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Abstract: The current state of the art on material science emphasizes recent research efforts aimed at
designing novel materials characterized by low-density and advanced properties. The present article
reports the experimental, theoretical and simulation results on the thermal behavior of 3D printed
discs. Filaments of pure poly (lactic acid) PLA and filled with 6 wt% of graphene nanoplatelets (GNPs)
are used as feedstocks. Experiments indicate that the introduction of graphene enhances the thermal
properties of the resulting materials since the conductivity passes from the value of 0.167 [W/mK] for
unfilled PLA to 0.335 [W/mK] for reinforced PLA, which corresponds to a significantly improvement
of 101%. Exploiting the potential of 3D printing, different air cavities have been intentionally designed
to develop new lightweight and more cost-effective materials without compromising their thermal
performances. Furthermore, some cavities are equal in volume but different in the geometry; it is
necessary to investigate how this last characteristic and its possible orientations affect the overall
thermal behavior compared to that of an air-free specimen. The influence of air volume is also
investigated. Experimental results are supported by theoretical analysis and simulation studies based
on the finite element method. The results aim to be a valuable reference resource in the field of design
and optimization of lightweight advanced materials.

Keywords: PLA-based filament; 3D printing (FDM); thermal conductivity; numerical simulation

1. Introduction

Reduction in mass with consequent savings in materials and costs is one of the main
factors to be considered in the structural design phase. This is particularly significant
in aircraft and spacecraft fields where sandwiched composite structures, often based on
honeycomb panels, are increasingly widely used for saving weight while simultaneously
ensuring structural performance and mechanical properties [1,2]. Although these light-
weight structures are suitable for large loadings, from a thermal point of view, they are not
as efficient. Today, design efforts are aimed at achieving novel multifunctional structures
with combined remarkable heat transfer features and structural integrity for a variety of
applications, including the most recent ones in the electronic industry where new devices
operating at ever-increasing frequencies raise critical heat dissipation issues [3].

Polymers are classically recognized as insulating materials, owing to their low electri-
cal and thermal conductivity, and are therefore generally disregarded in similar contexts.
However, given their remarkable properties in terms of lightness, cost-effectiveness, easy
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processing, corrosion resistance and strength-to-weight ratio, polymers are receiving much
interest, even in applications of thermal management where heat dissipation is necessary [4,5].
Therefore, it is widely-accepted that developing advanced polymer composites with enhanced
thermal conductivity could be an effective solution to meet this requirement. Recent develop-
ments in high-performance thermal polymers are based on nanotechnology. The introduction
in polymer matrices of highly thermally conductive fillers such as the carbon-based ones
seems effective to improve the thermal conductivity of resulting materials [6–8]. This be-
cause the consequent creation of suitable conductive paths favors the mechanism of heat
conductivity, which is driven by the ability of materials to conduct phonons [9]. Thermal
conductivity is governed by the concentration of heat conductive filler dispersed, its in-
trinsic thermal properties, functionalization and aspect ratio, the thermal conductivity
of the host matrix and any interfacial gaps which represent the most crucial barrier for
heat transfer [10]. Although different thermally conductive fillers such as ceramic [11,12]
and metallic [13,14] particles have been successfully adopted, carbon-based fillers have
attracted greater attention due to their shapes and high aspect ratio, which are favorable
parameters to easily form thermally conductive network at lower concentrations without
degrading the mechanical properties of the resulting composites [15,16]. For instance, in
more recent times, graphene and its derivates are considered the most promising fillers due
to their good dispersion and better phonon transport at the interface with a wide range
of polymeric matrices [17,18]. However, in the evolution of high-performance graphene-
based nanocomposites, to date, the improvement of their thermal conductivity through
nanotechnology is still limited and the achieved values do not approach those of traditional
metals. Functionalization of the filler often tends to enhance the structural morphology in
order to reduce phonon scattering and interfacial thermal resistance, thus improving the
thermal properties [19]. Thus, in light of this, Yadav and Cho presented an effective method
to design high-performance polyurethane (PU) nanocomposites with improved mechan-
ical and thermal features via the introduction of functionalized graphene nanoplatelets
during in situ polymerization [20]. A significant improvement in mechanical and thermal
properties is also observed by Shukla and Sharma in epoxy hybrid composites using func-
tionalized graphene and carbon-nanotubes [21], and in functionalized-graphene/ethylene
vinyl acetate co-polymer composites by Kuila et al. [22]. Moreover, the overall physical
characteristics of the nanocomposites, such as electrical and thermal conductivity, can be
also related to their fabrication processes. In recent years, the new and innovative additive
manufacturing (AM) alias 3D printing has emerged and attracted interest for the great
opportunity it provides to convert virtual 3D models created via a computer-aided design
(CAD) into physical objects, without the need for molds or machining [23–25]. As a result
of this versatility, AM is becoming one of the major technologies in the fabrication of fully
customized objects that can be realized in complex shapes that could be more effective in
thermal transfer applications, such as polymer-based heat sinks.

Pezzana et al. have proposed a 3D printed silicone acrylate-based formulation (Poly-
dimethylsiloxane, PDMS) with improved thermal conductivity as a result of the introduc-
tion of boron nitride (BN) [26]. Ji et al. have presented 3D printed composites including
alumina and carbon nanofibers (CFs) that show enhanced thermal properties with respect
to those exhibited by cast composites [27]. The influence of different metal particles dis-
persed in PLA-based nanocomposites, prepared via 3D printing with different printing
parameters, on the thermal conductivity of the resulting structures has been analyzed in
Laureto et al.’s work [28].

Timbs et al. have presented 3D printed heat sinks based on thermally conductive
polymer composites with oblique fins, which present a lower thermal resistance and a better
convective heat transfer, compared to the straight finned typical of heat exchangers [29,30].
For the purpose of improving thermal management features of GaN transistors, Gerges et al.
have proposed a light and cheap 3D printed polymer-based heat dissipator [31].

