

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

NATIONAL SENIOR CERTIFICATE

GRADE 12

MECHANICAL TECHNOLOGY: AUTOMOTIVE NOVEMBER 2024 MARKING GUIDELINES

MARKS: 200

These marking guidelines consist of 19 pages.

Please turn over

QUESTION 1: MULTIPLE-CHOICE (GENERIC)

1.1	A✓	(1)
1.2	D✓	(1)
1.3	A✓	(1)
1.4	B✓	(1)
1.5	D✓	(1)
1.6	C✓	(1) [6]

QUESTION 2: SAFETY (GENERIC)

2.1 Horizontal band saw (Already been switched on):

- Never leave the band saw unattended while in motion. ✓
- Switch off the band saw when leaving. ✓
- Use a brush or wooden rod to remove chips/swarf/filings. ✓
- When reaching around a revolving band saw, be careful that your clothes do not get caught in the blade. ✓
- Don't stop a revolving bandsaw blade with your hand. \checkmark
- Don't adjust the band saw while working. \checkmark
- Don't open any guard while in motion. ✓
- Keep hands away from action points. ✓
- Do not force the band saw blade into the material. ✓
- Apply cutting fluid if required. ✓
- Avoid overcrowding of persons around the machine. ✓
- Do not lean on the machine. ✓
- Check if the machine is running smoothly. ✓

2.2	First aid basic treatment:
-----	----------------------------

- Examination ✓
- Diagnosis ✓
- Treatment ✓

2.3 **Oxygen fittings with oil and grease:**

It forms a flammable mixture. ✓

2.4 **Disadvantages of the process layout:**

- Production is not always continuous. ✓
- Transportation costs between process departments may be high. ✓
- Additional time is spent in testing and sorting as the product moves to the different departments. ✓
- Damage to fragile goods may result from extra handling. ✓
- (Any 2 x 1) (2)

(Any 2 x 1)

(2)

(3)

(1)

2.5 Advantages of the product layout:

- Handling of material is limited to a minimum. ✓
- Time period of manufacturing cycle is less. ✓
- Production control is almost automatic. ✓
- Control over operations is easier. ✓
- Greater use of unskilled labour is possible. ✓
- Less total inspection is required. ✓
- Less total floor space is needed per unit of production. ✓

(Any 2 x 1)

[10]

(2)

QUESTION 3: MATERIALS (GENERIC)

3.1 **Filing test:**

3.1.1	Files easily ✓		(1)
-------	----------------	--	-----

- 3.1.2 Hard to file \checkmark (1)
- 3.1.3 Files easily \checkmark (1)

3.2 **Heat treatment:**

It is the heating \checkmark and cooling \checkmark of metals under controlled conditions / as to change their properties. \checkmark (3)

3.3 **Heating of metal:**

If metal is heated too fast, the outside of the metal becomes hotter \checkmark than the inside, \checkmark then it is very difficult \checkmark to achieve a uniform structure. \checkmark (4)

3.4 **Case hardening:**

- Low-carbon steel / Mild steel ✓
- Low-alloy steel ✓

3.5 **Tempering:**

- It is to relieve the strains ✓ induced during the hardening process. ✓
- Increase toughness. √√
- <u>Decrease brittleness</u>. √√
- <u>Achieve a finer grain structure</u>. √√

(Any 1 x 2) (2) [14]

(2)

QUESTION 4: MULTIPLE-CHOICE (SPECIFIC)

4.1	C✓	(1)
4.2	B✓	(1)
4.3	C✓	(1)
4.4	B✓	(1)
4.5	D✓	(1)
4.6	A✓	(1)
4.7	B✓	(1)
4.8	C✓	(1)
4.9	C✓	(1)
4.10	C✓	(1)
4.11	D✓	(1)
4.12	B✓	(1)
4.13	C✓	(1)
4.14	D✓	(1) [14]

QUESTION 5: TOOLS AND EQUIPMENT (SPECIFIC)

