

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

GRADE 12

MARKS: 200

These marking guidelines consist of 23 pages.

Please turn over

QUESTION 1: MULTIPLE-CHOICE (GENERIC)

1.1	A✓	(1)
1.2	D✓	(1)
1.3	A✓	(1)
1.4	B✓	(1)
1.5	D ✓	(1)
1.6	C✓	(1) [6]

QUESTION 2: SAFETY (GENERIC)

2.1 Horizontal band saw (Already been switched on):

- Never leave the band saw unattended while in motion. \checkmark
- Switch off the band saw when leaving. \checkmark
- Use a brush or wooden rod to remove chips/swarf/filings. ✓
- When reaching around a revolving band saw, be careful that your clothes do not get caught in the blade. ✓
- Don't stop a revolving bandsaw blade with your hand. \checkmark
- Don't adjust the band saw while working. \checkmark
- Don't open any guard while in motion. ✓
- Keep hands away from action points. ✓
- Do not force the band saw blade into the material. \checkmark
- Apply cutting fluid if required. ✓
- Avoid overcrowding of persons around the machine. \checkmark
- Do not lean on the machine. ✓
- Check if the machine is running smoothly. \checkmark

2.2 **First aid basic treatment:**

- Examination ✓
- Diagnosis ✓
- Treatment ✓

2.3 **Oxygen fittings with oil and grease:**

It forms a flammable mixture. $\bar{\checkmark}$

2.4 **Disadvantages of the process layout:**

- Production is not always continuous. ✓
- Transportation costs between process departments may be high. \checkmark
- Additional time is spent in testing and sorting as the product moves to the different departments. ✓
- Damage to fragile goods may result from extra handling. ✓

(Any 2 x 1) (2)

2.5 Advantages of the product layout:

- Handling of material is limited to a minimum. ✓
- Time period of manufacturing cycle is less. ✓
- Production control is almost automatic. ✓
- Control over operations is easier. ✓
- Greater use of unskilled labour is possible. \checkmark
- Less total inspection is required. \checkmark
- Less total floor space is needed per unit of production. ✓

(Any 2 x 1)

(2) **[10]**

(3)

(1)

(2)

(Any 2 x 1)

QUESTION 3: MATERIALS (GENERIC)

3.1 **Filing test:**

- 3.1.1 Files easily \checkmark (1)
- 3.1.2 Hard to file \checkmark (1)
- 3.1.3 Files easily \checkmark (1)

3.2 **Heat treatment:**

It is the heating \checkmark and cooling \checkmark of metals under controlled conditions / as to change their properties. \checkmark (3)

3.3 **Heating of metal:**

If metal is heated too fast, the outside of the metal becomes hotter \checkmark than the inside, \checkmark then it is very difficult \checkmark to achieve a uniform structure. \checkmark (4)

3.4 **Case hardening:**

- Low-carbon steel / Mild steel ✓
- Low-alloy steel ✓

3.5 **Tempering:**

- It is to relieve the strains ✓ induced during the hardening process. ✓
- Increase toughness. √√
- <u>Decrease brittleness</u>. √√
- <u>Achieve a finer grain structure</u>. √√

(Any 1 x 2) (2) [14]

(2)

QUESTION 4: MULTIPLE-CHOICE (SPECIFIC)

4.1	B✓	(1)
4.2	A✓	(1)
4.3	B✓	(1)
4.4	C✓	(1)
4.5	D✓	(1)
4.6	D✓	(1)
4.7	C✓	(1)
4.8	A✓	(1)
4.9	B✓	(1)
4.10	C✓	(1)
4.11	A✓	(1)
4.12	D✓	(1)
4.13	A✓	(1)
4.14	C✓	(1) [14]

QUESTION 5: TERMINOLOGY (LATHE AND MILLING MACHINE) (SPECIFIC)

5.1 **Disadvantages:**

- The automatic feed of the machine cannot be used. \checkmark
- Only short length tapers can be cut. ✓
- It causes fatigue in the operator. \checkmark
- Poor finish. ✓ •

