals interactions, enhancing load transfer and resistance to mechanical deformation and
fatigue [75]. Despite these advantages, challenges such as poor sensing results, slow respon-
siveness, and scalability [77] limited long-term stability [106], and mechanical durability
in high humidity or dynamic environments need to be addressed. Future research should
focus on tailoring material concentrations, composite structures, and fabrication methods
to achieve optimal performance. For example, incorporating ~30 wt% GO in CNF com-
posites has been shown to maximize sensitivity while retaining flexibility [106]. Similarly,
a CNT-to-MC ratio of 2:1 enables efficient temperature sensing without compromising
mechanical flexibility [148]. Overall, these materials hold great potential for large-scale
deployment in packaging sensors and transit monitoring systems, and advancing scalable
manufacturing techniques such additive printing could further enhance the viability of
these materials for industrial applications.

Fabrication methods significantly influence sensor performance, reproducibility, and
industrial scalability. High-precision methods such as CVD produce high-quality films but
are costly to consider and are relatively low profit-margin products such as food packag-
ing. It is also energy-intensive, which together limits its large-scale industrial adoption.
Solution-based methods such as coating and casting offer scalable and cost-effective alter-
natives but struggle with uniformity and reproducibility. Emerging approaches such as
printing, additive manufacturing, and laser thermoforming enable scalable production,
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reducing material waste and allowing geometry customization, but require improvements
in precision and production efficiency, especially material viscosity limitations for printing
techniques. Achieving consistency, reproducibility, and scalability for large-scale produc-
tion is a persistent bottleneck. Batch-to-batch variations and resource-intensive methods
hinder industrial adoption [170]. Recent progress in machine learning-assisted fabrication
and computational tools such as COMSOL Multiphysics 5.5 [74] have shown potential in
optimizing spray-coating techniques and 3D-printing processes have enhanced fabrication
accuracy and reproducibility, paving the way for scalable, multifunctional sensors.

Future research in carbon-based sensor technology specifically designed for food
and medicine or pharmaceutical product packaging in transportation conditions should
concentrate on several key areas to enhance sensor performance (stability, sensitivity, and
selectivity) scalability and environmental sustainability. These include the development of
scalable and eco-friendly fabrication methods, particularly for integrating biodegradable
polymers such as PLA and cellulose derivatives with other carbon materials. Material
concentrations should be tailored, and composite structures optimized to maximize sensor
capabilities and mechanical stability. Hierarchical architectures, hybrid material combi-
nations, and optimized single-element systems could be prioritized to address trade-offs
between sensitivity, stability, and manufacturability, especially for multifunctional sensors
on a single platform. Additionally, incorporating computational modeling and machine
learning-driven optimization can accelerate the design of high-performance sensors. Fi-
nally, research should focus on long-term sensor stability under fluctuating humidity and
mechanical strain conditions to ensure reliable real-world deployment.

Potential limitations of this review include the qualitative nature of the evaluation. A
thematic synthesis based on the type of sensors and production methods was preferred as
the variability in the reported approaches to sensor fabrication and the resulting perfor-
mance metrics could render a meta-analysis impractical.

5. Conclusions
All carbon-based sensors (ACBS) for smart packaging of food and medical/pharmaceutical

products are of growing interest, especially from a sustainability point of view. These sen-
sors not only promise to enhance the safety and efficiency of supply chains but also align
with increasing regulatory demands for traceability and quality assurance during transit.
This review showed that humidity sensors are mainly developed with graphene oxide,
whereas graphene and carbon nanotubes are predominantly used for temperature and
mechanical (strains and pressure) sensors. Their performance is usually enhanced through
engineering composite materials and the selection of appropriate fabrication techniques,
which also determine the structural properties of the sensors. Although some progress has
been made in developing all carbon-based sensors with biodegradable polymers such as
cellulose, PDMS is still largely used in the reported studies, which poses environmental
concerns, particularly in single-use applications. Future efforts must prioritize the devel-
opment of fully biodegradable alternatives or all carbon-based sensors without PDMS
with comparable properties. Cellulose and cellulose derivatives appear to be promising
materials for green and sustainable sensor development and their sensitivity to moisture
should be addressed. Innovations were observed in multifunctional sensor development.
However, most research focused on wearable applications with dual-modal designs prevail-
ing. This highlights clear research gaps for extending the work on wearable applications
to develop sensing systems with detection ranges that meet the requirements for critical
logistics scenarios like deep-frozen vaccine transport (−80 ◦C to −20 ◦C) and highly dy-
namic environments while ensuring scalability. Future research should focus on optimizing
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composite composition and structures as well as developing scalable, environmentally
friendly fabrication methods to overcome current technical and commercialization barriers.