5.1	Compres	sion test procedures:	
	5.1.1	 Air filter removed: To allow maximum amount of air to enter the cylinder. ✓ 	
		 To get the correct reading ✓ (Any 1 x 1) 	(1)
	5.1.2	Clean around spark plug: Avoid dirt falling into the engine through the spark plug hole. \checkmark	(1)
	5.1.3	 Disconnect ignition system: To prevent a spark developing. ✓ To prevent a fire hazard. ✓ To prevent the possibility of shock. ✓ 	
		• To prevent the possibility of shock. • (Any 1 x 1)	(1)
	5.1.4	 Record readings: To check if there is a difference in the compression between each cylinder. ✓ To compare the compression in all cylinders to the specification. ✓ 	
		(Any 1 x 1)	(1)
5.2	Cylinder	leakage tester:	
	5.2.1	Labels: A. Pressure regulator ✓ B. Adapter hose/pipe ✓ C. Leakage gauge ✓	(3)
	5.2.2	Unit of measurement:	(0)
	-	kPa/Bar/PSI ✓	(1)
	5.2.3	Unit of measurement: Percentage (%) ✓	(1)

5.3 **Exhaust gas analyser:**

- The hot exhaust system should not be touched with the bare hand. \checkmark
- Perform the test in a well-ventilated area. \checkmark
- Keep hands and tools clear from moving engine parts. \checkmark
- Place the analyser in a secure position to prevent it from falling. \checkmark
- The inlet hose must not be restricted in any way. ✓
- The hose connections must be airtight. \checkmark
- Ensure no exhaust, manifolds or vacuum system leaks. \checkmark
- Condensate must be blown out of the hoses. ✓
- The condenser must be drained after each test. ✓
- When the paper filter becomes light grey, it should be changed. \checkmark
- The exhaust gas filter must be changed regularly. ✓
- Wear all necessary PPE. ✓
- Ensure that the gas analyser is safely connected to the battery. \checkmark

(Any 4 x 1) (4)

5.4 **On-board diagnostic scanner:**

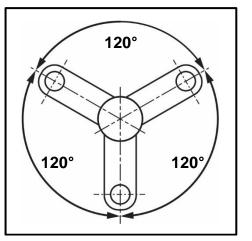
- Scan diagnostic trouble codes \checkmark
- Clear the trouble codes \checkmark
- Programme (e.g. make adjustment to electronic control unit) ✓
- Retrieve information ✓

(Any 2 x 1) (2)

5.5 Wheel balancing machine:

5.5.1	Identify: Wheel balancing machine ✓	(1)
5.5.2	 Functions: Balance a wheel dynamically. ✓ Balance a wheel statically. ✓ 	(2)
5.5.3	Safety device: Safety cover/hood/guard ✓	(1)
5.5.4	Calibration reason: So that the machine can display accurate/optimum results. \checkmark	(1)
	e camber with the bubble gauge: ure bubble gauge is on the centre of the wheel hub. ✓	

- 2. Level bubble gauge. ✓
- 3. Read the CAMBER angle. ✓


5.6

(3) **[23]**

QUESTION 6: ENGINES (SPECIFIC)

6.1		of the crankshaft: rt reciprocating motion \checkmark into rotary motion. \checkmark	(2)
6.2		ched to crankshaft nose: damper ✓	(1)
6.3	To reduLess twThe english	eating mass kept light: the engine vibrations. \checkmark risting force acting on the crankshaft. \checkmark gine is able to reach its speed sooner. \checkmark and rate of wear on the bore. \checkmark	
		(Any 1 x 1)	(1)
6.4	DetermTurn the	The firing order: ine which valves are the inlet or which are the exhaust valves. \checkmark e engine in the direction it rotates. \checkmark e the order in which the valves open to determine the firing	(3)
6.5	Engine c	onfiguration:	
	6.5.1	Type of engine configuration: Flat engine/boxer type engine/horizontally opposed engine ✓	(1)
	6.5.2	 Labels: A. Connecting rod ✓ B. Piston ✓ C. Crankshaft/Crankshaft nose ✓ 	(3)