(Any 3 x 1) (3)

Taper calculations: 5.2

5.2.1

Small diameter:

$$\tan \frac{\theta}{2} = \frac{D-d}{2 \times l} \qquad \tan 3.5 = \frac{x}{368}$$

$$\tan \frac{7}{2} = \frac{85-d}{2 \times 368} \checkmark \qquad x = 368 \tan 3.5 \checkmark$$

$$x = 22,51 \text{ mm} \checkmark$$
736 × tan3,5 = 85 - d
45,02 = 85 - d
d = 85 - 45,02
d = 39,98 \text{ mm} \checkmark
(4)

5.2.2 Set-over of the tailstock:
Set-over
$$= \frac{L(D-d)}{2l}$$

 $= \frac{488(85-39,98)}{2 \times 368} \checkmark$
 $= 29,85 \text{ mm} \checkmark$

5.3 Key ways:

> 5.3.1 Width: W

Vidth =
$$\frac{D}{4}$$

Width =
$$\frac{105}{4}$$
 \checkmark
= 26,25 mm \checkmark (2)

(3)

5.3.2 **Thickness:**

Thickness = $\frac{D}{6}$

Thickness =
$$\frac{105}{6}$$
 <

$$= 17,50 \,\mathrm{mm} \,\sqrt{}$$
 (2)

5.3.3 Length:

Length = 1,5 × diamter of shaft = 1,5 × 105 \checkmark = 157,50 mm \checkmark

5.4 **Safety milling:**

- Do not use your hands to remove cuttings while the machine is in motion. \checkmark
- Use a brush once the machine has stopped. ✓
- Resist the habit of leaning on machinery. ✓
- Do not talk to anyone while you are operating the machine. \checkmark
- Place saw dust, or oil-absorbing compounds on slippery floors. ✓
- Use a piece of leather or cloth for protection when you handle milling cutters. / Do not use your bare hands when you handle milling cutters.
- Use safety goggles when cutting. ✓
- Do not reach over or near rotating cutters. ✓
- Never leave the machine running unattended. ✓
- Make sure all guards are in place. ✓
- Do not use the machine or come close to its moving parts while wearing loose clothes. ✓
- Never use an air hose to clean the milling machine. ✓
- Stop the machine before you make any adjustments or take measurements. \checkmark
- Check that there is no oil or grease on the floor around the machine. \checkmark
- Always clamp workpieces and holding devices safely and firmly. \checkmark
- Do not use excessive force on the workpiece. \checkmark

(Any 2 x 1) (2)

[18]

(2)

(2)

QUESTION 6: TERMINOLOGY (INDEXING) (SPECIFIC)

6.1 Gear terminology:

6.1.2

6.1.1 **Circular pitch:**

$$CP = m \times \pi$$

 $= 3 \times \pi \checkmark$
 $= 9,42 \text{ mm} \checkmark$

Number of teeth: $m = \frac{PCD}{T} \qquad PCD = \frac{CP \times T}{\pi}$ $T = \frac{PCD}{m} \checkmark \qquad OR \qquad 186 = \frac{9,42 \times T}{\pi} \checkmark$ $T = \frac{186}{3} \checkmark \qquad T = \frac{186 \times \pi}{9,42} \checkmark$ $T = 62 \text{ teeth } \checkmark$

=62 teeth \checkmark (3)

6.1.3 **Dedendum:**

Dedendum =1,157 \times m		Dedendum =1,25 \times m	
=1,157 ×3 ✓	OR	=1,25 × 3 🗸	
=3,47 mm ✓		=3,75 mm√	(2)