In our previous study, the thermal behavior of poly (lactic acid) PLA composites
reinforced with several carbon-based fillers produced via melt compounding have been
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experimentally and numerically investigated for their potential use in thermal applications
such as heat sinks [32]. Yet, in another paper of ours, the effect of temperature on the ther-
mophysical properties of 3D printed PLA-based composites reinforced with two different
type of graphene nanoplatelets (GNPs) was taken into account with the promise that in a
future paper more particular and more complex discs designed with AM technology would
be considered [33]. The main goal and novelty of the present paper is to compute—using
a hybrid experimental/theoretical and computational approach—the effective thermal
conductivity of 3D printed discs, based on PLA and 6 wt% of GNPs, with designed ad hoc
air cavities, different in the geometry and volume. It is important to underline that these
complex samples were produced due to the extraordinary versatility of design offered by
3D printing technology; with traditional manufacturing processes, it would have been quite
difficult. As better described in the next section, Materials and Methods, the experimental
setup involves an accurate laser flash apparatus, and the theoretical support refers to
thermal circuit theory, whereas the simulation tool is based on the finite element method.

The reported results aim to be a general guideline for researchers involved in the
design and production of multifunctional and advanced nanocomposites with lightness
features and negligible degradation of the thermal properties.

2. Materials and Methods

Ingeo™ Biopolymer PLA-3D850 (Nature Works, Minnetonka, MN, USA) is specifically
developed for producing a 3D printing monofilament in order to achieve excellent process-
ability and printability, as well as enhanced impact and heat resistance of the printed parts;
as such, it is used in the present study for the experimental activity. Moreover, filaments
based on Ingeo PLA show remarkable 3D printing features such as less warping or curling
and hence precise details, good adhesion to building plates (also in absence of heating) and
are odorless while printing. In order to obtain a nanocomposite filament with improved
thermal properties, the above polymer matrix has been enriched with graphene nanoplates
(TNIGNP, from Times Nano, Chengdu, China). The main physical properties of the host
polymer, filler and resulting nanocomposite filaments are briefly illustrated in the schematic
representation of Figure 1. For the sake of completeness, it is worth pointing out that X-ray
diffraction (XRD), differential scanning calorimetry (DSC) and Raman spectroscopy analy-
ses of the GNP nanosheets have been carried out in our previous studies [34,35]. The results
show a high crystalline quality and a multilayer structure of the GNPs with a number of
layers < 30.
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Nanocomposite compounds have been produced by using a melt extrusion technique.
Both PLA pellets and GNPs were blended by maintaining the temperatures in the range
170–180 ◦C, in a twin screw extruder (COLLIN Teach-Line ZK25T, Maitenbeth, Germany)
operating with a screw speed of 40 rpm. As a masterbatch, nanocomposites at 12 wt.%
of loadings were obtained, whereas, in a second extrusion run, a formulation based on
6 wt.% of total filler content was obtained by diluting the masterbatch with pure PLA in the
right amount. Pellets of the compound analyzed in the current work are the result of two
extrusion runs. The concentration of 6 wt% has been selected based on the experimental
results observed in our previous studies [33,36]. In brief, this specific filler concentration
ensures simultaneously interesting electrical, mechanical and thermal properties combined
with suitable rheological features in terms of viscosity for realizing high-quality 3D printed
parts needed for performing the analysis planned in the present work.

The FDM filaments based on pure PLA or 6 wt% of GNPs with a diameter of 1.75 mm
were obtained using single screw extruder (Friend Machinery Co., Zhangjiagang, China)
on the aforementioned nanocomposite pellets. A speed of 20 rpm and a temperature
range of 170–220 ◦C was set for this purpose. Finally, a quenching in water bath at 60 ◦C
accomplished the required gradual cooling. Disc-shape specimens with a diameter of
12.6 mm and a thickness of 3 mm were 3D printed with a fused deposition modeling
(FDM) process through a German RepRap 3D printer X-400 Pro (German RepRap GmbH,
Feldkirchen, Germany). Three samples for each designed configuration were printed. The
production line from the beginning of the filament extrusion up to 3D printed samples
is schematically illustrated in Figure S1 of Supplementary Materials, whereas the main
selected printing parameters are reported in Table S1 (Supplementary Materials).

Scanning electron microscopy (SEM) analysis was carried out to obtain information
about the interaction between matrix material and nanofiller, as well as its dispersion state.
For this aim, a field emission SEM apparatus JSM-6700F (JSM-6700F, Jeol, Akishima, Japan)
was used with suitable specimens prepared with a procedure based on the following steps,
previously described in Spinelli et al.’s work [37,38]: (i) ad hoc fractured in liquid nitrogen;
(ii) chemical etching to remove excess material; (iii) an ultra-thin coating of electrically
conducting metal (gold AU, given its high conductivity and relatively small grain size) to
improve the imaging of samples due to the increases of the signal to noise ratio.

The thermophysical properties (thermal conductivity, thermal diffusivity and heat-
capacity) of the test samples have been investigated by means of laser flash analysis (LFA)
which has proven itself as a fast, versatile and precise measuring method for a variety of
different materials, since its first introduction by Parker et al. in 1961 [39]. LFA is based
on the physical principle previously reported in Spinelli et al. [33] and here, meticulously
described and graphically represented (Figure S2) in the Supplementary Materials.

In the present study, disc-shaped samples, with a diameter of 12.6 mm and a thickness
of 3 mm and different air cavities, were tested with the Laser Flash Technique (LFA 467
Hyper flash, Neztsch, Germany) at room temperatures of 293.15 K. As schematically
illustrated in Table 1 some air cavities with different geometry but equal volumes have
been realized in order to evaluate the influence of the shape on the thermal properties of
the resulting samples. Table 2 summarizes instead the samples used to investigate the
influence of the progressive increase in the total volume of air obtained by increasing the
number of appropriate cavities. Finally, Table 3 shows the samples with air cavities based
on a truncated cone (with equal volumes) designed to study the influence of their radiuses
and their orientations. All the geometric details and the formalism used for their design
have been reported, from time to time, in each table.

The samples were measured three times at the indicated temperature, whereas the
results reported in the relative section refer to the average values. In accordance with
the guidelines supplied with the device, prior to the measurements, both the faces of the
samples were coated with graphite spray to improve the emission/absorption features
of the samples. The specific heat was calculated using the reference method according
to the standardization ASTM-E 1461–2011. Consequently, the LFA was calibrated with
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a Cp-standard (Pyroceram square sample with 10 mm in size and a thickness of 2 mm).
The density of the 3D printed specimens was determined by means of buoyancy flotation
method at room temperature.