6.6 **Crankpins of six-cylinder in-line engine:**

- THREE crankpins ✓
- Position of crankpins \checkmark
- Angles labeled ✓

(3)

6.7 **Turbochargers:**

6.7.1 Advantages:

- Increases engine torque. ✓
- Increases engine power. ✓
- Increases volumetric efficiency. ✓
- Improves fuel consumption. \checkmark
- No engine power sapped./Driven by exhaust gases. ✓
- Power loss due to low atmospheric pressure/high altitude eliminated. ✓
- Smaller capacity engine required for similar power output. ✓
- It is generally cheaper than a supercharger. \checkmark

(Any 3 x 1) (3)

(1)

(3) **[28]**

6.7.2 **Synthetic oil for turbochargers:**

- Can withstand high pressures. ✓
- Can withstand high temperatures. ✓
- Higher flash point. ✓
- Tends to have a low viscosity. ✓
- Capable of better cooling. ✓
- Faster flow rate. ✓
- (Any 2 x 1) (2)

6.7.3 **Turbocharger without vanes:** Non-variable turbocharger ✓

6.8 **Turbocharger terms:**

6.8.1 **Boost:**

Increase of intake manifold pressure \checkmark above atmospheric pressure. \checkmark (2)

6.8.2 **Turbo lag:**

The delay between pressing the accelerator pedal \checkmark and feeling the turbo kick in. \checkmark (2)

6.9 **Supercharger:**

6.9.1	Identify supercharger: Twin-Screw supercharger √	(1)

6.9.2 **Label supercharger:**

- A. Pulley ✓
- B. Casing/housing ✓
- C. Twin screw ✓

QUESTION 7: FORCES (SPECIFIC)

7.1 **Definition of terms:**

7.1.1 Clearance volume:

The volume of the space above the piston crown \checkmark in the cylinder when the piston is at TDC. \checkmark (2)

7.1.2 **Compression ratio:**

The relationship between the total volume \checkmark and the clearance volume \checkmark of a cylinder. (2)

7.2 Calculate the work done:

Calculate the work done.			
Work = force × distance		Work = force × distance	
$= F \times s$		$= F \times s$	
$=$ (690 \times 10) \checkmark 2 \checkmark	OR	$= (690 \times 9,81) \checkmark \times 2 \checkmark$	
= 13800 J 🧹		= 13537,8 J√	
= 13,8 k J		= 13,54 kJ	(3)

7.3 Methods to lower the clearance volume:

- Fit thinner gasket between cylinder block and cylinder head. \checkmark
- Fit piston with suitable higher crowns. ✓
- Machine (Skim) cylinder head. ✓
- Machine (Skim) engine block. ✓

(Any 2 x 1) (2)

(2)

7.4 **Cylinder:**

7.4.1 **Labels:**

A. Stroke length ✓

B. Bore/cylinder diameter √

7.4.2 **Calculate the swept volume**:

Swept volume =
$$\frac{\pi \times D^2}{4} \times L$$

= $\frac{\pi \times 8.3^2}{4} \checkmark 7.9 \checkmark$
= 427,44 cm³ √ (3)

7.4.3 **Calculate the clearance volume:**

$$CV = \frac{SV}{CR - 1} = \frac{427, 44}{9 - 1} \checkmark$$

= 53,43 cm³ \sqrt{ (3)}

7.5 Calculate the indicated power:

$$P = 1400 \times 10^{3}$$

$$L = \frac{110}{1000}$$

$$= 0,11 \text{ m }\checkmark$$

$$Area = \frac{\pi \times D^{2}}{4}$$

$$= \frac{\pi \times 0,1^{2}}{4} \checkmark$$

$$= 0,00785398 \text{ m}^{2} \checkmark$$

$$N = \frac{3600}{60 \times 2} \checkmark$$

$$= 30 \text{ firing strokes per second}$$

$$IP = PLANn = (1400 \times 10^{3}) \times (0,11) \times (0,00785398) \times (30) \times (4) \checkmark$$