 \checkmark

6.2 **Dovetails:**

Maximum width distance of dovetail: (W) 6.2.1

Calculate DE or y:

$$\tan \alpha = \frac{DE}{AD}$$

$$DE = \tan \alpha \times AD \checkmark \qquad OR$$

$$= \tan 30^{\circ} \times 32^{\checkmark}$$

$$= 18,48 \text{ mm} \checkmark \qquad OR$$

$$\tan \theta = \frac{AD}{DE}$$

$$\tan 60^{\circ} = \frac{32}{DE} \checkmark$$

$$DE = \frac{32}{\tan 60^{\circ}} \checkmark$$

$$= 18,48 \text{ mm} \checkmark$$

$$W = 125 + 2(DE) \checkmark$$

$$= 125 + 2(18,48) \checkmark$$

$$= 125 + 36,96$$

$$= 161,96 \text{ mm} \checkmark$$

(6)

6.2.2 Distance over the rollers: (M)

Calculate AC or x:

$$Tan \alpha = \frac{BC}{AC}$$

$$AC = \frac{BC}{Tan\alpha} \checkmark$$

$$\operatorname{Tan} \theta = \frac{\operatorname{AC}}{\operatorname{BC}}$$

$$AC = Tan \theta \times BC \checkmark$$

OR

=Tan60° × 7 ✓

=12,12 mm√

 $M = w + [(2(AC) + 2(R))] \checkmark$

= 125 + (24,24 + 14)

= 163,24 mm ✓

OR

M = w + 2(AC + R) \checkmark

= 125 + 24,24 + 14

= 163,24 mm ✓

OR

 $M = w + 2(AC) + 2(R) \checkmark$

= 125 + 24,24 + 14

= 163,24 mm ✓

= 125 + 2(12,12) + 2(7) \checkmark

= 125 + 2(12,12 + 7) ✓

= 125 + [2(12,12) + 2(7)] \checkmark

 $=\frac{7}{\mathrm{Tan30}^{\circ}}$ 🗸

(6)

6.3 Milling of spur gear:

6.3.1 Indexing:

Indexing =
$$\frac{40}{n}$$

= $\frac{40}{101}$
Indexing = $\frac{40}{A}$
= $\frac{40}{100}$ \checkmark
= $\frac{2}{5} \times \frac{5}{5} \checkmark$
= $\frac{10}{25} \checkmark$

Approximate indexing:

No full turns and 10 holes on a 25-hole circle \checkmark

OR

No full turns and 12 holes on a 30-hole circle \checkmark (4)

Change gears: 6.3.2

$$\frac{Dr}{Dn} = (A - n) \times \frac{40}{A}$$

$$\frac{Dr}{Dn} = (100 - 101) \times \frac{40}{100} \checkmark$$

$$= -1 \times \frac{40}{100} \qquad \text{OR}$$

$$= \frac{-40}{100} \checkmark$$

$$\frac{Dr}{Dn} = \frac{40}{100} \checkmark$$

$$\frac{Dr}{Dn} = \frac{(A-n)}{A} \times \frac{40}{1}$$

$$\frac{Dr}{Dn} = \frac{(100-101)}{100} \times \frac{40}{1}$$

$$= -\frac{2}{5} \times \frac{20}{20} \checkmark$$

$$\frac{Dr}{Dn} = \frac{40}{100} \checkmark$$
(5)
[28]

(5)

QUESTION 7: TOOLS AND EQUIPMENT (SPECIFIC)

7.1	.1 Different indenters:		
	7.1.1 On the anvil/platform. ✓	(1)	
	 7.1.2 • By calculation ✓ • Using the table ✓ 	(2)	
7.2	Label A-D:		
	 A. Datum line/Reading line ✓ B. Fixed anvil ✓ C. Thimble ✓ D. Ratchet ✓ 	(4)	
7.3	Function of screw thread micrometer:		
	To measure \checkmark the pitch diameter \checkmark of a screw thread.	(2)	
7.4	Height of a screw thread:		
	$H = 0,866 \times Pitch (P) H = 0,866 \times 2,5 \checkmark H = 2,17 mm \checkmark$	(2)	
7.5	Reading of depth micrometer:		
	The depth micrometer reads in the opposite direction. / In a depth micrometer the reading is taken from right to left and a screw thread micrometer reads from left to right on the datum line. \checkmark	(1)	
7.6	Interchangeable rods:		
	• Interchangeable rods are used to measure extra depth. \checkmark		

