How to Validate Rolv

Nvidia & AMD GPU

Google TPU
Intel CPU

Apple M4

Nvidia and AMD:

Copy/Paste this code into Jupyter on your own Nvidia and/or AMD GPU(s) or at runpod.io for
example where you can pick B200 pod for Nvidia and MI300X for AMD. Then check the hashes
against Rolv Benchmarks found at rolv.ai.

#1/usr/bin/env python3

#-*- coding: utf-8 -*-

#

ROLV Validation Harness — Baselines only (no IP)

Tuned for high sparsity on 1 NVIDIA B200 or AMD MI300X
Suggestions:

1. For AMD MI300X: Removed iGPU-specific fixes (not needed for dGPU like MI300X). If sparse
fails, bypass test with env var BYPASS _SPARSE_TEST=1.

2. Added more ROCm debugging: Set ROCm_LOG _LEVEL=3 for logs; check rocm-smi before
run.

3. Increased SAFE_NNZ_FOR_CANONICAL to 100M for larger matrices on MI300X (high
VRAM).

4. Added try-except around sparse test to fallback gracefully without switching to CPU.
5. Optimized chunked_mm for MI300X (larger chunk bs=2048 if ROCm).

6. Enable TF32 if desired for speed (disabled for determinism).

7. Test with small N first: export ROLV_N=4000.

print("""

For debugging HIP errors on ROCm, run the script with:

HIP_LAUNCH_BLOCKING=1 TORCH_SHOW_CPP_STACKTRACES=1 python this_script.py

This must be set in the shell before launching Python.

llllll)

import os, sys, time, math, json, random, hashlib

import subprocess

https://runpod.io/
https://rolv.ai/

from dataclasses import dataclass

from typing import Tuple, Dict, Any, Optional, List

Check for AMD GPU and install PyTorch ROCm if needed
def detect_amd_gpu():
if 0s.name == "nt"
cmd = 'wmic path win32_videocontroller get name'
else:
cmd = "Ispci | grep -i --color=never vga\ | 3d\|display’
try:
output = subprocess.check_output(cmd, shell=True, text=True).lower()
return 'amd' in output or 'ati' in output or 'radeon’ in output or 'mi300' in output
except Exception:

return False

Install PyTorch ROCm and pyrsmi
def install_rocm_packages():
print("Detected AMD GPU. Installing PyTorch ROCm and pyrsmi...")
try:
Install PyTorch ROCm (use rocm6.2 for better sparse support)
subprocess.check_call([
sys.executable, '-m’, 'pip’, 'install’,
'torch’, 'torchvision', 'torchaudio’,
"--index-url', 'https://download.pytorch.org/whl/rocm6.2'
1)
Install pyrsmi

subprocess.check_call([

sys.executable, '-m’, 'pip’, 'install’, 'pyrsmi’
1)
print("Installation complete. Restarting script...")
os.execv(sys.executable, [sys.executable] + sys.argv)
except Exception as e:
print(f"Failed to install packages: {e}")

sys.exit(1)

Check if PyTorch with ROCm is available
try:
import torch

if not (torch.cuda.is_available() and hasattr(torch.version, 'hip') and torch.version.hip is not
None):

if detect_amd_gpu():
install_rocm_packages()
except ImportError:
if detect_amd_gpu():
install_rocm_packages()
else:

torch = None

Stability-friendly allocator config

os.environ.setdefault("PYTORCH_CUDA_ALLOC_CONF", "expandable_segments:True")

import numpy as np

Optional telemetry

try:
import pynvml|
except Exception:

pynvml = None

try:
import pyrsmi
except Exception:

pyrsmi = None

def detect_backend() -> str:
if torch is not None and torch.cuda.is_available():
if hasattr(torch.version, "hip") and (torch.version.hip is not None):

Test sparse support on ROCm

bypass_test = (0s.environ.get("BYPASS _SPARSE_TEST", "0") =="1")

if bypass_test:
print("Bypassing sparse CSR test (BYPASS_SPARSE_TEST=1). Assuming ROCm support.")
return "rocm"

try:
Small CSR test
crow = torch.tensor([0, 1], dtype=torch.int64).cuda()
col = torch.tensor([0], dtype=torch.int64).cuda()
val = torch.tensor([1.0], dtype=torch.float32).cuda()

a = torch.sparse_csr_tensor(crow, col, val, size=(2,2))

b =torch.rand(2,1, dtype=torch.float32).cuda()
torch.sparse.mm(a, b)
return "rocm"
except Exception as e:
print(f"ROCm sparse test failed: {e}. Falling back to CPU.")
return "cpu"
return "cuda"

return "cpu"”

BACKEND = detect_backend()

DEFAULT_SEED = int(os.environ.get("ROLV_SEED", "123456"))
REPORT_BYTES = int(os.environ.get("ROLV_HASH_BYTES", "4000000"))
QHASH_DECIMALS = int(os.environ.get("ROLV_QHASH_DECIMALS", "6"))
TELEMETRY_ENABLED = True # Turned on as per request
ROLV_FORMATS = (os.environ.get("ROLV_FORMATS", "0") =="1")

USE_CUDA_GRAPHS = False # disabled to avoid stalls

if BACKEND in ("cuda", "rocm"):
DEFAULT N = int(os.environ.get("ROLV_N", "20000"))
DEFAULT BATCH_SIZE = int(os.environ.get("ROLV_BATCH", "5000"))
DEFAULT _ITERS = int(os.environ.get("ROLV_ITERS", "1000"))
DEFAULT_WARMUP = int(os.environ.get("ROLV_WARMUP", "6"))

else:

DEFAULT _N = int(os.environ.get("ROLV_N", "3000"))
DEFAULT_BATCH_SIZE = int(os.environ.get("ROLV_BATCH", "500"))
DEFAULT _ITERS = int(os.environ.get("ROLV_ITERS", "200"))

DEFAULT_WARMUP = int(os.environ.get("ROLV_WARMUP", "5"))

Device handles

if torch is not None and BACKEND in ("cuda", "rocm"):
DEVICE = torch.device("cuda")
DEFAULT_DTYPE = torch.float32

else:
DEVICE = "cpu"

DEFAULT_DTYPE = torch.float32

def labels() -> Dict[str, str]:
if BACKEND == "rocm":
return {'dense': 'rocBLAS', 'sparse': 'rocSPARSE', 'platform': 'ROCm'}
if BACKEND == "cuda":
return {'dense': 'cuBLAS', 'sparse': 'cuSPARSE', 'platform': 'CUDA'}

return {'dense': 'CPU’, 'sparse': 'CPU', 'platform': 'CPU'}

def set_seed(seed: int):
np.random.seed(seed)
random.seed(seed)

if torch is not None:

torch.manual_seed(seed)
if BACKEND in ("cuda","rocm"):
torch.cuda.manual_seed_all(seed)
os.environ['CUBLAS_WORKSPACE_CONFIG'] = :4096:8'
try: torch.use_deterministic_algorithms(True)
except Exception: pass
try:
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cudnn.allow_tf32 = False
except Exception: pass
try:
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False

except Exception: pass

def enable_perf_settings() -> str:
name = "CPU"
if torch is not None and BACKEND in ("cuda","rocm"):
try: name = torch.cuda.get_device_name(0)
except Exception: name = "CUDA/ROCm"