Table 1. List of samples designed for evaluating the influence of geometry of air cavity.

Sample Air Cavity Geometry Data Air Cavity Mathematical Formalism
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In the present work, the thermal behavior of the designed nanocomposites with
different cavities filled by air was numerically analyzed by means of an accurate simulation
study based on a 3D finite element method (FEM).

The commercial software COMSOL Multiphysics® (version 5.5) has been adopted as a
simulation environment in which the experimentally tested specimens have been faithfully
reproduced in all details: each CAD (computer-aided design) is exactly the same as that
used for 3D printing.

A schematic representation of the addressed case study together with the most impor-
tant model definitions is reported in Figure 2a and 2b, respectively.
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Fixed diameter, LC:
3.385 [mm]
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2
C

4

The thermophysical properties of the simulated samples are evaluated starting from
an initial room temperature (293.15 K) in adiabatic condition because this mode enables a
better determination of the influence of the air cavities.

A rectangular pulse of intensity of 1200 W/m2 and duration of 60 s has been applied
to the undersurface of the sample to heat it.

The heat transfers inside the body from the heated surface to the opposite face via
conduction, according to the Fourier’s equation and the thermal energy equation, as
detailed described in the Supplementary Materials.
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Table 3. List of samples designed for evaluating the influence of the radiused of the truncated cone
air cavities and their orientations.

Sample Air Cavity Geometry Data Air Cavity Mathematical Formalism
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2

4
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a2 + a·b + b2)·H
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Figure 2. (a) Schematic representation of the simulated case study. (b) Key model definitions 
adopted for the multiphysics simulations. 

The thermophysical properties of the simulated samples are evaluated starting from 
an initial room temperature (293.15 K) in adiabatic condition because this mode enables a 
beĴer determination of the influence of the air cavities. 

A rectangular pulse of intensity of 1200 W/m2 and duration of 60 s has been applied 
to the undersurface of the sample to heat it. 

The heat transfers inside the body from the heated surface to the opposite face via 
conduction, according to the Fourier’s equation and the thermal energy equation, as 
detailed described in the Supplementary Materials. 
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Fixed Volume, V: 35 [mm3]
Fixed High, H: 1.4 [mm];

Fixed larger radius, b:
4.000 [mm]
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1.446 [mm];
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V = 1

3 ·π·
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a2 + a·b + b2)·H
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Here, in short, it is worth mentioning that the thermal energy equation (in Cartesian
coordinate system) to describe the conductive transport at constant pressure on a differential
volume ∆x·∆y·∆z, can be written as follows [40]:
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(
λ
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= ρcp

∂T
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where:

• ρ is the density of the material [kg/m3];
• cp is the specific heat of material [J/kg·K];
• λ is the thermal conductivity of the involved material, [Wm·K];
• λ ∂T

∂x , λ ∂T
∂y , λ ∂T

∂z are the conductive heat flux components along the x, y and z directions,
expressed by Fourier’s law as specified in Supplementary Materials (Equation (S5));

• ∂T
∂t is the change in temperature over time.

As the initial condition (t = 0), the sample is at room temperature Troom (293.15 K);
as boundary conditions, symmetry on the axis for x = 0 and y = 0 is assumed, whereas a
thermal insulation is considered at the lateral, upper, back and front surfaces; at last, a heat
flux is imposed at bottom surface (z = 0).

All analytic terms concerning the initial and boundary conditions to solve the thermal
energy equation are reported in Table 4.

Table 4. Initial and boundary conditions for solving the thermal energy equation.

Initial (I.C.) and Boundary (B.C.)
Conditions Equations Validity

I. C. t = 0 T = Room
Temperature (T0) ∀x, ∀y, ∀z

B. C. Lower Sur f ace −λ ∂T
∂z = q0 (∀x, ∀y, t > 0)

B. C. Upper Sur f ace −λ ∂T
∂z = 0 (∀x, ∀y, t > 0)

B. C. Lateral Sur f aces
−λ ∂T

∂y = 0;−λ ∂T
∂x =

0
(∀z, t > 0)

3. Results
3.1. Morphological Analysis

The investigation of the morphology of the nanocomposite mixtures in terms of
dispersion state and isotropy at microscale level plays a key role in interpreting the overall
macroscale behavior and performance of the resulting materials and, in particular, their
mechanical, thermal and electrical properties measurements.

The cryogenically fractured surfaces of test specimens of unfilled PLA (Figure 3a)
and nanocomposites containing 6 wt% of GNPs (Figure 3b) were analyzed using scanning
electron microscopy. With regard to the pure PLA, as observable in Figure 3a and more
clearly in the magnification of Figure 3b, due to the adopted fracturing treatment, the
specimens underwent brittle fractures since planar surfaces are created without roughness
and evident graininess, which are indicative elements of deformation prior to failure typical
of other approaches.

Figure 3b provides an overview of the dispersion state within the matrix of the GNPs
particles, which appear in a sort of stacked arrangement. This is because the as-received
filler already comes in a stacked form, which is initially maintained during the extrusion
process and then further preserved throughout the samples production as a result of the
adopted method being based on layer by layer deposition (FDM technology). Such a
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phenomenon has also been noted with reference to other nanoparticles and layer-by-layer
growth mechanisms [41]. This particular morphological arrangement of the GNPs, lowering
the interfacial thermal resistance (also known as Kapitza resistance, Rk), ensures improved
percolation paths for the thermal transport, as is confirmed by the experimental results.
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Figure 3. Scanning electron microscopy (SEM) analysis of pure PLA in (a) and nanocomposites filled
with 6 wt% of GNPs in (b), respectively. A schematic representation of the stacked arrangement of
the GNPs is also reported in (b). A micrometer scale is due to the large lateral size (mean diameter)
of 2–16 µm of the adopted GNPs.

