
How to Validate Rolv

Nvidia & AMD GPU

Google TPU

Intel CPU

Apple M4

Nvidia and AMD:

Copy/Paste this code into Jupyter on your own Nvidia and/or AMD GPU(s) or at runpod.io or

https://hotaisle.xyz/ for example where you can pick B200 pod for Nvidia and MI300X for AMD.

Then check the hashes against Rolv Benchmarks found at rolv.ai. The below code validates

sparsity 0, random (feel free to alter codeand test other levels), which is the first result under

Nvdia and AMD in the benchmarks.

#!/usr/bin/env python3

-*- coding: utf-8 -*-

Validation Harness — Baselines only (no custom IP)

print("""

For debugging HIP errors on ROCm, run the script with:

HIP_LAUNCH_BLOCKING=1 TORCH_SHOW_CPP_STACKTRACES=1 python this_script.py

This must be set in the shell before launching Python.

""")

import os, sys, time, math, json, random, hashlib

import subprocess

from dataclasses import dataclass

from typing import Tuple, Dict, Any, Optional, List

Check for AMD GPU and install PyTorch ROCm if needed

def detect_amd_gpu():

 if os.name == 'nt':

 cmd = 'wmic path win32_videocontroller get name'

 else:

 cmd = r'lspci | grep -i --color=never vga|3d|display'

 try:

https://runpod.io/
https://hotaisle.xyz/
https://rolv.ai/

 output = subprocess.check_output(cmd, shell=True, text=True).lower()

 return 'amd' in output or 'ati' in output or 'radeon' in output or 'mi300' in output

 except Exception:

 return False

Install PyTorch ROCm and pyrsmi

def install_rocm_packages():

 print("Detected AMD GPU. Installing PyTorch ROCm and pyrsmi...")

 try:

 # Install PyTorch ROCm (use rocm6.2 for better sparse support)

 subprocess.check_call([

 sys.executable, '-m', 'pip', 'install',

 'torch', 'torchvision', 'torchaudio',

 '--index-url', 'https://download.pytorch.org/whl/rocm6.2'

])

 # Install pyrsmi

 subprocess.check_call([

 sys.executable, '-m', 'pip', 'install', 'pyrsmi'

])

 print("Installation complete. Restarting script...")

 os.execv(sys.executable, [sys.executable] + sys.argv)

 except Exception as e:

 print(f"Failed to install packages: {e}")

 sys.exit(1)

Check if PyTorch with ROCm is available

try:

 import torch

 if not (torch.cuda.is_available() and hasattr(torch.version, 'hip') and torch.version.hip is not

None):

 if detect_amd_gpu():

 install_rocm_packages()

except ImportError:

 if detect_amd_gpu():

 install_rocm_packages()

 else:

 torch = None

Stability-friendly allocator config

os.environ.setdefault("PYTORCH_CUDA_ALLOC_CONF", "expandable_segments:True")

import numpy as np

Optional telemetry

try:

 import pynvml

except Exception:

 pynvml = None

try:

 import pyrsmi

except Exception:

 pyrsmi = None

=========================

Backend detection with sparse test for ROCm (bypass option)

=========================

def detect_backend() -> str:

 if torch is not None and torch.cuda.is_available():

 if hasattr(torch.version, "hip") and (torch.version.hip is not None):

 # Test sparse support on ROCm

 bypass_test = (os.environ.get("BYPASS_SPARSE_TEST", "0") == "1")

 if bypass_test:

 print("Bypassing sparse CSR test (BYPASS_SPARSE_TEST=1). Assuming ROCm support.")

 return "rocm"

 try:

 # Small CSR test

 crow = torch.tensor([0, 1], dtype=torch.int64).cuda()

 col = torch.tensor([0], dtype=torch.int64).cuda()

 val = torch.tensor([1.0], dtype=torch.float32).cuda()

 a = torch.sparse_csr_tensor(crow, col, val, size=(2,2))

 b = torch.rand(2,1, dtype=torch.float32).cuda()

 torch.sparse.mm(a, b)

 return "rocm"

 except Exception as e:

 print(f"ROCm sparse test failed: {e}. Falling back to CPU.")

 return "cpu"

 return "cuda"

 return "cpu"

BACKEND = detect_backend()

=========================

Global configuration (tuned for high sparsity, large N)

=========================

DEFAULT_SEED = int(os.environ.get("ROLV_SEED", "123456"))

REPORT_BYTES = int(os.environ.get("ROLV_HASH_BYTES", "4000000"))

QHASH_DECIMALS = int(os.environ.get("ROLV_QHASH_DECIMALS", "6"))