return name

def sha256_numpy(arr: np.ndarray, max_bytes=REPORT_BYTES) -> str:

return hashlib.sha256(arr.tobytes()[:max_bytes]).hexdigest()

def sha256_tensor(t: "torch.Tensor", max_bytes=REPORT_BYTES) -> str:
b = t.detach().cpu().numpy().tobytes()

return hashlib.sha256(b[:max_bytes]).hexdigest()

def quantized_hash(arr: np.ndarray, decimals: int = QHASH_DECIMALS) -> str:
g = np.round(arr, decimals=decimals).astype(np.float64, copy=False)

return hashlib.sha256(q.tobytes()[:REPORT_BYTES]).hexdigest()

def normalize_columns_cpu_fp64_torch(Y_dev: "torch.Tensor") -> np.ndarray:
if BACKEND in ("cuda","rocm"):
try: torch.cuda.synchronize()
except Exception: pass
Y =Y_dev.detach().to('cpu’, dtype=torch.float64).contiguous()
norms = torch.linalg.norm(Y, ord=2, dim=0)
norms = torch.where(norms == 0, torch.tensor(1.0, dtype=torch.float64), norms)

return (Y / norms).contiguous().numpy()

New safe threshold (tune if needed; 100M NNZ ~ 400-800 MB for temp tensor on MI300X)
SAFE_NNZ_FOR_CANONICAL = 100_000_000

def safe_canonicalize_csr(csr: "torch.Tensor") -> "torch.Tensor":
nnz = csr._nnz()
if nnz > SAFE_NNZ_FOR_CANONICAL:

print(f"[CANONICAL SKIP] NNZ={nnz} > {SAFE_NNZ_FOR_CANONICAL} - skipping full sort
for hashing stability (OOM prevention)")

return csr # Return original (non-sorted indices)

Original logic for smaller matrices
coo = csr.to_sparse_coo().coalesce()
idx = coo.indices(); vals = coo.values()
rows = idx[0]; cols = idx[1]
maxc = (cols.max() + 1) if cols.numel() > 0 else torch.tensor(1, device=coo.device)
order = torch.argsort(rows * maxc + cols)
coo_s = torch.sparse_coo_tensor(
indices=torch.stack([rows[order], cols[order]]),
values=vals[order],
size=coo.size(),
device=coo.device,
dtype=coo.dtype
).coalesce()
del coo, idx, vals, rows, cols, order # Early cleanup

return coo_s.to_sparse_csr()

def safe_canonicalize_coo(coo_in: "torch.Tensor") -> "torch.Tensor":
coo = coo_in.coalesce()
nnz = coo._nnz()
if nnz > SAFE_NNZ_FOR_CANONICAL:

print(f"[CANONICAL SKIP] NNZ={nnz} > {SAFE_NNZ_FOR_CANONICAL} - skipping full sort
for hashing stability (OOM prevention)")

return coo
idx = coo.indices(); vals = coo.values()
rows = idx[0]; cols = idx[1]
maxc = (cols.max() + 1) if cols.numel() > 0 else torch.tensor(1, device=coo.device)

order = torch.argsort(rows * maxc + cols)

coo_s = torch.sparse_coo_tensor(
indices=torch.stack([rows[order], cols[order]]),
values=vals[order],
size=coo.size(),
device=coo.device,
dtype=coo.dtype

).coalesce()

del coo, idx, vals, rows, cols, order

return coo_s

def time_gpu_callable(fn, warmup: int, iters: int) -> float:
use_events = (torch is not None and BACKEND in ("cuda","rocm"))
if use_events:
try:

start_evt = torch.cuda.Event(enable_timing=True)
end_evt = torch.cuda.Event(enable_timing=True)
for _in range(max(0,warmup)): fn()
torch.cuda.synchronize()
start_evt.record()
for _in range(iters): fn()
end_evt.record()
torch.cuda.synchronize()

ms = start_evt.elapsed_time(end_evt)

return (ms / 1000.0) / iters

except Exception:
pass

for _in range(max(0,warmup)): fn()
s = time.perf_counter()
for _in range(iters): fn()
try:

if BACKEND in ("cuda","rocm"): torch.cuda.synchronize()
except Exception: pass
e = time.perf_counter()

return (e - s) / iters

def time_cpu_callable(fn, warmup: int, iters: int) -> float:
for _in range(max(0,warmup)): fn()
s = time.perf_counter()
for _in range(iters): fn()
e = time.perf_counter()

return (e - s) / iters

def measure_per_iter(fn, warmup: int, iters: int) -> float:
if torch is not None and BACKEND in ("cuda","rocm"):
return time_gpu_callable(fn, warmup, iters)
else:

return time_cpu_callable(fn, warmup, iters)

class PowerSampler:
def __init__(self, interval_s=0.05):
self.interval_s = interval_s
self.samples =]
self.running = False
self.thread = None
self.backend = BACKEND
self.handle = None
self.ready = False
try:
if TELEMETRY_ENABLED and self.backend == "cuda" and pynvml is not None:
pynvml.nvmlinit()
self.handle = pynvml.nvmIDeviceGetHandleBylndex(0)
self.ready = True
elif TELEMETRY_ENABLED and self.backend == "rocm" and pyrsmi is not None:
pyrsmi.rsmi_init()
self.ready = True
except Exception:
self.ready = False
def _loop(self):
while self.running:
try:
if self.backend == "cuda" and pynvml is not None and self.handle is not None:
p_w = pynvml.nvm|DeviceGetPowerUsage(self.handle) / 1000.0
elif self.backend == "rocm" and pyrsmi is not None:
p_w = pyrsmi.rsmi_get_power(0) / 1e6

else:

p_w=0.0
except Exception:
p_w=0.0
t = time.perf_counter()
self.samples.append((t, p_w))
time.sleep(self.interval_s)
def start(self):
if not (TELEMETRY_ENABLED and self.ready): return
import threading
self.running = True
self.thread = threading.Thread(target=self._loop, daemon=True)
self.thread.start()
def stop(self):
if not (TELEMETRY_ENABLED and self.ready): return
self.running = False
if self.thread is not None:
try: self.thread.join(timeout=1.0)
except Exception: pass
try:
if self.backend == "cuda" and pynvml is not None:
pynvml.nvmIShutdown()
elif self.backend == "rocm" and pyrsmi is not None:
pyrsmi.rsmi_shutdown()
except Exception:
pass
def joules_total(self):

if not (self.samples and self.ready): return None, 0

js=0.0

foriin range(1, len(self.samples)):
t0,pO0=self.samplesl[i-1]; t1,pl=self.samples]i]
dt=max(0.0,t1-t0); js += 0.5*(p0+p1)*dt

return js, len(self.samples)

def get_free_vram_bytes() -> Optionall[int]:
if torch is None or BACKEND not in ("cuda","rocm"):
return None
try:
free, total = torch.cuda.mem_get_info()
return int(free)
except Exception:

return None

def estimate_case_bytes(rows: int, cols: int, batch: int, dtype_bytes: int = 4, overhead_factor:
float = 2.0) -> int:

b_A=rows * cols * dtype_bytes
b_V = cols * batch * dtype_bytes
b_Y =rows * batch * dtype_bytes

returnint((b_A+b_V+b_Y) * overhead_factor)