= 145,14 kW \sqrt{ (7)}

 \checkmark

7.6.1	Torque:
	Torque = Force × radius
	$= 50 \checkmark \times \frac{350}{1000} \checkmark$ $= 17,5 \text{ Nm} \checkmark$

7.6.2 Brake power: $BP = 2\pi NT$ $= 2 \times \pi \times \frac{2000}{60} \checkmark \times 17,5 \checkmark$ = 3,67 kW ✓ (3)

Mechanical efficiency: 7.6.3

$$ME = \frac{BP}{IP} \times 100$$
$$= \frac{3.67}{50} \checkmark \times 100$$
$$= 7,33\% \checkmark$$
(2)
[32]

(3)

QUESTION 8: MAINTENANCE (SPECIFIC)

8.1 Exhaust gas analysis:

High carbon monoxide (CO) reading:

8.1.1 POSSIBLE CAUSES	8.1.2 CORRECTIVE MEASURES
 Too rich mixture. ✓ 	 Reset/adjust the air fuel mixture. ✓
 Dirty or restricted air filter. ✓ 	 Replace/Clean air filter. ✓
 Ignition misfire. ✓ 	 Repair ignition misfire. ✓
 Thermostat stuck open. ✓ 	 Replace thermostat. ✓
 Faulty coolant sensor. ✓ 	 Replace coolant sensor. ✓
 Blocked PCV valve. ✓ 	 Unblock/clean/replace PCV valve. ✓
 Faulty catalytic convertor. ✓ 	 Replace catalytic convertor. ✓
 Carburettor flooding. ✓ 	 Correct carburettor fault. ✓
 Choke valve stuck closed. ✓ 	 Repair choke valve. ✓
 Fuel pressure too high. ✓ 	 Check and repair the return fuel line
	of restrictions or kinks. 🗸
	 Replace fuel pressure regulator√
	 Select correct pump according to
	vehicle specification. 🗸
(Any 1 x 1)	(Any 1 x 1)

Low carbon dioxide (CO₂) reading:

8.1.3 POSSIBLE CAUSES	8.1.4 CORRECTIVE MEASURES
 Incorrect air-fuel mixture. ✓ 	 Reset/ adjust the air fuel mixture. ✓
 Dirty or restricted air filter. ✓ 	 Replace/Clean air filter. ✓
 Ignition misfire. ✓ 	 Repair ignition misfire. ✓
 Thermostat stuck open. ✓ 	 Replace thermostat. ✓
 Faulty coolant sensor. ✓ 	 Replace coolant sensor. ✓
 Blocked PCV valve. ✓ 	 Unblock clean/replace PCV valve. ✓
 Faulty catalytic convertor. ✓ 	 Replace catalytic convertor. ✓
 Carburettor flooding. ✓ 	 Correct carburettor fault. ✓
 Choke valve stuck closed. ✓ 	 Repair choke valve. ✓
 Fuel pressure too high. ✓ 	 Check and repair the return fuel line of restrictions or kinks. ✓
	 Replace fuel pressure regulator√
	 Select correct pump according to vehicle specification. ✓
 Exhaust gas leaks. ✓ 	 Repair exhaust leaks. ✓
 Vacuum leaks on the intake. ✓ 	• Repair vacuum leaks on the intake. \checkmark
(Any 1 x 1)	(Any 1 x 1)

(4)

(1)