3.2. Thermal Conductivity of Air Cavity with Different Shapes: Experimental, Theoretical and
Simulation Results

Figure 4 reports the experimental results regarding the effective thermal conductivity
for both full samples and with cavities filled by air in different geometries (i.e., square,
circle and triangle), in the case of pure PLA and PLA including 6 wt% of GNPs in (a) and
(b), respectively. It is emphasized that the area volumes in this case are the same since the
air cavities are equal in height and base area. It is also important to specify that regardless
of the shape, the cross-sectional area of the cavity along the thickness remains constant at
all heights.
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After these necessary introductory statements, it is important to underline how the
introduction of graphene particles significantly improves the thermal conductivity of the
resulting materials. In the case of samples without cavities, the conductivity goes from
0.167 [W/mK] for pure PLA to 0.335 [W/mK] for PLA filled with 6 wt% of GNPs. This
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improvement, in percentage terms, corresponds to an interesting 101%. Regardless of
the type of composite under consideration, it is worth noting that in the presence of air
cavities, the conductivity is reduced of approximately 10%, independently from their
geometry. As previously premised in Section Materials and Method, all these air cavities
are characterized by a constant cross-section along the z-direction, whereas the air volume
is conserved because the base areas and heights are equal.

An electrical analogy with conduction heat transfer can be useful to explain such
experimental results. By assuming the heat rate Q [W] as the analog of the electrical current
I [A] and the temperature difference, and ∆T [K] as the analog of the voltage difference
∆E [V], it is possible to define the thermal conductance Kth [W/K] and the thermal resistance
Rth [K/W] according to the heat transfer rate given by the following equation:

Q = Kth·∆T =

(
1

Rth

)
·∆T (2)

where:
Kth =

λ ·A
l

=
1

Rth
(3)

The thermal resistance and, therefore, the thermal conductance are dependent on the
dimensions of the sample considered (length l and cross section area A, respectively) and
its thermal conductivity, λ.

Based on the established analogy, any of the nanocomposite systems with one or
different air cavities considered in this article, since the heat rate Q flows from the heated
bottom surface to the top surface of the cylinder in which the air is encapsulated, can be
represented by the resistance circuit of Figure 5a. It shows that the heat rate flows in parallel
through the materials, with resistances Rth2material and Rth2air, for which the following
is true:

Q =
(
∑ Kthi

)
·∆T =

(
∑

1
Rthi

)
·∆T (4)

where:
∑ Kthi = Kth2material + Kth2air = Kth2p (5)

or

∑
1

Rthi
=

1
Rth2material

+
1

Rth2air
=

1
Rth2p

(6)

from which:
Rth2p =

Rth2air·Rth2material
Rth2air + Rth2material

(7)
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Figure 5. Thermal resistance circuits for the evaluation of the parallel and series conductivity
in (a) and in (b); geometric parameters and intrinsic properties associated with the different air
cavities in (c).
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By substituting the parameters corresponding to each conductance or resistance in
Formulae (5) or (6), the equivalent parallel conductivity kep is as follows:

kep = λair·(1− ϕ) + λmaterial ·ϕ (8)

where ϕ is the ratio between the volume of the material and the total volume:

ϕ =
Vmaterial

Vmaterial + Vair
(9)

On the contrary, the materials with resistance Rth1material, Rth2p and Rth3material are in
series (see Figure 5b) with the heat rate Q; thus, the following is true:

Q =

(
1

∑ Rthi

)
∗ ∆T =

1

∑ 1
Kthi

∗ ∆T (10)

where:
∑ Rthi = Rth1material + Rth2P + Rth3material = Rths (11)

or:

∑
1

Kthi
=

1
Kth1material

+
1

Kth2p
+

1
Kth3material

(12)

In the specific case:

Rth1material = Rth3material = Rthmaterial =
lmaterial

λmaterial ∗ Amaterial
(13)

By substituting the parameters corresponding to each conductance or resistance in
Formulae (11) or (12), the equivalent series conductivity kes is as follows:

kes =
λair ∗ λmaterial

λair ∗ ϕ + λmaterial ∗ (1− ϕ)
(14)

If the orientation of the component materials is not in parallel or in series as above
described, the equivalent thermal conductivity ke has a value between kep and kes [42]:

λair·λmaterial
λair·ϕ + λmaterial ·(1− ϕ)

= kes ≤ ke ≤ kep = λair·(1− ϕ) + λmaterial ·ϕ (15)

In our case studies, regardless of the geometry of the air cavity, the overall thermal
resistance and, therefore, the overall thermal conductance of the resulting structures is
always the same because the parameters of the air bubble are kept constant, as schematically
shown in Figure 5c. Consequently, the final thermal conductivity does not vary in the
different cases analyzed.

These thermal aspects were also numerically investigated through multiphysics sim-
ulation studies, as reported in Figure 6. Furthermore, the temperature profiles (average
values) over time (up to 150 s) recorded on the upper, mid and lower surfaces related
to the full sample of pure PLA and PLA + 6 wt% GNPs are shown on the left-side of
Figure 6a and 6b, respectively.

In line with the experimental results and the theoretical predictions, some fundamental
differences are evident between the two investigated nanocomposites due to their different
values in the thermal conductivity. Firstly, a clear hysteresis between the two curves relating
to the upper and lower surfaces is appreciable in the case of the pure PLA. Differently, with
reference to the reinforced composite (PLA + 6 wt% GNPs), the higher thermal conductivity
causes a better heat transport in the solid with a consequently smaller thermal difference
between the two opposite faces. This different heat propagation is also visible from the 3D
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graphics relating to the corresponding cross sections in the xy-plane shown in the right
side of Figure 6.
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Figure 6. Comparison of the temperature profiles (average values) recorded on the upper, mid and
lower surfaces vs. time for composite based on pure PLA and PLA + 6 wt% GNPs in (a) and (b),
respectively. In particular, bidimensional graphics are reported on the left part, whereas a 3D view of
the corresponding xy-slices (at time t = 60 s) is reported on the right part.

Figure 7 shows a temperature multislice representations of this thermal aspect evalu-
ated at time t = 60 s. These graphical views allow us to note that the temperature remains
constant in each cross section along the entire thickness of the sample due to the absent of
air cavities and external heat exchange, which is neglected in this study to better highlight
the effect of internal air when it is present (next results).
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Figure 7. Temperature multislice views evaluated at t = 60 s relatively to pure PLA, and PLA + 6 wt%
GNPs in (a) and (b), respectively.
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Since the observed thermal phenomena are physically equal (except for the numerical
values) both for samples made with pure PLA and with reinforced PLA, for the sake of
brevity, all subsequent simulations will henceforth refer to the most thermally performing
material (PLA + 6 wt% GNPs).