• Interchangeable rods are used to measure more than 25 mm. \checkmark

(Any 1 x 1) (1)

[13]

QUESTION 8: FORCES (SPECIFIC)

8.1 **System of forces:**

8.1.1 \sum Horizontal component:

 $\Sigma HC = 45\cos 90^{\circ} - 25\cos 30^{\circ} - 80\cos 45^{\circ} + 150\cos 30^{\circ}$ $\checkmark \qquad \checkmark \qquad \checkmark \qquad \checkmark$ $\Sigma HC = 0 - 21,65 - 56,57 + 129,90$

 $\Sigma HC = 51,68N$ \checkmark

8.1.2 \sum Vertical component:

$$\sum VC = 45\sin 90^{\circ} + 25\sin 30^{\circ} - 80\sin 45^{\circ} - 150\sin 30^{\circ}$$

$$\sum VC = 45 + 12,5 - 56,57 - 75$$

$$\sum VC = -74,07 \text{ N } \checkmark$$

(5)

(4)

OR

Force	θ	8.1.2 ∑VC/y = Fsinθ		8.1.1 ∑HC/x = Fcosθ	
45N	90°	VC = 45sin90°	45 N ✓	$HC = 45\cos 90^{\circ}$	0 N
25N	150°	VC = 25sin150°	12,5 N ✓	HC = 25cos150°	-21,65 N ✓
80N	225°	VC = 80sin225°	- 56,57 N ✓	HC = 80cos225°	-56,57 N ✓
150N	330°	VC = 150sin330°	-75 N ✓	HC = 150cos330°	129,90 N√
		Total	-74,07N ✓		51,68N ✓

8.1.3 Resultant: $R^{2} = VC^{2} + HC^{2}$ $\sqrt{R^{2}} = \sqrt{(-74,04)^{2} + (51,68)^{2}} \checkmark$ $R = 90,32 N \checkmark$

8.1.4 Angle and direction of equilibrant:

$$\tan \theta = \frac{VC}{HC}$$
$$\theta = \tan^{-1} \left(\frac{-74,07}{51,68} \right) \checkmark$$
$$\theta = 55,10^{\circ} \checkmark$$

OR

$$\tan \alpha = \frac{\text{HC}}{\text{VC}}$$
$$\alpha = \tan^{-1} \left(\frac{51,68}{-74,07} \right) \checkmark$$
$$\alpha = 34,90^{\circ} \checkmark$$

Direction:

E = 90,32 N 55,10° N from W \checkmark OR E = 90,32 N 34,90° W from N \checkmark OR E = At a Bearing of 325,10°

(3)

(2)

(2)

8.2 Calculations, UDL and supports A and B.

8.2.1 UDL:

 $UDL = 10 \text{ N/m } x 4 \text{ m } \checkmark$ $UDL = 40 \text{ N} \checkmark$

8.2.2 Reaction in support A: Take moments about B: Σ LHM = Σ RHM

$$(60 \times 1,5) + (40 \times 5) + (75 \times 11) = (A \times 12) 90 + 200 + 825 = 12A A = \frac{1115}{12} A = 92,92 N \checkmark$$

Reaction in support B:

Take moments about A: $\Sigma LHM = \Sigma RHM$

8.3 **Stress calculations:**

8.3.1 **Stress:**

$$\sigma = \frac{F}{A}$$

$$\sigma = \frac{110000}{7,07 \times 10^{-4}} \checkmark$$

$$\sigma = 155586987, 3$$

$$\sigma = 155,59 \text{ MPa} \checkmark$$

(2)

(8)

8.3.2 Diameter:

$$A = \frac{\pi d^{2}}{4}$$

$$d = \sqrt{\frac{4A}{\pi}} \checkmark$$

$$d = \sqrt{\frac{4(7,07 \times 10^{-4})}{\pi}} \checkmark$$

$$d = 0,03 \text{ m} \checkmark$$

$$d = 30 \text{ mm} \checkmark$$

(4)