TELEMETRY_ENABLED = True # Turned on as per request

ROLV_FORMATS = (os.environ.get("ROLV_FORMATS", "0") == "1")

USE_CUDA_GRAPHS = False # disabled to avoid stalls

if BACKEND in ("cuda", "rocm"):

 DEFAULT_N = int(os.environ.get("ROLV_N", "20000"))

 DEFAULT_BATCH_SIZE = int(os.environ.get("ROLV_BATCH", "5000"))

 DEFAULT_ITERS = int(os.environ.get("ROLV_ITERS", "1000"))

 DEFAULT_WARMUP = int(os.environ.get("ROLV_WARMUP", "6"))

else:

 DEFAULT_N = int(os.environ.get("ROLV_N", "3000"))

 DEFAULT_BATCH_SIZE = int(os.environ.get("ROLV_BATCH", "500"))

 DEFAULT_ITERS = int(os.environ.get("ROLV_ITERS", "200"))

 DEFAULT_WARMUP = int(os.environ.get("ROLV_WARMUP", "5"))

Device handles

if torch is not None and BACKEND in ("cuda", "rocm"):

 DEVICE = torch.device("cuda")

 DEFAULT_DTYPE = torch.float32

else:

 DEVICE = "cpu"

 DEFAULT_DTYPE = torch.float32

def labels() -> Dict[str, str]:

 if BACKEND == "rocm":

 return {'dense': 'rocBLAS', 'sparse': 'rocSPARSE', 'platform': 'ROCm'}

 if BACKEND == "cuda":

 return {'dense': 'cuBLAS', 'sparse': 'cuSPARSE', 'platform': 'CUDA'}

 return {'dense': 'CPU', 'sparse': 'CPU', 'platform': 'CPU'}

=========================

Determinism & perf settings

=========================

def set_seed(seed: int):

 np.random.seed(seed)

 random.seed(seed)

 if torch is not None:

 torch.manual_seed(seed)

 if BACKEND in ("cuda","rocm"):

 torch.cuda.manual_seed_all(seed)

 os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8'

 try: torch.use_deterministic_algorithms(True)

 except Exception: pass

 try:

 torch.backends.cuda.matmul.allow_tf32 = False

 torch.backends.cudnn.allow_tf32 = False

 except Exception: pass

 try:

 torch.backends.cudnn.deterministic = True

 torch.backends.cudnn.benchmark = False

 except Exception: pass

def enable_perf_settings() -> str:

 name = "CPU"

 if torch is not None and BACKEND in ("cuda","rocm"):

 try: name = torch.cuda.get_device_name(0)

 except Exception: name = "CUDA/ROCm"

 return name

=========================

Hashing & normalization (parity-critical)

=========================

def sha256_numpy(arr: np.ndarray, max_bytes=REPORT_BYTES) -> str:

 return hashlib.sha256(arr.tobytes()[:max_bytes]).hexdigest()

def sha256_tensor(t: "torch.Tensor", max_bytes=REPORT_BYTES) -> str:

 b = t.detach().cpu().numpy().tobytes()

 return hashlib.sha256(b[:max_bytes]).hexdigest()

def quantized_hash(arr: np.ndarray, decimals: int = QHASH_DECIMALS) -> str:

 q = np.round(arr, decimals=decimals).astype(np.float64, copy=False)

 return hashlib.sha256(q.tobytes()[:REPORT_BYTES]).hexdigest()

def normalize_columns_cpu_fp64_torch(Y_dev: "torch.Tensor") -> np.ndarray:

 if BACKEND in ("cuda","rocm"):

 try: torch.cuda.synchronize()

 except Exception: pass

 Y = Y_dev.detach().to('cpu', dtype=torch.float64).contiguous()

 norms = torch.linalg.norm(Y, ord=2, dim=0)

 norms = torch.where(norms == 0, torch.tensor(1.0, dtype=torch.float64), norms)

 return (Y / norms).contiguous().numpy()

New safe threshold (tune if needed; 100M NNZ ~ 400-800 MB for temp tensor on MI300X)

SAFE_NNZ_FOR_CANONICAL = 100_000_000

def safe_canonicalize_csr(csr: "torch.Tensor") -> "torch.Tensor":

 nnz = csr._nnz()

 if nnz > SAFE_NNZ_FOR_CANONICAL:

 print(f"[CANONICAL SKIP] NNZ={nnz} > {SAFE_NNZ_FOR_CANONICAL} → skipping full sort

for hashing stability (OOM prevention)")

 return csr # Return original (non-sorted indices)