Figure 8 shows different views of the thermal profiles inside the samples filled with the
aforementioned air cavities with different geometries (square, circle and triangle) but equal
volumes. The results previously observed experimentally and interpreted with theoretical
knowledge can be also be verified through this multiphysics modelling investigation.
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Figure 8. Temperature multislice views (at t = 60 s) of the samples including a variable shape of air
cavity such as square in (a), circle in (b) and triangle in (c), respectively. The dynamic temperature
evolutions over the time (up to 150 s) for the three different cases are reported in (d).

As is clearly visible from graphic representations of Figure 8a–c, respectively, the heat
distribution inside the solid (at the time t = 60 s) is the same regardless of the geometry of
the air cavities.

Such a numerical analysis allows us to notice how the air cavities, which are character-
ized by a lower thermal conductivity than the material, initially behave as a barrier to the
heat flow and then as a trap for it.

A local overheating around and inside the air cavities is quite evident. In addition,
Figure 8d shows that, even dynamically, the heat transfer is identical in the three investi-
gated cases since the three curves relating to the evolution of the upper and lower surfaces
temperatures over time are perfectly superimposed.

3.3. Thermal Conductivity of Nanocomposites with Multiple Air Cavities: Experimental,
Theoretical and Simulation Results

Figure 9 shows the experimental results concerning the variation in the thermal con-
ductivity as a function of the number of equal air cavities (N) progressively introduced into
the solid in order to investigate the effect of the total air volume on this thermal property.
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Figure 9. (a) Thermal conductivity as function of the cavity number for composites based on pure
PLA in (a) and PLA + 6 wt% GNPs in (b). A linear fit of the experimental data is reported in (c) and
(d) for pure and filled PLA, respectively.

Additionally, in this case, it is worth to highlight that with these cavities being of a
cylindrical type, their cross section area is constant along the entire thickness.

In particular, Figure 9a,b reports the experimental results concerning the pure PLA
and PLA + 6 wt% GNPs, respectively.

For both composites, a decrease in thermal conductivity is observed as the number of
cavities increases.

As shown in Figure 9c,d, this decrease is linear since the interpolation of the experi-
mental data is characterized by a coefficient of determination (R2) close to 1.

The results agree with a numerical calculation of the thermal conductivity of nanocom-
posite including a fluid (air) in volumetric proportion ϕ and 1–ϕ, respectively [43]. In our
case, the nanocomposite has thermal conductivity κm (0. 167 W/mK for pure PLA and
0.335 W/mK for PLA + 6 wt% GNPs, respectively), whereas for air in normal conditions, a
thermal conductivity of κf = 0.026 W/mK is assumed.

In our case study (see Figure 10), since the N cylindrical cavities, each of diameter Φp
and volume v, are inserted in a disc with diameter ΦG and volume V and are traversed in
parallel by the heat flow, the effective thermal conductivity ke f f , evaluated according to
Equation (15), can be expressed as follows:

ke f f =
[
(V − Nv)·km + Nv·k f

]
/V (16)

Predictive expressions of the thermal conductivity are interesting in the first analysis.
Figure 11 shows a direct comparison via histogram visual representation of the results ob-
tained experimentally with those theoretically predicted using the formula of Equation (16)
for both cases: PLA and PLA + 6 wt% GNPS in (a) and (b), respectively.
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Figure 10. Schematic representation for the specimens filled with multiple air cavities.
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Figure 11. (a) Comparison between the experimental and theoretical results, together with the relative
error (in percentage) that is committed with the theoretical estimation, about the thermal conductivity
as function of the cavity number for composites based on pure PLA in (a) and PLA + 6 wt% in (b).

It is interesting to note the good agreement between the results given the low relative
error (Er, in percentage) that is committed with the theoretical estimation. It is noted that
Equation (16) negligibly overestimates the experimental conductivity of the structures.

Figure 12 shows a 3D graphic representation of the simulated graphene-based samples
that include a different number of cavities (1, 2 and 3 in (a), (b) and (c), respectively)
coherently with the cases investigated experimentally.
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Figure 12. Temperature multislice views for composites including different number of cavities (1, 2
and 3) in (a), (b) and (c), respectively.
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The choice of this multislice view allows us to better investigate the temperature
distribution across the different sections that make up the samples. A conspicuous local
overheating is detected in correspondence with each air cavity, whereas the heat diffuses
uniformly in the layers in which it meets only material characterized by a high thermal
conductivity compared to that of the air. Because of the increasing presence of cavities and
therefore of air volume, the overall conductivity of the resulting structure is progressively
reduced. This can be deduced from the analysis of the relative color bars. In fact, the
temperature excursion scale of the specimen slightly changes in the three cases analyzed. It
is closely linked to the thermal conductivity: the greater the latter, the smaller the thermal
excursion due to the better heat transfer in the solid, according to Fourier’s thermal law.

Furthermore, with the aid of the simulation software, it was possible to select, as
indicated in Figure 13 (left side), a series of cross sections along the thickness of the sample
on which to detect the average temperature values at the instant of time t = 60 s in which
the thermal source ceases (see Figure 13 right side). Some sections fall exclusively in the
material (sections at 0, 0.6, 2.4 and 3 mm) and others in a hybrid material/area condition
(sections at 1.2 and 1.8 mm).
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Figure 13. Cross sections along the thickness of the sample (left side) on which to detect the average
temperature values (right side) at time t = 60 s for samples with a variable number of air cavities.

Regardless of the number of cavities, the temperature decreases exponentially along
the thickness as the quote moves away from the heat source. Obviously, the greater the
volume of air compared to the overall volume of the sample (case of three cavities), the
higher the temperature detected due to the lower thermal conductivity, and the worse heat
transfer capacity of the resulting structure.