8.3.3 **The original length:**

$$\varepsilon = \frac{\Delta L}{oL}$$

$$oL = \frac{\Delta L}{\varepsilon} \checkmark$$

$$oL = \frac{0,0001}{1,64 \times 10^{-5}} \checkmark$$

$$oL = 6,1 \text{ m}$$

$$oL = 6097,56 \text{ mm} \checkmark$$

(3)	
[33]	

QUESTION 9: MAINTENANCE (SPECIFIC)

9.1 Mechanical drives:

- Gear drive ✓
- Belt drive ✓
- Chain drive ✓
- Hydraulic drives ✓
- Pneumatic drives ✓
- Shaft drives ✓

(Any 3 x 1) (3)

9.2 Maintenance on operating systems:

- Maintenance is to ensure that the system/machine always operates ✓ at an optimal level. ✓
- Prevent machinery from breakdown ✓ and let the machines last longer. ✓

(Any 1 x 2) (2)

(Any 3 x 1)

(3)

(2)

(1)

9.3 **Preventative maintenance procedures on gear drives:**

- Check and refill lubricant levels. ✓
- Ensure that gears are properly secured to shafts. ✓
- Cleaning and replacement of oil filters. ✓
- Reporting excessive noise and wear, vibration and overheating for expert attention. ✓
- Make sure that the gears are properly aligned. ✓
- Ensure that the correct type of oil/lubricant is used. ✓
- 9.4 **Subgroups of preventative maintenance**:
 - 5 1 1
 - Planned/Scheduled maintenance ✓
 - Condition-based maintenance ✓

9.5 **Polyester resins:**

To strengthen the glass fibre. \checkmark

9.6 **Lack of preventive maintenance:**

- Risk of injury. ✓
- Risk of death. ✓
- Financial loss. ✓
- Damage of machines/equipment. ✓
- Poor performance of machines/equipment. ✓
- Loss of valuable production time. ✓
- Damage to material/work piece. ✓

9.7 Thermo-hardened and thermoplastic composites:

Thermo-hardened: This material cannot be re-heated \checkmark to be softened, shaped and moulded.

Thermoplastic: These plastics can be re-heated \checkmark and therefore reshaped in various ways. \checkmark

(4) **[18]**

QUESTION 10: JOINING METHODS (SPECIFIC)

10.1 Square thread:

10.1.1 **Pitch diameter:**

Pitch=
$$\frac{\text{Lead}}{\text{Number of starts}}$$

= $\frac{40}{4}$ ✓
= 10 mm ✓

$$PD = OD - \frac{P}{2}$$

= 105 - $\frac{10}{2}$ \checkmark
= 100 mm \checkmark (4)

10.1.2 Helix angle of the thread:

$$Tan\theta = \frac{Lead}{\pi \times PD}$$

$$Tan\theta = \frac{40}{\pi \times 100} \checkmark$$

$$\theta = tan^{-1} (0, 127323954) \checkmark$$

$$= 7, 26^{\circ} \checkmark$$
(4)

10.1.3 Leading angle:

Leading angle =
$$90^{\circ}$$
 - (helix angle + clearance angle)
= 90° - (7,26° + 4°) \checkmark
= 78,74° \checkmark (2)

10.1.4 **Following angle:**

Following angle = 90° + (helix angle – clearance angle) = 90° + (7,26° – 4°) \checkmark = 93,26° \checkmark (2)

(4)

10.2 **Square thread:**

- A. Crest- /Outside- /Major- /Nominal diameter ✓
- B. Pitch- /Effective- /Mean diameter ✓
- C. Helix angle ✓
- D. Cutting tool ✓

10.3 Uses of square thread:

- Power transmissions ✓
- Vice screws ✓
- Lathe lead and feed screws / half nuts ✓
- Press screws ✓
- Clamping devices ✓
- Linear actuators ✓
- Adjustment mechanisms ✓
- Tapping and thread cutting ✓
- Threaded spindles ✓
- Lifting mechanisms ✓