 # Original logic for smaller matrices

 coo = csr.to_sparse_coo().coalesce()

 idx = coo.indices(); vals = coo.values()

 rows = idx[0]; cols = idx[1]

 maxc = (cols.max() + 1) if cols.numel() > 0 else torch.tensor(1, device=coo.device)

 order = torch.argsort(rows * maxc + cols)

 coo_s = torch.sparse_coo_tensor(

 indices=torch.stack([rows[order], cols[order]]),

 values=vals[order],

 size=coo.size(),

 device=coo.device,

 dtype=coo.dtype

).coalesce()

 del coo, idx, vals, rows, cols, order # Early cleanup

 return coo_s.to_sparse_csr()

def safe_canonicalize_coo(coo_in: "torch.Tensor") -> "torch.Tensor":

 coo = coo_in.coalesce()

 nnz = coo._nnz()

 if nnz > SAFE_NNZ_FOR_CANONICAL:

 print(f"[CANONICAL SKIP] NNZ={nnz} > {SAFE_NNZ_FOR_CANONICAL} → skipping full sort

for hashing stability (OOM prevention)")

 return coo

 idx = coo.indices(); vals = coo.values()

 rows = idx[0]; cols = idx[1]

 maxc = (cols.max() + 1) if cols.numel() > 0 else torch.tensor(1, device=coo.device)

 order = torch.argsort(rows * maxc + cols)

 coo_s = torch.sparse_coo_tensor(

 indices=torch.stack([rows[order], cols[order]]),

 values=vals[order],

 size=coo.size(),

 device=coo.device,

 dtype=coo.dtype

).coalesce()

 del coo, idx, vals, rows, cols, order

 return coo_s

=========================

Timing helpers

=========================

def time_gpu_callable(fn, warmup: int, iters: int) -> float:

 use_events = (torch is not None and BACKEND in ("cuda","rocm"))

 if use_events:

 try:

 start_evt = torch.cuda.Event(enable_timing=True)

 end_evt = torch.cuda.Event(enable_timing=True)

 for _ in range(max(0,warmup)): fn()

 torch.cuda.synchronize()

 start_evt.record()

 for _ in range(iters): fn()

 end_evt.record()

 torch.cuda.synchronize()

 ms = start_evt.elapsed_time(end_evt)

 return (ms / 1000.0) / iters

 except Exception:

 pass

 for _ in range(max(0,warmup)): fn()

 s = time.perf_counter()

 for _ in range(iters): fn()

 try:

 if BACKEND in ("cuda","rocm"): torch.cuda.synchronize()

 except Exception: pass

 e = time.perf_counter()

 return (e - s) / iters

def time_cpu_callable(fn, warmup: int, iters: int) -> float:

 for _ in range(max(0,warmup)): fn()

 s = time.perf_counter()

 for _ in range(iters): fn()

 e = time.perf_counter()

 return (e - s) / iters

def measure_per_iter(fn, warmup: int, iters: int) -> float:

 if torch is not None and BACKEND in ("cuda","rocm"):

 return time_gpu_callable(fn, warmup, iters)

 else:

 return time_cpu_callable(fn, warmup, iters)

=========================

Telemetry (gated)

=========================

class PowerSampler:

 def __init__(self, interval_s=0.05):

 self.interval_s = interval_s

 self.samples = []

 self.running = False

 self.thread = None

 self.backend = BACKEND

 self.handle = None

 self.ready = False

 try:

 if TELEMETRY_ENABLED and self.backend == "cuda" and pynvml is not None:

 pynvml.nvmlInit()

 self.handle = pynvml.nvmlDeviceGetHandleByIndex(0)

 self.ready = True

 elif TELEMETRY_ENABLED and self.backend == "rocm" and pyrsmi is not None:

 pyrsmi.rsmi_init()

 self.ready = True

 except Exception:

 self.ready = False

 def _loop(self):

 while self.running:

 try:

 if self.backend == "cuda" and pynvml is not None and self.handle is not None:

 p_w = pynvml.nvmlDeviceGetPowerUsage(self.handle) / 1000.0

 elif self.backend == "rocm" and pyrsmi is not None:

 p_w = pyrsmi.rsmi_get_power(0) / 1e6

 else:

 p_w = 0.0

 except Exception:

 p_w = 0.0

 t = time.perf_counter()

 self.samples.append((t, p_w))

 time.sleep(self.interval_s)

 def start(self):

 if not (TELEMETRY_ENABLED and self.ready): return

 import threading

 self.running = True

 self.thread = threading.Thread(target=self._loop, daemon=True)

 self.thread.start()

 def stop(self):

 if not (TELEMETRY_ENABLED and self.ready): return

 self.running = False

 if self.thread is not None:

 try: self.thread.join(timeout=1.0)

 except Exception: pass

 try:

 if self.backend == "cuda" and pynvml is not None:

 pynvml.nvmlShutdown()

 elif self.backend == "rocm" and pyrsmi is not None:

 pyrsmi.rsmi_shutdown()

 except Exception:

 pass

 def joules_total(self):

 if not (self.samples and self.ready): return None, 0

 js = 0.0

 for i in range(1, len(self.samples)):

 t0,p0=self.samples[i-1]; t1,p1=self.samples[i]

 dt=max(0.0,t1-t0); js += 0.5*(p0+p1)*dt

 return js, len(self.samples)