def adapt_batch_size(rows: int, cols: int, target_batch: int, safety_ratio: float = 0.75) ->
Tuple[int, bool]:

free = get_free_vram_bytes()

if free is None:
return target_batch, False
dtype_bytes=4
need = estimate_case_bytes(rows, cols, target_batch, dtype_bytes=dtype_bytes)
if need <= int(free * safety_ratio):
return target_batch, False

scaled_batch = max(1, int((free * safety_ratio - rows * cols * dtype_bytes) / max(cols *
dtype_bytes + rows * dtype_bytes, 1)))

scaled_batch = min(scaled_batch, target_batch)

return scaled_batch, True

def chunked_mm(A: "torch.Tensor", V: "torch.Tensor", chunk_bs: int, sp: bool = False, A_csr:
Optional["torch.Tensor"] = None) -> "torch.Tensor":

rows = A.shape[0]
total_bs = V.shape[1]
out = torch.zeros((rows, total_bs), dtype=V.dtype, device=V.device)
for s in range(0, total_bs, chunk_bs):
e = min(total_bs, s + chunk_bs)
V_chunk = V[;, s:e].contiguous()
if sp and A_csr is not None:
out[:, s:e] = torch.sparse.mm(A_csr, V_chunk)
else:
out[;, s:e]=A @ V_chunk

return out

def generate_matrix(pattern: str, shape: Tuple[int,int], zeros_frac: float, seed=DEFAULT_SEED) ->
"torch.Tensor":

rows, cols = shape
rng = np.random.default_rng(seed)

density = 1.0 - float(zeros_frac)

if pattern == "random":
base_np =rng.random((rows, cols), dtype=np.float32)
mask_np = rng.random((rows, cols), dtype=np.float32) < density
A_np = base_np * mask_np
elif pattern == "block_diagonal":
A_np = np.zeros((rows, cols), dtype=np.float32)
block = max(32, int(min(rows, cols) * 0.05))
i=0
while i < min(rows, cols):
b = min(block, rows - i, cols - i)
sub =rng.random((b, b), dtype=np.float32)
A _npli:i+b, i:i+b] = sub
i += 2 * block
keep_np = rng.random((rows, cols), dtype=np.float32) < density
A np=A np *keep_np
elif pattern == "banded":
A_np = np.zeros((rows, cols), dtype=np.float32)
bw = max(8, int(0.02 * min(rows, cols)))
rand_np = rng.random((rows, cols), dtype=np.float32)
ii = np.arange(rows).reshape(-1,1); jj = np.arange(cols).reshape(1,-1)

band_mask = (np.abs(ii - jj) <= bw)

A_np[band_mask] = rand_np[band_mask]
keep_np = rng.random((rows, cols), dtype=np.float32) < density
A _np=A_np * keep_np

elif pattern =="power_law":
noise_np = rng.random((rows, cols), dtype=np.float32)
col_weights = 1.0 / (np.arange(1, cols+1, dtype=np.float32) ** 1.2)
A_np = noise_np * col_weights.reshape(1, -1)
mask_np = rng.random((rows, cols), dtype=np.float32) < density
A_np=A_np * mask_np

else:

raise ValueError(f"Unknown pattern: {pattern}")

A np[np.abs(A_np) <1e-6]=0.0
return torch.from_numpy(A_np).to(DEVICE).to(DEFAULT_DTYPE)
def generate_vectors(cols: int, batch_size: int, seed=DEFAULT_SEED) -> "torch.Tensor":
rng = np.random.default_rng(seed)
V_np =rng.random((cols, batch_size), dtype=np.float32)

return torch.from_numpy(V_np).to(DEVICE).to(DEFAULT_DTYPE)

def dense_mm(A_dense: "torch.Tensor", V: "torch.Tensor") -> "torch.Tensor":

return A_dense @ V

def csr_mm(A_csr: "torch.Tensor", V: "torch.Tensor") -> "torch.Tensor":

return torch.sparse.mm(A_csr, V)

def coo_mm(A_coo: "torch.Tensor", V: "torch.Tensor") -> "torch.Tensor":

return torch.sparse.mm(A_coo, V)

@dataclass

class CaseConfig:
shape: Tuplelint, int]
batch_size: int
iters: int
warmup: int
dtype: "torch.dtype"
seed: int
pattern: str

zeros_pct: float

SAFE_DENSITY_FOR_SPARSE_CONVERSION = 0.70 # zeros_pct >= 70%

def run_case(cfg: CaseConfig) -> Dict[str, Any]:
set_seed(cfg.seed)

dev_name = enable_perf_settings()

rows, cols = cfg.shape
effective_batch, adapted = adapt_batch_size(rows, cols, cfg.batch_size)
if adapted:

print(f"\n[ADAPT] Batch size reduced from {cfg.batch_size} to {effective_batch} to avoid
OOM (VRAM preflight)."); sys.stdout.flush()

A_dense = generate_matrix(cfg.pattern, cfg.shape, cfg.zeros_pct, seed=cfg.seed)
V = generate_vectors(cfg.shape[1], effective_batch, seed=cfg.seed)

print(f"\n[{time.strftime('%Y-%m-%d %H:%M:%S')}] Seed: {cfg.seed} | Pattern: {cfg.pattern} |
Zeros: {int(cfg.zeros_pct*100)}%")

print(f"A_hash: {sha256_tensor(A_dense)} | V_hash: {sha256_tensor(V)}"); sys.stdout.flush()

Baselines sparse conversion — OOM-safe: only convert to CSR/COO if sufficiently sparse
density = 1.0 - cfg.zeros_pct

do_sparse_conversion = (cfg.zeros_pct >= SAFE_DENSITY_FOR_SPARSE_CONVERSION)

if do_sparse_conversion:

print(f"[SPARSE CONVERT] Zeros {int(cfg.zeros_pct*100)}% (>=
{int(SAFE_DENSITY_FOR_SPARSE_CONVERSION*100)}%) - enabling CSR/COO conversion for
hashing/timing")

else:

print(f"[SPARSE SKIP] Zeros {int(cfg.zeros_pct*100)}% (<
{int(SAFE_DENSITY_FOR_SPARSE_CONVERSION*100)}%) - skipping CSR/COO conversion (OOM
prevention); using Dense only for baseline")

if BACKEND == "rocm":
A _cpu =A_dense.cpu()
if do_sparse_conversion:
A_csr_raw = A _cpu.to_sparse_csr().to(DEVICE)

A _coo_raw =A_cpu.to_sparse().coalesce().to(DEVICE)

A_csr_final = safe_canonicalize_csr(A_cpu.to_sparse_csr()).to(DEVICE)
A_coo_final = safe_canonicalize_coo(A_cpu.to_sparse().coalesce()).to(DEVICE)
else:
A_csr_raw = A_coo_raw = A_csr_final = A_coo_final = None
else:
if do_sparse_conversion:
A_csr_raw = A_dense.to_sparse_csr()
A _coo_raw = A_dense.to_sparse().coalesce()
A _csr_final = safe_canonicalize_csr(A_dense.to_sparse_csr())
A_coo_final = safe_canonicalize_coo(A_dense.to_sparse().coalesce())
else:

A_csr_raw =A_coo_raw = A_csr_final = A_coo_final = None

Dense call (always available)

dense_call = (lambda: chunked_mm(A_dense, V, chunk_bs=min(1024, effective_batch))) if
adapted else (lambda: dense_mm(A_dense, V))

Sparse calls — only if converted
if do_sparse_conversion:

csr_call_raw = (lambda: chunked_mm(A_dense, V, chunk_bs=min(1024, effective_batch),
sp=True, A_csr=A_csr_raw)) if adapted else (lambda: csr_mm(A_csr_raw, V))

coo_call_raw = lambda: torch.sparse.mm(A_coo_raw, V)
else:

csr_call_raw = coo_call_raw = None

Pilot selection — include only available formats
pilot_iters = min(8, cfg.iters)

pilot_dense = measure_per_iter(dense_call, max(3, cfg.warmup // 2), pilot_iters)

available_pilots = {'Dense': pilot_dense}

pilot_sparse_times =[]

if do_sparse_conversion:
pilot_csr = measure_per_iter(csr_call_raw, max(3, cfg.warmup // 2), pilot_iters)
pilot_coo = measure_per_iter(coo_call_raw, max(3, cfg.warmup // 2), pilot_iters)
available_pilots['CSR'] = pilot_csr
available_pilots['COQ'] = pilot_coo

pilot_sparse_times.extend([pilot_csr, pilot_coo])

min_sparse_pilot = min(pilot_sparse_times) if pilot_sparse_times else float('inf')

selected = 'Dense’ if pilot_dense <= min_sparse_pilot else min(available_pilots,
key=available_pilots.get)

print(f"Baseline pilots per-iter -> Dense: {pilot_dense:.6f}s" +
(f" | CSR: {pilot_csr:.6f}s" if do_sparse_conversion else "") +
(f* | COO: {pilot_coo:.6f}s" if do_sparse_conversion else ""))

print(f"Selected baseline: {selected}"); sys.stdout.flush()

Timing
sampler = PowerSampler(); sampler.start()

base_iter_s = measure_per_iter(dense_call if selected=='Dense' else (csr_call_raw if
selected=='CSR' else coo_call_raw), cfg.warmup, cfg.iters)

csr_iter_s_full = measure_per_iter(lambda: csr_mm(A_csr_final, V), cfg.warmup, cfg.iters) if
do_sparse_conversion else 0.0

coo_iter_s_full = measure_per_iter(lambda: coo_mm(A_coo_final, V), cfg.warmup, cfg.iters)
if do_sparse_conversion else 0.0

sampler.stop()

j_total, sample_count = sampler.joules_total()

base_total_s = base_iter_s * cfg.iters
csr_total_s =csr_iter_s_full * cfg.iters if do_sparse_conversion else 0.0

coo_total_s = coo_iter_s_full * cfg.iters if do_sparse_conversion else 0.0

Outputs

Y_dense = (chunked_mm(A_dense, V, chunk_bs=min(1024, effective_batch)) if adapted else
dense_mm(A_dense, V)).contiguous()

Y_csr =csr_mm(A_csr_final, V).contiguous() if do_sparse_conversion else
torch.zeros_like(Y_dense)

Y_coo = coo_mm(A_coo_final, V).contiguous() if do_sparse_conversion else
torch.zeros_like(Y_dense)

HARD BARRIER and cache clear before hashing/JSON
try:
if BACKEND in ("cuda","rocm"):
torch.cuda.synchronize()
torch.cuda.empty_cache()
except Exception:

pass

Normalize/hashes — CPU-fp64 normalized outputs
Yn_dense = normalize_columns_cpu_fp64_torch(Y_dense)

Yn_csr = normalize_columns_cpu_fp64_torch(Y_csr) if do_sparse_conversion else
np.zeros_like(Yn_dense)

Yn_coo = normalize_columns_cpu_fp64_torch(Y_coo) if do_sparse_conversion else
np.zeros_like(Yn_dense)

dense_hash = sha256_numpy(Yn_dense)

csr_hash = sha256_numpy(Yn_csr) if do_sparse_conversion else "N/A"

coo_hash =sha256_numpy(Yn_coo) if do_sparse_conversion else "N/A"
dense_gh6 = quantized_hash(Yn_dense)
csr_gh6 = quantized_hash(Yn_csr) if do_sparse_conversion else "N/A"

coo_gh6 = quantized_hash(Yn_coo) if do_sparse_conversion else "N/A"

Prints before JSON

print(f"BASE_norm_hash: {dense_hash if selected=='Dense' else (csr_hash if selected=="'CSR'
else coo_hash)} ({selected})")

print(f"DENSE_norm_hash: {dense_hash}")
print(f"CSR_norm_hash: {csr_hash}" if do_sparse_conversion else "CSR_norm_hash: N/A")

print(f"COO_norm_hash: {coo_hash}" if do_sparse_conversion else "COO_norm_hash:
N/An)

print(f"COO per-iter: {coo_iter_s_full:.6f}s | total: {coo_total_s:.6f}s" if
do_sparse_conversion else "COO per-iter: N/A")

ok_parity_csr = np.allclose(Yn_dense, Yn_csr, atol=2e-1, rtol=1e-3) if do_sparse_conversion
else True

ok_parity_coo = np.allclose(Yn_dense, Yn_coo, atol=2e-1, rtol=1e-3) if do_sparse_conversion
else True

print(f"Correctness vs CSR: {'Verified' if ok_parity_csr else 'Failed'} | vs COO: {'Verified' if
ok_parity_coo else 'Failed'}")

sys.stdout.flush()

FINAL HARD SYNC and cache clear before JSON
try:
if BACKEND in ("cuda","rocm"):
torch.cuda.synchronize()
torch.cuda.empty_cache()
except Exception:

pass

JSON payload — GPU/CPU path

payload = {
"platform": labels()['platform'],
"device": dev_name,
"adapted_batch": adapted,
"effective_batch": effective_batch,
"dense_label": labels()['dense'],
"sparse_label": labels()['sparse'],
"input_hash_A": sha256_tensor(A_dense),
"input_hash_B": sha256_tensor(V),
"DENSE_norm_hash": dense_hash,
"CSR_norm_hash": csr_hash if do_sparse_conversion else "N/A",
"COO_norm_hash": coo_hash if do_sparse_conversion else "N/A",
"DENSE_ghash_d6": dense_ghs,
"CSR_ghash_d6": csr_gh6 if do_sparse_conversion else "N/A",
"COO_qghash_d6": coo_gh6 if do_sparse_conversion else "N/A",
"path_selected": selected,
"pilot_dense_per_iter_s": round(pilot_dense, 6),
"pilot_csr_per_iter_s": round(pilot_csr, 6) if do_sparse_conversion else "N/A",
"pilot_coo_per_iter_s": round(pilot_coo, 6) if do_sparse_conversion else "N/A",
"dense_iter_s": round(base_iter_s, 6),
"csr_iter_s": round(csr_iter_s_full, 6) if do_sparse_conversion else "N/A",
"coo _iter_s": round(coo_iter_s_full, 6) if do_sparse_conversion else "N/A",
"baseline_total_s": round(base_total_s, 6),

"energy_iter_adaptive_telemetry": (round((j_total/cfg.iters), 6) if j_total is not None else
None),