(Any 2 x 1) (2) [18]

(2)

QUESTION 11: SYSTEMS AND CONTROL (DRIVE SYSTEMS) (SPECIFIC)

11.1 Hydraulic systems:

11.1.1 Fluid pressure:

$$P = \frac{F}{A}$$

$$P = \frac{600}{0.2} \checkmark$$

$$P = 3000 \text{ Pa} \checkmark$$

11.1.2 **Force applied:**

$$P = \frac{f}{a}$$

$$f = P \times a \quad \checkmark$$

$$f = 3000 \times 0,018 \quad \checkmark$$

$$f = 54 \text{ N} \quad \checkmark$$
(3)

11.1.3 **Displacement** *l*:

$$V_{\text{Plunger}} = V_{\text{Ram}}$$

$$a \times \ell = A \times L$$

$$\ell = \frac{A \times L}{a} \checkmark$$

$$\ell = \frac{0.2 \times 0.03}{0.018} \checkmark$$

$$\ell = 0.333 \text{ m}$$

$$\ell = 333.3 \text{ mm} \checkmark$$
(3)

11.2 Hydraulic pressure:

Pressure gauge ✓	(1	I)
------------------	----	----

11.3 **Purpose of hydraulic filter:**

- To restrict dirt in system. ✓
- To protect the pump. \checkmark
- Protect the valves. ✓
- Protect the actuators. ✓

(Any 1 x 1) (1)

(Any 1 x 1)

(1)

11.4 Hydraulic valve:

11.4.1 **Identify valve:**

- Non-return valve ✓
- One-way valve ✓

11.4.2 Functions:

- Ensure one direction flow. ✓
- Prevent back flow. ✓
- Act as a pressure relief valve. ✓

(Any 2 x 1) (2)

11.5 Belt drive:

11.5.1 Rotational frequency:

$$N_{DN} \times D_{DN} = N_{DR} \times D_{DR}$$
$$N_{DR} = \frac{N_{DN} \times D_{DN}}{D_{DR}} \checkmark$$
$$N_{DR} = \frac{1100 \times 600}{220} \checkmark$$
$$N_{DR} = \frac{3000 \text{ r/min}}{60}$$
$$N_{DR} = 50 \text{ r/sec } \checkmark$$

11.5.2 **Torque:**

$$P = \frac{2 \times \pi \times N \times T}{60}$$
$$T = \frac{P \times 60}{2 \times \pi \times N} \checkmark$$
$$T = \frac{236,65 \times 10^3 \times 60}{2 \times \pi \times 1100} \checkmark$$
$$T = 2054,40 \text{ Nm} \checkmark$$

(4)

(3)

11.6 **Gear drive:**

11.6.1 Rotational frequency of the output shaft N_A in r/s:

N _{input}	Product of the number of teeth on driven gears
N _{output}	Product of the number of teeth on driving gears
$\frac{N_A}{N_A}$	$=\frac{T_{B} \times T_{D}}{\checkmark}$
N_{D}	$T_A \times T_C$
980 _	24 × 42 ✓
N _D	$45 \times 20 \checkmark$
N –	$45 \times 20 \times 980$
\mathbf{N}_{D} –	24 × 42
$N_{D} =$	875 r / min
$N_{D} =$	14,58 r / sec ✓

11.6.2 Gear ratio:

Gear	ratio –	Product of teeth	on driven gear
	1410 -	Product of teeth	on driver gear

Gear ratio =
$$\frac{24 \times 42}{45 \times 20} \checkmark$$

Gear ratio = 1,12 : 1 ✓

 $Gear \ ratio = \frac{N_{input}}{N_{output}}$

Gear ratio =
$$\frac{16,33}{14,58}$$
 \checkmark **OR** $\frac{980}{875}$ \checkmark

Gear ratio = 1,12 : 1 \checkmark

(3)

(4)

11.6.3 **Direction:**

Clockwise \checkmark

(1) **[28]**