8.2 **Compression test:**

Maximum variation allowed: 8.2.1 10% ✓

8.2.2 Low compression reading:

POSSIBLE CAUSES	CORRECTIVE MEASURES	
 Worn rings. ✓ 	 Fit new rings. ✓ 	
 Worn piston. ✓ 	 Fit new pistons. ✓ 	
 Worn bore. ✓ 	 Re-bore the cylinders or resleeve. ✓ 	
 Leaking inlet valve. ✓ 	 Replace or lap valve. ✓ 	
 Leaking exhaust valve. ✓ 	 Replace or lap valve. ✓ 	
 Blown head gasket. ✓ 	 Replace head gasket. ✓ 	
 Cracked cylinder head. ✓ 	 Replace or repair cylinder head. ✓ 	
Cracked engine block. ✓	 Replace engine block. ✓ 	
(Any 1 x 1)	(Any 1 x 1)	(2

8.3 Cylinder leakage test locations:

- Exhaust pipe/system ✓
- Intake system ✓
- Oil filler hole ✓
- Dipstick ✓
- Expansion tank/radiator ✓
- Adjacent spark plug hole ✓

(Any 4 x 1) (4)

8.4 Causes of a low oil pressure reading:

- Blocked strainer ✓
- Worn oil pump ✓
- Oil viscosity too low ✓
- Dirty oil ✓
- Low oil level ✓
- Blocked oil filter ✓
- Blocked oil channels ✓
- Excessive oil clearances ✓
- Defective pressure relief valve ✓

(Any 4 x 1) (4)

8.5 High fuel pressure reading:

POSSIBLE CAUSES	CORRECTIVE MEASURES
 Restriction in the return fuel line post the fuel tester. ✓ 	 Check and repair the return fuel line of restrictions or kinks. ✓
 Faulty fuel pressure regulator. ✓ 	 Replace fuel pressure regulator. ✓
 Wrong fuel pump used. ✓ 	 Select correct pump according to vehicle specification. ✓
(Any 2 x 1)	(Any 2 x 1)

8.6 **Cooling system pressure test manufacturers' specifications:**

- Coolant (Antifreeze-water) ratio. ✓
- Pressure in the cooling system. ✓
- Pressure on the radiator cap. ✓

(Any 2 x 1) (2)

8.7 **Functions of the radiator cap:**

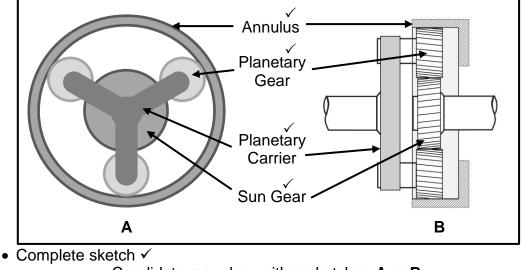
- Regulate the cooling system pressure. ✓
- Seals the cooling system from leaks. \checkmark
- Allows coolant to be drawn back into the radiator when engine cools down. \checkmark

(Any 2 x 1) (2)

[23]

Copyright reserved

QUESTION 9: SYSTEMS AND CONTROL (AUTOMATIC GEARBOX) (SPECIFIC)


9.1 Disadvantages of automatic gearbox:

- More expensive to manufacture. ✓
- Repairs are expensive. ✓
- Special tools and training needed to repair gearbox. ✓
- Special towing techniques must be used when towed over a long distance. ✓
- Generally heavier than a manual gearbox. ✓
- Vehicle cannot be push-started. ✓

9.2 Torque converter operation:

- The spinning pump/impeller throws the oil into the vanes of the turbine. \checkmark
- This turbine rotates the gearbox input shaft. ✓
- The oil circulates through the turbine vanes and strikes the stator. \checkmark
- The stator redirects the path of the oil in the direction of pump rotation. \checkmark
- Torque is multiplied when it leaves the pump again to enter the turbine. \checkmark (5)

9.3 Single epicyclic gear system:

Candidate may draw either sketches A or B.