3.4. Thermal Conductivity of Nanocomposites as Function of Air Cavities Radiuses: Experimental,
Theoretical and Simulation Results

Figure 14 reports the experimental results regarding the thermal conductivity of
samples based on pure and filled PLA (in (a) and (b), respectively) containing equal volumes
of cylindrical and truncated-conical (with two different radiuses) air cavities. The aim of this
investigation is to highlight the influence of the radiuses’ sizes on the thermal conductivity.
For practical reasons, such dimensions are newly recalled in the same graphs. Before
commenting on the results, it should be noted that in these cases, unlike with the previous
ones, the cross-sectional area of the air cavities varies along the thickness (obviously except
for the cylinder configuration, which can be considered as the particularization of a cone
trunk with two numerically equal radiuses). Regardless of the presence or absence of
graphene nanoparticles within the composite, the thermal conductivity increases as the
product of the two radiuses becomes longer. Therefore, the air cavity with cylindrical shape
shows slightly higher conductivity values (0.152 and 0.304 W/mK for pure PLA and PLA +
6 wt% GNPs, respectively) than those measured in the case of truncated-conical-shaped
air cavities (0.145 and 0.150 W/mK or 0.290 and 0.299 W/mK, depending on the case). As
evident from the analysis of Figure 14c,d, the thermal conductivity dependence on this
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dimensional product is of a linear type given the values of the regression coefficients (R2)
close to 1 for the fitting curves of the experimental data.
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Figure 14. (a) Thermal conductivity as a function of the radiuses product for composites based on
pure PLA in (a) and PLA+6 wt% in (b). A linear fit of the experimental data is reported in (c) and
(d) for pure and filled PLA, respectively.

The results can, once again, be interpreted in light of thermal circuity theory, as
schematized in Figure 15a,b.
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In this case, reference is made to the calculation of a thermal resistance of a truncated-
conical-shaped air cavity with radiuses a and b (a < b), height d and thermal resistivity λair
(see Figure 15c).

The resistance and, therefore, the conductance of the nanocomposite structure remain
unchanged, while it is different for the air cavity as the area varies with the radius, which
depends on the z coordinates and occurs in a different way.
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Furthermore, passing from the greater base to the smaller base, the following expres-
sion can be reported for the radius r(z):

r(z) = b− b− a
d
·z (17)

Otherwise, passing from the minor base to the major base, the radius r(z) can be
expressed as follows:

r(z) = a +
b− a

d
·z (18)

Consequently, the thermal conductance of the cavity (Kthair) and, therefore, its thermal
resistance can be expressed as follows:

Kthair =
λi·Ai

li
=

λi·πr(z)2

li
=

1
Rthi

(19)

These values change according to the radius and in a different way according to the
verse in which the air bubble is crossed by the thermal flow.

Naturally, the average resistance of the cavity remains the same regardless of the verse
of the heat flows, as can be observed from the demonstration given below in the case it
crosses the cavity from the larger base towards the smaller base.

Once the radius r(z) has been defined, the elemental resistance dR is evaluated as follows:

dR =
1

λair
· dz
πr2 =

1
λair
· dz

π
[
b− b−a

d ·z
]2 (20)

However, the total thermal resistance Rth is obtained via the integration of Equation (20)
along the entire height d, in agreement with the following relation:

Rth =
∫ d

0
dR =

∫ d

0

1
λair
· dz

π
[
b− b−a

d ·z
]2 =

1
λair
· d
π·a·b (21)

At the time that the two radiuses a and b are equal (a = b = r), Equation (21) degenerates
to the case of a cylindrical cavity with thermal resistance Rth equal to the following:

Rth =
1

λair
· d
π·a·b =

1
λair
· d
π·r2 (22)

The same result is obtained when the cavity is crossed from the minor base to the
major base.

The thermal resistance decreases punctually as the radius increases from a to b; in
contrast, it increases punctually when the radius decreases from b to a.

Naturally, the thermal conductance increases when the resistance decreases and vice
versa decreases when the resistance increases, being inverse to each other.

The mean resistance remains the same and changes only when the cavities radiuses a
and b and, therefore, their product a·b vary.

Alongside these theoretical considerations, the thermal behaviors of these additional 3D
printed discs with designed ad hoc air cavities are also numerically investigated. Figure 16a–c
shows (on the left side) the temperature profile (average values in K) for the upper and lower
surfaces of the three specimens considered here.

The temperature difference between the two opposite faces (∆T = 6.92 K, 7.56 K and
8.30 K, respectively) is assumed as an index to uncover, in accordance with Fourier’s
thermal law, discrepancies in the thermal conductivity values of the designed structures.
The numerical investigation confirms the experimental data regarding the best thermal
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performance of the sample with cylindrically shaped air cavity compared to the truncated-
cone ones.
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Figure 16. (a) Numerical analysis of the temperature evolution of the upper and lower surfaces
over the time (up to 150 s) for the 3D printed discs with designed ad hoc air cavities. The case of
cylindrical-shaped and truncated-conical cavities with different radiuses are considered on the left
side of (a), (b) and (c), respectively. On the respective right-hand parts, sectional views of temperature
are shown to visually explore the different heat distribution within the solids.

Moreover, on the right side of Figure 16, the 3D sectional temperature views (at time
t = 150 s) of the considered specimens are reported with the aim of visually inspecting the
heat distribution within the solids.

A greater local heating is noted especially in the case of the truncated-cone cavity with
a larger base (Figure 16c) since it hinders the thermal flow and consequently raises the
surrounding temperature.
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3.5. Thermal Conductivity of Nanocomposites as Function of Air Cavities Orientation:
Experimental, Theoretical and Simulation Results

To conclude the thermal analysis conducted in the present study, this subsection takes
into consideration, with reference to the truncated-conical-shaped air cavity, the effect of
its orientation on the thermal conductivity of the resulting structure. Figure 17 shows the
experimental results (for pure PLA and PLA + 6 wt% GNPs in (a) and (b), respectively)
concerning the thermal conductivity of the specimens with truncated-conical air cavities
when rotated 180◦ in order to reverse the orientation of the same cavity. It is surprising to
note that this overturning of the air cavity affects the thermal conductivity. Furthermore,
the same sample exhibits a higher conductivity value when the air cavity is placed with
the larger radius on the top or similarly with the lower radius downwards at the face from
which the sample is heated.
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Figure 17. Experimental results on the thermal conductivity as a function of the air cavity orientation
for composites based on pure PLA in (a) and GNPs-based composites in (b).

For specimens realized with pure PLA, the thermal conductivity changes from
0.145 to 0.151 W/mK and from 0.150 to 0.155 W/mK in the two investigated cases,
whereas for GNPs-based composites, the variation is from 0.290 to 0.296 W/mK and from
0.299 to 0.305 W/mK, respectively.