Promising prospects emerge in four key directions: (1) Sustainable hybrid systems com-
bining biodegradable substrates such as cellulose with bio-derived conductive polymers
could enable fully compostable or biodegradable sensors while maintaining performance
metrics. (2) Self-healing carbon nanocomposites may revolutionize sensor durability by
autonomously repairing mechanical/electrical damage during transit. (3) Integration with
emerging technologies, particularly IoT-enabled blockchain tracking, AI-driven predictive
analytics, and self-powered systems using triboelectric nanomaterials could transform
ACBS into active components of smart logistics networks. (4) Advanced manufacturing
paradigms including machine learning-assisted optimization of composite compositions
and roll-to-roll manufacturing techniques may bridge the gap between lab-scale prototypes
and industrial-scale production. Simultaneously, lifecycle analysis frameworks must be
developed to validate the environmental benefits of ACBS against conventional electronic
sensors across entire product lifetimes for packaging.

It is anticipated that cross-sector collaboration in material science, green chemistry and
engineering, physics, and supply chain digitization would contribute to the next generation
of ACBS to achieve parity with conventional electronic sensors within the next decade.
This evolution demands a paradigm shift to embracing packaging as an active, intelligent
component of food/pharma sustainable logistics ecosystems.
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BP Black Phosphorus
CB Carbon Black
CDs Carbon Dots
CFs Carbon Fibers
CMC Carboxymethyl Cellulose
CNC Cellulose Nanocrystals
CNCs Carbon Nanocoils
CNF Carbon Nanofiber
CNHs Carbon Nanohorns
CNS Carbon Nanosheet
CNT−OH Hydroxyl-functionalized Carbon Nanotubes
CNTs Carbon Nanotubes
Co3O4 Cobalt (II,III) Oxide
CVD Chemical Vapor Deposition
DA Dopamine
DLS Direct Laser-Scribed
EPD Electrophoretic Deposition
f-rGO Functionalized Reduced Graphene Oxide
FGS Fragmentized rGO sponge
G Graphene
g-C3N4 Carbon nitride
GCM Graphene-coated microfiber
Gcvd Graphene via Chemical Vapor Deposition
GF Gauge Factor
GF Graphene Foam
GNP Graphene Nanoplatelets
GNRs Graphene Nanoribbons
GO Graphene Oxide
GPANI Polyaniline/Graphene
Gpl Plasma-Grown Graphene
GQDs Graphene Quantum Dots
GWF Graphene Woven Fabrics
HEC Hydroxyethyl Cellulose
HGO Hummer’s Graphene Oxide
HRGO Holey-Reduced Graphene Oxide
HSMG High Strength Metallurgical Graphene
LB Langmuir-Blodgett
LBL Layer-by-Layer
LDW Laser Direct Writing
Li Lithium
LiCl Lithium Chloride
LIG Laser-Induced Graphene
LiNbO3 Lithium Niobate
MC Methyl Cellulose
Mg Magnesium
Mn Manganese
MoS2 Molybdenum Disulfide
MoTe2 Molybdenum Ditelluride
MWCNT Multi-Walled Carbon Nanotubes
N Nitrogen
NFC Nanofibrillated Cellulose
NP Nanopapillae
p-AP p-aminophenol
P(VDF-TrFE) Poly(Vinylidene Fluoride-Trifluoroethylene)
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PAM Polyacrylamide
PANI Polyaniline
PCFGOM Paper Cellulose Fiber/GO Matrix
PDA Polydopamine
PDMS Polydimethylsiloxane
PEDOT:PSS Poly(3,4-ethylenedioxythiophene) Polystyrene Sulfonate
PEG Polyethylene Glycol
PEI Polyethyleneimine or Polyetherimide
PHEA Poly-2-hydroxyethyl acrylate
POS Polyorganosiloxane
PPy Polypyrrole
PU Polyurethane
PVA Polyvinyl Alcohol
PVB Polyvinyl Butyral
PVDF Poly(vinylidene fluoride)
PVP Poly(vinylpyrrolidone)
QCM Quartz Crystal Microbalance
rGO Reduced Graphene Oxide
S Sulfur
SA Sodium Alginate
SAO SrAl2O4: Eu2+, Dy3+

SBS Styrene-Butadiene-Styrene
SDBS Sodium Dodecylbenzenesulfonate
SDC Shellac-derived Carbon
SDS Sodium Dodecyl Sulfate
SnO2 Tin(IV) Oxide
SWCNHs Single-Walled Carbon Nanohorns
SWCNT Single-Walled Carbon Nanotubes
TA Tannic Acid
TDI 2,4’-Tolylene Diisocyanate
TEMPO 2,2,6,6-Tetramethylpiperidine 1-oxyl
TFBG Tilted Fiber Bragg Grating
TFG Tilted Fiber Grating
TOCFs TEMPO-Oxidized Cellulose Fibers
VOCs Volatile Organic Compounds
WO3 Tungsten Trioxide
ZnO Zinc Oxide
ZrO2 Zirconium Dioxide
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