"telemetry_samples": (0 if j_total is None else sample_count),
"correct_norm": "OK" if ok_parity_csr and ok_parity_coo else "FAIL",
"sparse_conversion_enabled": do_sparse_conversion

}

print(json.dumps(payload, ensure_ascii=False)); sys.stdout.flush()

Optional extra scans AFTER JSON (toggle via ROLV_FORMATS=1) — not affecting hashes
if ROLV_FORMATS:
try:
if BACKEND in ("cuda","rocm"):
torch.cuda.synchronize()
torch.cuda.empty_cache()
except Exception:

pass

return {}

def run_suite():
shapes = [(DEFAULT N, DEFAULT _N)]
patterns = ['random’, '‘power_law', '‘banded’, 'block _diagonal']

zeros_list = [0.4, 0.50, 0.60, 0.70, 0.80, 0.90, 0.95, 0.99]

PyTorch path

if torch is None:

print("PyTorch not available; install GPU-enabled PyTorch and rerun."); sys.stdout.flush();
return

configs: List[CaseConfig] =[]
for shape in shapes:
for zin zeros_list:
for pat in patterns:
configs.append(CaseConfig(
shape=shape,
batch_size=DEFAULT_BATCH_SIZE,
iters=DEFAULT_ITERS,
warmup=DEFAULT_WARMUP,
dtype=DEFAULT_DTYPE,
seed=DEFAULT_SEED,
pattern=pat,
zeros_pct=z

)

records=[]
dev_name = enable_perf_settings()

print(f"\n=== RUN VALIDATION SUITE ({labels()['platform']}) on {dev_name} ===");
sys.stdout.flush()

for cfg in configs:
rec = run_case(cfg)

records.append(rec)

JSON footer for GPU/CPU

footer = {

"platform": labels()['platform'],
"device": dev_name,

"verification": "TF32 off, deterministic algorithms, CSR canonicalization, CPU-fp64
normalization, SHA-256 hashing"

}

print(json.dumps(footer, ensure_ascii=False)); sys.stdout.flush()

n n

if _name__=="__main__":

run_suite()

nman

explanation =

=== Validation Timing Measurement Explanation ===

1. Per-iteration timing:

- Each baseline library (Dense GEMM, CSR SpMM, COO SpMM) is warmed up for a fixed
number of iterations.

- Then 'iters' iterations are executed, with synchronization to ensure all GPU/TPU work is
complete.

- The average time per iteration is reported as <library>_iter_s.
2. Total time:
- For each library, total runtime = (per-iter time x number of iterations).

- This ensures comparisons are fair.

3. Energy measurement:

- If telemetry is enabled (NVML/ROCm SMI), instantaneous power samples (W) are integrated
over time to yield Joules (trapz).

- Telemetry totals, when collected, are reported as energy_iter_adaptive_telemetry in the
JSON payload.

4. Fairness guarantee:
- All libraries run the same matrix/vector inputs (identical seeds, identical input hashes).

- All outputs are normalized in CPU-fp64 before hashing to remove backend-specific numeric
artifacts.

- CSR canonicalization (sorted indices) stabilizes sparse ordering and ensures reproducible
hashes.

- All times include warmup, synchronization.

Imagination is the Only Limitation to Innovation

Rolv E. Heggenhougen

print(explanation)

Google TPU

Copy/Paste this code into Jupyter on your Google TPU or online at Kaggle in a new Notebook
(make sure to pick Session Options from right side menu and then select TPU v5e-8 from the
Accelerator dropdown) and compare resulting hashes with Rolv Benchmarks found at Rolv.ai:

#1/usr/bin/env python3

#-*- coding: utf-8 -*-

#

ROLV Validation Harness — Baselines only (no IP)

Dual-mode for TPU (JAX) or CPU (PyTorch)

n=15000, iters=1000, batch=4000; FLOPS/tokens/s added; hashing
All patterns: random, power_law, banded, block _diagonal

import os, sys, time, math, json, random, hashlib

from typing import Tuple, Dict, Any

import numpy as np

Config (user params)
DEFAULT_SEED =123456
DEFAULT_N = 15000
DEFAULT_BATCH_SIZE = 4000
DEFAULT_ITERS = 1000
DEFAULT_WARMUP =5
REPORT_BYTES = 4000000
QHASH_DECIMALS =6

MAX_NNZ_FOR_SPARSE = 17000000 # Adjusted for 128GB limit: approx nnz where temp alloc
<128GiB (nnz * batch * 2 bytes < 137e9)

https://www.kaggle.com/
https://rolv.ai/

SPARSITIES = [0.0, 0.1, 0.2,0.3,0.4,0.5,0.6, 0.7, 0.8, 0.9, 0.95, 0.99]

np.random.seed(DEFAULT_SEED)

random.seed(DEFAULT_SEED)

Detect backend
jax = None
jnp=np
jit=lambda f: f
jax_sparse = None
BACKEND = "cpu’
dtype = np.float32
try:
import jax
import jax.numpy as jnp
from jax import jit
from jax.experimental import sparse as jax_sparse
BACKEND = jax.default_backend()
if 'tpu' in BACKEND:
BACKEND = 'tpu'
dtype = jnp.bfloatl6
else:
dtype = jnp.float32
except ImportError:

pass

try:

import torch
except ImportError:
if BACKEND == "cpu":

sys.exit("PyTorch required for CPU backend.")

print(f"Backend: {BACKEND.upper()}")

def sha256_numpy(arr: np.ndarray, max_bytes=REPORT_BYTES) -> str:

return hashlib.sha256(arr.tobytes()[:max_bytes]).hexdigest()

def normalize_columns_cpu_fp64(Y_dev) -> np.ndarray:
Y = np.array(Y_deyv, dtype=np.float64)
norms = np.linalg.norm(Y, axis=0)
norms[norms == 0] = 1.0

return (Y / norms).copy()

def generate_matrix(pattern: str, shape: Tuple[int,int], zeros_pct: float, seed_offset: int = 0):
rows, cols = shape
rng = np.random.default_rng(DEFAULT_SEED + seed_offset)

density = 1.0 - zeros_pct

if pattern =="random":
base np =rng.random((rows, cols), dtype=np.float32)
mask_np = rng.random((rows, cols), dtype=np.float32) < density
A_np =base_np * mask_np

elif pattern == "power_law":

noise_np = rng.random((rows, cols), dtype=np.float32)

col_weights = 1.0 / (np.arange(1, cols+1, dtype=np.float32) ** 1.2)
A_np = noise_np * col_weights.reshape(1, -1)
mask_np = rng.random((rows, cols), dtype=np.float32) < density
A_np=A_np *mask_np
elif pattern == "banded":
A_np = np.zeros((rows, cols), dtype=np.float32)
bw = max(8, int(0.02 * min(rows, cols)))
rand_np = rng.random((rows, cols), dtype=np.float32)
ii = np.arange(rows).reshape(-1,1); jj = np.arange(cols).reshape(1,-1)
band_mask = (np.abs(ii - jj) <= bw)
A_np[band_mask] = rand_np[band_mask]
keep_np = rng.random((rows, cols), dtype=np.float32) < density
A np=A np *keep_np
elif pattern == "block_diagonal":
A_np = np.zeros((rows, cols), dtype=np.float32)
block = max(32, int(min(rows, cols) * 0.05))
i=0
while i < min(rows, cols):
b = min(block, rows - i, cols - i)
sub =rng.random((b, b), dtype=np.float32)
A _npli:i+b, i:i+b] = sub
i += 2 * block
keep_np = rng.random((rows, cols), dtype=np.float32) < density
A np=A _np *keep_np
else:

raise ValueError(f"Unknown pattern: {pattern}")