9.4 Advantages of gear ratios:

9.4.1 Forward reduction (1st gear):

- Improved pull away of vehicle. ✓
- Increased torgue output. ✓
- Easier hill climbing. ✓

9.4.2 **Reverse gear:**

Vehicle is able to travel backwards. \checkmark (1)

(1)

(5)

(Any 2 x 1) (2)

	9.4.3	 Forward overdrive (5th gear): Increase speed ✓ Decrease engine revolutions ✓ Better fuel economy ✓ (Any 1 x 1) 	(1)
9.5	Compon	ents relating to an automatic gearbox:	
	9.5.1	 Hydraulic pistons: Control the brake bands which allows for the change of gear ratio. ✓ Engage the clutches which allows for the change of gear ratio. ✓ (Any 1 x 1) 	(1)
	9.5.2	Brake bands: The brake band holds the annulus stationary. ✓	(1)
	9.5.3	Transmission control unit: It controls the electronic gear shifting in an automatic gearbox. ✓	(1) [18]

QUESTION 10: SYSTEMS AND CONTROL (AXLES, STEERING GEOMETRY AND ELECTRONIC) (SPECIFIC)

10.1	Tyre wear	pattern:
------	-----------	----------

10.1.1	Cause the tyre wear pattern:	
	Camber 🗸	(1)

10.1.2 Faults on the vehicle suspension:

- Suspension misalignment ✓
- Worn wheel bearings ✓
- Bent strut ✓
- Bent/Damaged lower control arms ✓
- Damaged lower control arms bushes ✓
- Damaged strut mountings ✓
- Worn ball joints ✓

(Any 2 x 1) (2)

(Any 2 x 1)

(2)

(2)

(3)

(2)

10.1.3 **Correct tyre wear cause:**

- Re-align suspension ✓
- Replace wheel bearings ✓
- Replace strut ✓
- Replace lower control arm ✓
- Replace lower control arm bushes ✓
- Replace strut mountings ✓
- Replace ball joints ✓

10.2 **Definitions of alignment angles:**

Positive caster is the backward tilt of the king pin at the top, \checkmark when viewed from the side. \checkmark (2)

10.2.2 King pin inclination:

King pin inclination is the inward tilt of the top \checkmark of the king pin viewed from the front. \checkmark

10.3 Air-intake system sensors:

- Throttle position sensor (TPS) ✓
- Manifold absolute pressure sensor (MAP) ✓
- Mass air flow sensor (MAF) ✓
- Air intake temperature sensor. ✓
- 10.4 **Function of knock sensor:**
 - Senses engine knock. ✓
 - Sends signal to the ECU. ✓

(Any 3 x 1)

10.5	 ECU • Integra Spark 	ated coil 🗸			
	-	shaft position sensor ✓ (Any 2 x 1)	(2)		
10.6	CatalytiOxidatReduct		(2)		
10.7	 Control 	ns of the speed control system: ols the throttle opening electronically. ✓ the vehicle at a constant speed. ✓	(2)		
10.8	Alternat	Alternator:			
	10.8.1	Labels: A. Pulley ✓ B. Front bracket/Front cover/housing ✓ C. Bearing ✓ D. Stator ✓	(4)		
	10.8.2	 Rotor: Contains the slip rings ✓ which provides a movable electrical connection. ✓ Induces current ✓ flow into the stator. ✓ To create a rotating ✓ magnetic field/electromagnet. ✓ (Any 1 x 2) 	(2)		
	10.8.3	 Regulator: Controls voltage ✓ Controls current flow ✓ (Any 1 x 1) 	(1)		
	10.8.4	Function of the rectifier: Converts the AC \checkmark to DC. \checkmark	(2)		

19

10.9 **Injector:**

- The fuel pressure at the injector \checkmark
- Injection duration \checkmark
- Size of the injector nozzle hole/orifice \checkmark
- Throttle position ✓
- Amount of atmospheric pressure \checkmark
- Ambient temperature ✓
- Air-fuel ratio ✓
- Engine load ✓
- Engine speed (RPM) ✓
- Fuel type ✓
- Engine temperature√
- Fuel temperature✓

(Any 3 x 1) (3)

[32]

TOTAL: 200