The interpretation of this result appears to be slightly more complicated. In a first
analysis, reversing the orientation of the cavity, it soon becomes clear that the variation
in the cross-section area along the thickness changes in the two cases: in the increasing
direction of the z-axis, in one case, it decreases; in the other, it increases. Most likely, this
affects the thermal diffusion within the medium in some way as is more evident from the
graphical analysis of Figure 18a–d, which presents the 3D cross section temperature views
for the different combinations.

When the larger base of the air cavity is turned downwards in correspondence with
the face of the sample on which the thermal source is applied, an evident local overheating
is detected. The heat in diffusing upwards inevitably encounters a wider barrier (air with
lower conductivity with respect to that of material) which hinders its propagation towards
the opposite upper face of the specimens.

By exploiting the potential of the simulator, it is possible to deepen the topic in order
to better understand the thermal diffusion inside the solid in these situations, which is
difficult to explore otherwise. From here onwards, the numerical simulations will focus
exclusively on the truncated cone air cavity with a large radius of 4.000 mm. This is because
its cross-sectional area variation along the thickness is wider than that of the truncated cone
with a radius of 3.500 mm.

Figure 19 shows the changes in temperature over time (TMAX, TAVERAGE and TMIN
evaluated on the entire domain) up to 150 s (top part of Figure) in the case of an air cavity
with a larger base down- and up-oriented in (a) and (b), respectively.
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Figure 19. Temperature evolutions (TMAX, TAVERAGE and TMIN, evaluated on the entire domain)
over time up to 150 s (top part of Figure) in the case of an air cavity with a larger base down- and
up-oriented in (a) and (b), respectively. The respective inserts show the difference between the two
temperatures TMAX–TMIN. In the lower parts of the figure, the 3D sectional views of the overall
temperature of the two solids at time t = 60 s are reported.

Comparing the two graphics, the different thermal behavior immediately stands out:
a larger thermal hysteresis appears in the results depicted in Figure 19a with respect to
those shown in Figure 19b. Even the peak of the maximum temperature detected appears
to be definitely more pronounced in the case of an air cavity with a large base facing down
(approximately 325 K against 320 K, to be exact), as well as that of the difference between
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the two temperature TMAX-TMIN reported in the inserts of the same figures (16 K against
14 K). All these observations are in favor of a better thermal behavior of the composite with
the air cavities with the larger base facing up, as experimentally observed. Moreover, the
same Figure 19 reports (in the respective lower parts) a particular 3D sectional view of the
samples that better highlights the thermal distribution previously discussed with reference
to the 2D views of previous Figure 18.

By deepening this numerical analysis, the different temperature profiles were observed
in correspondence with some suitably selected segments across the entire thickness, as
shown in Figure 20a,b, respectively. Furthermore, as shown in the same figure, the first
segment identified by the coordinates x = 0, y = 0 and z = 0 ÷ 3 corresponds to the axis of
symmetry of the sample, whereas the second segment (x = 2.554, y = 0 and z = 0 ÷ 3) was
selected because it crosses the center of the oblique side of the air cavity exactly.
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Figure 20. Selected segments through the entire thickness on which to evaluate the temperature
profiles for both orientations of the air cavity in (a) and (b), respectively. The recorded temperatures
on these segments are reported in (c–f), depending on the case.
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The temperatures are recorded at some specific instants of time until thermal equilib-
rium is reached (150 s) once the heat flux has been suppressed (60 s). The simulation results
are shown in Figure 20c–f, depending on the considered case.

It is important to highlight how, regardless of the case and the instant of observation
time, the slope of the temperatures varies along the thickness: it increases as soon as the
heat crosses the section that includes air with lower thermal conductivity. With reference to
Figure 20c,d, it can be observed that the temperature values along the selected segment
through the entire thickness (axis of symmetry in these cases) are appreciably higher when
the air cavity exposes its major base downwards, especially after the first instants of time,
after which the heat spreads with greater inertia due to the presence of air. The same
considerations are also valid in the cases reported in Figure 20e,f where the difference,
with respect to that analyzed above, lies only in the position of the selected segment and
therefore depends on the portion of material or material/air that the heat encounters
in its propagation. These additional numerical results also support the experimentally
observed results.

Moreover, temperature differences (∆Ti with i = 1, . . . ,6) are evaluated between a
reference level (it is assumed at quote z = 0 mm) and some particular cross-sections of the
simulated sample, as schematically represented in Figure 21a. Some of them intersect solids
exclusively in the material (at z-levels equal to 0.5, 2.5 and 3 mm) and others material/air (at
z-levels equal to 1, 1.5 and 2 mm). The numerical results (average values on the surfaces), in
the event that the air cavity has the larger base facing downwards or upwards, are reported
in Figure 21b,c, respectively.
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Figure 21. Some selected cross-sections for the evaluation of the temperature differences with respect
to the reference level in (a). Numerical results for both possibilities of orientations of the air cavity:
with the larger base facing down and up in (b) and (c), respectively.

Comparing these results, it can be observed that, as expected, the first temperature
difference (∆T1) is the same in both cases because the heat in the first phase and in the
considered sections (z = 0.5 mm) diffuses exclusively in the material, which is common. The
subsequent evaluations (∆Ti with i = 2, . . . , 6), on the other hand, differ from each other
because the diffusion of heat encounters material/air sections that differ in composition.
The sample with the air cavity with a larger base facing upwards (Figure 21c) always shows
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significantly lower temperature differences than those in which the cavity has the opposite
orientation (Figure 21b). This results in a more uniform distribution of heat inside the solid
due to its more efficient heat transfer. Therefore, this further numerical result is also in line
with the different values of thermal conductivity experimentally measured.

Finally, to conclude this numerical investigation, Figure 22 shows the results regarding
the variation in total internal energy over time (up to 150 s) for the two cases of orienta-
tion of the cavity (in (a) and (b), top side) considered in the present study, whereas the
corresponding 3D views (at t = 60 s) are presented on the lower parts of the same figure.
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Figure 22. Change in total internal energy (in all domain) over time (up to 150 s) for both possibilities
of orientation of the air cavity: with the larger base facing down and up in (a) and (b), upper sides,
respectively. In the corresponding lower parts of the figure, 3D views of the total internal energy at
time t = 60 s.