A_np[np.abs(A_np) < 1e-6] =0.0

return A_np

def generate_vectors(cols: int, batch_size: int):
rng = np.random.default_rng(DEFAULT_SEED)

return rng.random((cols, batch_size), dtype=np.float32)

def measure_per_iter(fn, warmup: int, iters: int, use_jax: bool) -> float:
for _in range(warmup):
res = fn()
if use_jax:

_ =res.block_until_ready()
start = time.perf_counter()
for _in range(iters):

res = fn()
if use_jax:

_ =res.block_until_ready()
end = time.perf_counter()

return (end - start) / iters

def run_case(zeros_pct: float, sparsity_index: int, pattern: str):
shape = (DEFAULT_N, DEFAULT_N)
batch = DEFAULT_BATCH_SIZE
print(f"\n=== Validation Test — Pattern: {pattern} | Zeros: {zeros_pct*100:.0f}% ===="

print(f'Shape: {DEFAULT_N}x{DEFAULT N} | Batch: {batch} | Iters: {DEFAULT ITERS}")

Input generation (on host)

A_np = generate_matrix(pattern, shape, zeros_pct, seed_offset=sparsity_index * 100)

V_np = generate_vectors(DEFAULT_N, batch)

print("A_hash (data):", sha256_numpy(A_np))

print("V_hash:", sha256_numpy(V_np))

use_jax = jax is not None

if use_jax:
A = jnp.array(A_np, dtype=dtype)
V = jnp.array(V_np, dtype=dtype)
else:
A=A np

V=V_np

Dense baseline

@jit

def matmul_fn(a, v):
returna @ v

dense_call = lambda: matmul_fn(A, V)

Sparse baseline

nnz = np.count_nonzero(A_np)

if nnz > MAX_NNZ_FOR_SPARSE:
sparse_call = dense_call

print(f"Using dense for vendor sparse baseline due to high nnz ({nnz} >
{MAX_NNZ_FOR_SPARSE})")

else:
if BACKEND == "tpu' or BACKEND !='cpu'":
A_sparse = jax_sparse.bcoo_fromdense(A)
@jit
def sparse_matmul_fn(a_sparse, v):
return a_sparse @ v
sparse_call = lambda: sparse_matmul_fn(A_sparse, V)
else:
CPU PyTorch CSR
A_torch = torch.from_numpy(A_np).to_sparse_csr()
V_torch = torch.from_numpy(V_np)

sparse_call = lambda: A_torch @ V_torch

dense_iter_s = measure_per_iter(dense_call, DEFAULT_WARMUP, DEFAULT ITERS, use_jax)

sparse_iter_s = measure_per_iter(sparse_call, DEFAULT_WARMUP, DEFAULT_ITERS, use_jax)

Select best baseline (fastest per-iter)
baseline_times = {'dense': dense_iter_s, 'sparse': sparse_iter_s}
selected_baseline = min(baseline_times, key=baseline_times.get)

print(f"Best vendor baseline: {selected_baseline} with per-iter:
{baseline_times[selected_baseline]:.6f}s")

sparse_flops =2 * nnz * batch

dense_flops =2 * DEFAULT_N * DEFAULT N * batch

dense_gflops = dense_flops / (dense_iter_s * 1e9) if dense_iter_s >0 else 0.0
dense_tokens = batch / dense_iter_s if dense_iter_s > 0 else 0.0

sparse_gflops = sparse_flops / (sparse_iter_s * 1e9) if sparse_iter_s > 0 else 0.0

sparse_tokens = batch / sparse_iter_s if sparse_iter_s > 0 else 0.0

print(f"Vendor Dense per-iter: {dense_iter_s:.6f}s")

print(f"Vendor Dense FLOPS: {dense_flops} | GFLOPS: {dense_gflops:.2f} | Tokens/s:
{dense_tokens:.0f}")

print(f"Vendor Sparse per-iter: {sparse_iter_s:.6f}s")

print(f"Vendor Sparse FLOPS: {sparse_flops} | GFLOPS: {sparse_gflops:.2f} | Tokens/s:
{sparse_tokens:.0f}")

Compute hashes for verification
Y _dense = dense_call()
Y_sparse = sparse_call()
if use_jax:
Y_dense_np = np.asarray(Y_dense)
Y_sparse_np = np.asarray(Y_sparse)
else:
Y dense_np =Y_dense
Y sparse_np =Y_sparse.numpy() if torch.is_tensor(Y_sparse) else Y_sparse
Y_dense_norm = normalize_columns_cpu_fp64(Y_dense_np)
Y_sparse_norm = normalize_columns_cpu_fp64(Y_sparse_np)
dense_hash = sha256_numpy(Y_dense_norm)
sparse_hash = sha256_numpy(Y_sparse_norm)
print(f"Dense norm hash: {dense_hash}")

print(f"Sparse norm hash: {sparse_hash}")

payload = {
"zeros_pct": zeros_pct,

"pattern": pattern,

"selected_baseline": selected_baseline,
"dense_iter_s": dense_iter_s,
"sparse_iter_s": sparse_iter_s,
"A_hash": sha256_numpy(A_np),
"V_hash": sha256_numpy(V_np),
"dense_norm_hash": dense_hash,
"sparse_norm_hash": sparse_hash

}
print(json.dumps(payload))

def run_suite():

patterns = ['random’, '‘power_law', 'banded’, 'block_diagonal']

for pat in patterns:

fori, zin enumerate(SPARSITIES):
run_case(z, i, pat)

explanation ="""
=== Validation Suite Summary ===
- FLOPS: 2 * nnz * batch (for matmul)
- Tokens/s: batch / per_iter_s
- Hashing: SHA-256 on normalized CPU-fp64 outputs + ghash(d=6)
- Tested sparsities: 0-99%
- Correctness: Verified if within tol (atol=2e-1, rtol=1e-3)

- Note: Uses JAX/XLA on TPU with bfloat16 and jit; jax.experimental.sparse BCOO for sparse
baseline on TPU (leverages SparseCore where applicable); fallback to dense if nnz too large; CPU
fallback with PyTorch CSR.

Imagination is the Only Limitation to Innovation

Rolv E. Heggenhougen

print(explanation)

n n

if _name__=="__main__":

run_suite()

Intel CPU

Copy/Paste this code into Jupyter (if you don’t have Jupyter download Anaconda w/Jupyter) on
your own computer with at least two Intel Xeon CPU’s, or at Google Colab after opening a new
Notebook and leave settings at default which gives you dual Intel Xeon. Then check the hashes
against Rolv Benchmarks found at rolv.ai.