Regardless of the type of total internal energy observed (maximum, minimum, average
value or difference between maximum and minimum) in the presence of an air cavity with
larger base facing upward, the internal energy is clearly less compared to that with opposite
orientation. These results reflect the previously estimated temperature distributions in the
two samples once again since the energy variation ∆U is linked to them by the following
analytical relationship:

∆U = U
(

Tf

)
−U(Ti) (23)

where Tf and Ti indicate the initial and final temperatures of the solid, respectively. The
greater the difference between the two temperatures, the greater the change in energy.
The three-dimensional views of some sections of the internal energy allow us to inves-
tigate its distribution within the structures; in any case, maximum values are found in
correspondence with the air cavity due to the previosuly discussed local overheating.

4. Discussion

In recent years, academic and industrial research efforts have been dedicated to the
design of novel and advanced composites using nanoscale fillers. The main goals are the re-
duction in mass with consequent savings in materials and costs, and the improvement of the
overall properties, including the mechanical, electrical and thermal ones. Today, thermal-
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conductive polymer composites are increasingly assessed for heat transport applications
as alternatives to classic metals, such as aluminum and copper, which are high-density
materials. Moreover, polymer composites present a lot of benefits over conventional mate-
rials, which include easy processability, a higher strength-to-weight ratio, high resistance
to corrosion, and lower costs. In the present paper, the thermal conductivity of polymer
nanocomposites based on pure PLA and filled with 6 wt% of graphene nanoplatelets
(GNPs) has been experimentally, theoretically and numerically investigated.

Some disc-shaped specimens have been prepared via additive manufacturing (AM,
also known as 3D printing) based on fused deposition modelling (FDM), which is one
of the most widely used technologies as a result of its simplicity. Briefly, a thermoplastic
filament is melted and then extruded by a nozzle to build, on a bed-printing and layer-by-
layer process, the object according to a computer-aided design (CAD) model. The recent
progress in such fabrication processes, in terms of technology and materials that can be
used as feedstocks and dimensional accuracy of the 3D printed parts, has paved the way
for even a wider range of flexibilities in design and prototyping [44]. Benefiting from such
potential, the test specimens considered in the present study were provided with some ad
hoc designed air cavities to investigate the influence of their geometry and orientation on
the overall thermal properties of the resulting structures.

A preliminary morphological analysis has revealed a good interaction filler/matrix,
as well as a particular stacked arrangement of the graphene nanoparticles, which favors
the thermal transport due to the reduction in the interfacial and interparticle thermal
resistance. By introducing an amount of 6 wt% of GNPs, the experimental results show
an improvement of the thermal conductivity of approximately 101% compared to that of
neat PLA.

Similar interesting results are reported in the literature with reference to other ther-
moplastic polymers, such as polycarbonate [45] or thermosetting ones (including epoxy
resins [46,47]). The roles of filler introduction, and of the air cavity geometries and their
orientation have been systematically investigated first in an experimental manner, and then
interpreted with theoretical and simulation studies. Furthermore, a laser flash analysis
(LFA), based on non-contact measurements, is used to measure the thermal properties of
the designed structures since it is widely recognized as a fast, versatile and precise absolute
method for a variety of different materials and temperatures of interest. For a long time, the
thermal conductivity of polymers has been investigated within the academic and industrial
communities. The existing theories can be successfully applied to predict the thermal con-
ductivity of the polymers reinforced with conventional-sized microparticles [48]. What has
proven to be more complicated is the ability to estimate the thermal conductivity behavior
of the recent class of composites based on a filler of nanometer size since it depends on
a great variety of affecting parameters, such as the interfacial polarization, filler shape
and aspect ratio, and its dispersion state, among others. Kochetov et al. have proposed a
model specifically designed for the thermal conductivity of the polymer nanocomposites
which simultaneously accounts for the physical properties of the polymer matrix, the
nanofiller and their interfacial interaction [49]. Lambin et al. have presented numerical
calculations and an efficient homogenization theory to evaluate the thermal properties of
3D printed multifunctional structures with holes made of composite polymers filled with
nanocarbon particles [43]. Vega-Flick et al. have presented a review of recent studies of
thermal transport in nano-structured materials including methodologies and analysis of
measurements errors [50]. In the present study, to interpret the experimental results, a
combination of the theories mentioned above with the basic notions of thermal circuits has
been used. There is indeed an electrical analogy with conduction heat transfer that can be
applied to problem solving [51]. Today, computational modeling is a well-established and
consolidated activity in the field of material science for exploring, selecting, and designing
purposes [52,53]. Therefore, in the current work, multiphysics simulations based on a
finite element method (FEM) have been performed in order to support the experimental
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results and better understand the complex thermal phenomena that are manifested in such
complex structures.

It has been observed that with the same volume of air cavities and when the latter have
a constant cross-sectional area along the thickness, the geometry does not influence the
thermal conductivity. Instead, it is conditioned and depends inversely on the products of
the radiuses of the air cavities in the case in which the area of their cross section is variable.
Finally, an important role is also played by the orientation of the cavity in the case in which
they are truncated cone-shaped. Further thermal aspects and more complex air cavities
will be considered in a future paper to investigate the potential use of lightweight and
thermally conductive polymers in heat transfer applications.

5. Conclusions

This paper principally addressed the investigation of the thermal behavior of compos-
ites based on pure poly-lactic acid (PLA) and filled with a suitable amount of graphene
nanoplatelets (GNPs) produced via additive manufacturing (AM) of type fused deposition
modeling (FDM). Filaments (of our own production) of pure PLA and filled with 6 wt% of
GNPs have been used as feedstocks. Furthermore, benefiting of the extraordinary versa-
tility of design of the 3D printing technology, some disc-shaped specimens including ad
hoc designed air cavities have been prepared and then experimentally, theoretically and
numerically investigated. The aim of this paper has been to investigate the influence of
the incorporation of nanosized fillers, as well as the influence of the different air cavity
geometries and their orientations on the overall thermal conductivity of the resulting struc-
tures. Although the importance of theoretical studies is obvious, in light of the fundamental
support of the modelling activity to the experimental results, computational approaches
are encouraged in material science to discover new advanced materials or to deepen the
knowledge of the existing ones in order to proceed with their optimization. As the topic is
of great interest in the field of polymers, further studies will be devoted to investigating
increasingly complex and lightweight structures without the loss of overall performance.
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