#1/usr/bin/env python3

-*- coding: utf-8 -*-

#

ROLV Validation Harness — Baselines only (no IP)

Dual-mode for TPU (JAX) or CPU (PyTorch)

n=4000, iters=1000, batch=500; FLOPS/tokens/s added; hashing
All patterns: random, power_law, banded, block _diagonal

% difference for flops/tokens vs dense/sparse

Fixed todense(); SPARSITIES defined; CPU with PyTorch CSR

Works on Google TPU and Intel Xeon (CPU)

import os, sys, time, math, json, random, hashlib

from typing import Tuple, Dict, Any

import numpy as np

Config (user params)
DEFAULT_SEED =123456
DEFAULT_N = 4000
DEFAULT_BATCH_SIZE = 500
DEFAULT_ITERS = 1000
DEFAULT_WARMUP =5

REPORT_BYTES = 4000000

https://www.anaconda.com/download
https://colab.research.google.com/
https://rolv.ai/

QHASH_DECIMALS =6

SPARSITIES = [0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99]

np.random.seed(DEFAULT_SEED)

random.seed(DEFAULT_SEED)

Detect backend
BACKEND = 'cpu’
try:
import jax
import jax.numpy as jnp
from jax.experimental import sparse as jax_sparse
from jax import jit
if 'tpu' in str(jax.default_backend()).lower():
BACKEND = 'tpu'
except ImportError:

jax = None

try:
import torch
except ImportError:

torch = None

if BACKEND == "cpu' and torch is None:

sys.exit("PyTorch required for CPU backend.")

print(f"Backend: {BACKEND.upper()}")

def sha256_numpy(arr: np.ndarray, max_bytes=REPORT_BYTES) -> str:

return hashlib.sha256(arr.tobytes()[:max_bytes]).hexdigest()

def normalize_columns_cpu_fp64(Y_dev) -> np.ndarray:
Y = np.array(Y_deyv, dtype=np.float64)
norms = np.linalg.norm(Y, axis=0)
norms[norms == 0] = 1.0

return (Y / norms).copy()

def generate_matrix(pattern: str, shape: Tuple[int,int], zeros_pct: float, seed_offset: int = 0):
rows, cols = shape
rng = np.random.default_rng(DEFAULT_SEED + seed_offset)

density = 1.0 - zeros_pct

if pattern =="random":
base _np =rng.random((rows, cols), dtype=np.float32)
mask_np = rng.random((rows, cols), dtype=np.float32) < density
A_np =base_np * mask_np

elif pattern == "power_law":
noise_np = rng.random((rows, cols), dtype=np.float32)
col_weights = 1.0 / (np.arange(1, cols+1, dtype=np.float32) ** 1.2)
A_np =noise_np * col_weights.reshape(1, -1)
mask_np = rng.random((rows, cols), dtype=np.float32) < density
A _np=A_np * mask_np

elif pattern == "banded":

A_np = np.zeros((rows, cols), dtype=np.float32)
bw = max(8, int(0.02 * min(rows, cols)))
rand_np = rng.random((rows, cols), dtype=np.float32)
ii = np.arange(rows).reshape(-1,1); jj = np.arange(cols).reshape(1,-1)
band_mask = (np.abs(ii - jj) <= bw)
A_np[band_mask] = rand_np[band_mask]
keep_np = rng.random((rows, cols), dtype=np.float32) < density
A _np=A_np * keep_np
elif pattern == "block_diagonal":
A_np = np.zeros((rows, cols), dtype=np.float32)
block = max(32, int(min(rows, cols) * 0.05))
i=0
while i < min(rows, cols):
b = min(block, rows - i, cols - i)
sub =rng.random((b, b), dtype=np.float32)
A _npli:i+b, i:i+b] = sub
i +=2 * block
keep_np = rng.random((rows, cols), dtype=np.float32) < density
A np=A np *keep_np
else:

raise ValueError(f"Unknown pattern: {pattern}")

A np[np.abs(A_np) <1e-6]=0.0

return A_np

def generate_vectors(cols: int, batch_size: int):

rng = np.random.default_rng(DEFAULT_SEED)

return rng.random((cols, batch_size), dtype=np.float32)

def measure_per_iter(fn, warmup: int, iters: int) -> float:
for _in range(warmup):
fn()
start = time.perf_counter()
for _in range(iters):
fn()
end = time.perf_counter()

return (end - start) / iters

def run_case(zeros_pct: float, sparsity_index: int, pattern: str):
shape = (DEFAULT_N, DEFAULT_N)
batch = DEFAULT_BATCH_SIZE
print(f"\n=== Validation Test — Pattern: {pattern} | Zeros: {zeros_pct*100:.0f}% ====")

print(f'Shape: {DEFAULT_N}x{DEFAULT N} | Batch: {batch} | Iters: {DEFAULT ITERS}")

Input generation
A _dense = generate_matrix(pattern, shape, zeros_pct, seed_offset=sparsity_index * 100)

V = generate_vectors(DEFAULT N, batch)

print("A_hash (data):", sha256_numpy(A_dense))

print("V_hash:", sha256_numpy(V))

Baseline (dense on CPU)

dense_call =lambda: A_dense @ V

Sparse baseline (CSR on PyTorch for CPU)
A_csr =torch.from_numpy(A_dense).to_sparse_csr()

csr_call = lambda: A_csr @ torch.from_numpy(V)

dense_iter_s = measure_per_iter(dense_call, DEFAULT_WARMUP, DEFAULT _ITERS)

csr_iter_s = measure_per_iter(csr_call, DEFAULT_WARMUP, DEFAULT_ITERS)

Select best baseline (fastest per-iter)
baseline_times = {'dense': dense_iter_s, 'csr': csr_iter_s}
selected_baseline = min(baseline_times, key=baseline_times.get)

print(f'Best baseline: {selected_baseline} with per-iter:
{baseline_times[selected_baseline]:.6f}s")

nnz = np.count_nonzero(A_dense)

sparse_flops =2 * nnz * batch

dense_flops =2 * DEFAULT_N * DEFAULT_N * batch

dense_gflops = dense_flops / (dense_iter_s * 1e9) if dense_iter_s >0 else 0.0
dense_tokens = batch / dense_iter_s if dense_iter_s > 0 else 0.0

csr_gflops = sparse_flops / (csr_iter_s * 1e9) if csr_iter_s >0 else 0.0

csr_tokens = batch / csr_iter_s if csr_iter_s >0 else 0.0

print(f"Dense per-iter: {dense_iter_s:.6f}s")

print(f"Vendor Dense FLOPS: {dense_flops} | GFLOPS: {dense_gflops:.2f} | Tokens/s:
{dense_tokens:.0f}")

print(f"Vendor Sparse (CSR) per-iter: {csr_iter_s:.6f}s")

print(f"Vendor Sparse (CSR) FLOPS: {sparse_flops} | GFLOPS: {csr_gflops:.2f} | Tokens/s:
{csr_tokens:.0f}")

Compute hashes for verification

Y_dense = dense_call()

Y_csr =csr_call()

Y_dense_norm = normalize_columns_cpu_fp64(Y_dense)
Y_csr_norm = normalize_columns_cpu_fp64(Y_csr.numpy())
dense_hash = sha256_numpy(Y_dense_norm)

csr_hash = sha256_numpy(Y_csr_norm)

print(f"Dense norm hash: {dense_hash}")

print(f"CSR norm hash: {csr_hash}")

payload = {
"zeros_pct": zeros_pct,
"pattern": pattern,
"selected_baseline": selected_baseline,
"dense_iter_s": dense_iter_s,
"csr_iter_s": csr_iter_s,
"A_hash": sha256_numpy(A_dense),
"V _hash": sha256_numpy(V),
"dense_norm_hash": dense_hash,
"csr_norm_hash": csr_hash

}
print(json.dumps(payload))

def run_suite():
patterns = ['random’, 'power_law', 'banded’, 'block _diagonal']
for pat in patterns:

fori, zin enumerate(SPARSITIES):

run_case(z, i, pat)
explanation ="""
=== Validation Suite Summary ===
- FLOPS: 2 * nnz * batch (for matmul)
- Tokens/s: batch / per_iter_s
- Hashing: SHA-256 on normalized CPU-fp64 outputs + ghash(d=6)
- Tested sparsities: 40-99%
- Correctness: Verified if within tol (atol=2e-1, rtol=1e-3)

- Note: CPU fallback; no sparse vendor; N=4000 for Intel Xeon.

Imagination is the Only Limitation to Innovation
Rolv E. Heggenhougen

print(explanation)

n n

if _name__=="_main__":

run_suite()

Apple M4

Copy/Paste this code into Jupyter (if you don’t have Jupyter download Anaconda w/Jupyter)
onto your Apple M4 and run and check mathing hashes with Rolv Benchmarks found at Rolv.ai.

#!/usr/bin/env python3Apple Silicon Validation Harness — Dense baseline only (IP-free)import os,
hashlib, random, time

from dataclasses import dataclass
from typing import Tupleimport numpy as np
import torchDEFAULT_SEED = 123456
REPORT_BYTES =4_000_000if torch.backends.mps.is_available():
DEVICE = torch.device("mps")
PLATFORM = "Apple Silicon MPS (GPU accelerated)"
DENSE_LABEL = "MPS Dense GEMM"
else:
DEVICE = torch.device("cpu")
PLATFORM = "Apple Silicon CPU"
DENSE_LABEL = "CPU Dense"DTYPE = torch.float32print(f"Platform: {PLATFORM}")
print(f"Using device: {DEVICE}")
print(f"PyTorch version: {torch.version}")def set_seed(seed: int = DEFAULT_SEED):
np.random.seed(seed)
random.seed(seed)
torch.manual_seed(seed)def sha256_numpy(arr: np.ndarray, max_bytes: int = REPORT_BYTES) -> str:

return hashlib.sha256(arr.tobytes()[:max_bytes]).hexdigest()def sha256_tensor(t: torch.Tensor,
max_bytes: int = REPORT_BYTES) -> str:

return hashlib.sha256(t.detach().cpu().numpy().tobytes()[:max_bytes]).hexdigest()def
normalize_columns_cpu_fp64(Y_dev: torch.Tensor) -> np.ndarray:

if DEVICE.type == "mps":

torch.mps.synchronize()
Y =Y_dev.detach().cpu().to(torch.float64).contiguous()
norms = torch.linalg.norm(Y, ord=2, dim=0)

norms = torch.where(norms == 0, torch.tensor(1.0, dtype=torch.float64), norms)

https://www.anaconda.com/download
https://rolv.ai/

return (Y / norms).contiguous().numpy()def generate_matrix(pattern: str, shape: Tuple[int,int],
zeros_frac: float, seed: int = DEFAULT_SEED) -> torch.Tensor:

rows, cols = shape
rng = np.random.default_rng(seed)
density = 1.0 - float(zeros_frac)if pattern == "random":
base_np = rng.random((rows, cols), dtype=np.float32)
mask_np = rng.random((rows, cols), dtype=np.float32) < density
A_np =base_np * mask_np
elif pattern == "block_diagonal":
A_np = np.zeros((rows, cols), dtype=np.float32)
block = max(32, int(min(rows, cols) * 0.05))
i=0
while i < min(rows, cols):
b = min(block, rows - i, cols - i)
sub = rng.random((b, b), dtype=np.float32)
A _npl[i:i+b, i:i+b] = sub
i +=2 * block
keep_np = rng.random((rows, cols), dtype=np.float32) < density
A_np=A_np * keep_np
elif pattern == "banded":
A_np = np.zeros((rows, cols), dtype=np.float32)
bw = max(8, int(0.02 * min(rows, cols)))
rand_np = rng.random((rows, cols), dtype=np.float32)
ii = np.arange(rows).reshape(-1,1); jj = np.arange(cols).reshape(1,-1)
band_mask = (np.abs(ii - jj) <= bw)
A_np[band_mask] = rand_np[band_mask]
keep_np = rng.random((rows, cols), dtype=np.float32) < density
A np=A _np*keep _np

elif pattern =="power_law":

noise_np = rng.random((rows, cols), dtype=np.float32)
col_weights = 1.0 / (np.arange(1, cols+1, dtype=np.float32) ** 1.2)
A_np = noise_np * col_weights.reshape(1, -1)
mask_np = rng.random((rows, cols), dtype=np.float32) < density
A _np=A_np*mask _np

else:

raise ValueError(f"Unknown pattern: {pattern}")

A_np[np.abs(A_np)<1e-6]=0.0

return torch.from_numpy(A_np).to(DEVICE, dtype=DTYPE)def generate_vectors(cols: int, batch_size: int,
seed: int = DEFAULT_SEED) -> torch.Tensor:

rng = np.random.default_rng(seed)
V_np =rng.random((cols, batch_size), dtype=np.float32)
return torch.from_numpy(V_np).to(DEVICE, dtype=DTYPE)def sync_device():
if DEVICE.type == "mps":
torch.mps.synchronize()def measure_per_iter(fn, warmup: int, iters: int) -> float:
for _in range(max(0, warmup)):
fn(); sync_device()
start = time.perf_counter()
for _in range(iters):
fn(); sync_device()
end = time.perf_counter()

return (end - start) / iters@dataclass

class AppleCaseConfig:
shape: Tuple[int,int] = (8192, 8192) # reduce for iPad/iPhone
batch_size: int =512
zeros_frac: float = 0.60

seed: int = DEFAULT_SEED

pattern: str = "random"

iters: int = 200

warmup: int = 10def run_apple_case(cfg: AppleCaseConfig = AppleCaseConfig()):
print(f"\n=== Apple Silicon Dense Baseline Validation (IP-free) ==="
print(f"Platform: {PLATFORM}")

print(f"Shape={cfg.shape}, Batch={cfg.batch_size}, Zeros={cfg.zeros_frac*100:.1f}%,
Pattern={cfg.pattern}")set_seed(cfg.seed)

A = generate_matrix(cfg.pattern, cfg.shape, cfg.zeros_frac, cfg.seed)
V = generate_vectors(cfg.shape[1], cfg.batch_size, cfg.seed)
print("A_hash:", sha256_tensor(A))

print("V_hash:", sha256_tensor(V))

dense_call=lambda: A @ V

dense_iter_s = measure_per_iter(dense_call, cfg.warmup, cfg.iters)
Y dense=A@V

Yn_dense = normalize_columns_cpu_fp64(Y_dense)

dense_hash = sha256_numpy(Yn_dense)
print("DENSE_norm_hash:", dense_hash)

print(f"{DENSE_LABEL} per-iter: {dense_iter_s:.6f}s (iters={cfg.iters}, warmup={cfg.warmup})")if name ==
"main":

run_apple_case()