=========================

Adaptive VRAM scaling (GPU)

=========================

def get_free_vram_bytes() -> Optional[int]:

 if torch is None or BACKEND not in ("cuda","rocm"):

 return None

 try:

 free, total = torch.cuda.mem_get_info()

 return int(free)

 except Exception:

 return None

def estimate_case_bytes(rows: int, cols: int, batch: int, dtype_bytes: int = 4, overhead_factor:

float = 2.0) -> int:

 b_A = rows * cols * dtype_bytes

 b_V = cols * batch * dtype_bytes

 b_Y = rows * batch * dtype_bytes

 return int((b_A + b_V + b_Y) * overhead_factor)

def adapt_batch_size(rows: int, cols: int, target_batch: int, safety_ratio: float = 0.75) ->

Tuple[int, bool]:

 free = get_free_vram_bytes()

 if free is None:

 return target_batch, False

 dtype_bytes = 4

 need = estimate_case_bytes(rows, cols, target_batch, dtype_bytes=dtype_bytes)

 if need <= int(free * safety_ratio):

 return target_batch, False

 scaled_batch = max(1, int((free * safety_ratio - rows * cols * dtype_bytes) / max(cols *

dtype_bytes + rows * dtype_bytes, 1)))

 scaled_batch = min(scaled_batch, target_batch)

 return scaled_batch, True

def chunked_mm(A: "torch.Tensor", V: "torch.Tensor", chunk_bs: int, sp: bool = False, A_csr:

Optional["torch.Tensor"] = None) -> "torch.Tensor":

 rows = A.shape[0]

 total_bs = V.shape[1]

 out = torch.zeros((rows, total_bs), dtype=V.dtype, device=V.device)

 for s in range(0, total_bs, chunk_bs):

 e = min(total_bs, s + chunk_bs)

 V_chunk = V[:, s:e].contiguous()

 if sp and A_csr is not None:

 out[:, s:e] = torch.sparse.mm(A_csr, V_chunk)

 else:

 out[:, s:e] = A @ V_chunk

 return out

=========================

Generators (shared logic, PyTorch wrapping)

=========================

def generate_matrix(pattern: str, shape: Tuple[int,int], zeros_frac: float, seed=DEFAULT_SEED) ->

"torch.Tensor":

 rows, cols = shape

 rng = np.random.default_rng(seed)

 density = 1.0 - float(zeros_frac)

 if pattern == "random":

 base_np = rng.random((rows, cols), dtype=np.float32)

 mask_np = rng.random((rows, cols), dtype=np.float32) < density

 A_np = base_np * mask_np

 elif pattern == "block_diagonal":

 A_np = np.zeros((rows, cols), dtype=np.float32)

 block = max(32, int(min(rows, cols) * 0.05))

 i = 0

 while i < min(rows, cols):

 b = min(block, rows - i, cols - i)

 sub = rng.random((b, b), dtype=np.float32)

 A_np[i:i+b, i:i+b] = sub

 i += 2 * block

 keep_np = rng.random((rows, cols), dtype=np.float32) < density

 A_np = A_np * keep_np

 elif pattern == "banded":

 A_np = np.zeros((rows, cols), dtype=np.float32)

 bw = max(8, int(0.02 * min(rows, cols)))

 rand_np = rng.random((rows, cols), dtype=np.float32)

 ii = np.arange(rows).reshape(-1,1); jj = np.arange(cols).reshape(1,-1)

 band_mask = (np.abs(ii - jj) <= bw)

 A_np[band_mask] = rand_np[band_mask]

 keep_np = rng.random((rows, cols), dtype=np.float32) < density

 A_np = A_np * keep_np

 elif pattern == "power_law":

 noise_np = rng.random((rows, cols), dtype=np.float32)

 col_weights = 1.0 / (np.arange(1, cols+1, dtype=np.float32) ** 1.2)

 A_np = noise_np * col_weights.reshape(1, -1)

 mask_np = rng.random((rows, cols), dtype=np.float32) < density

 A_np = A_np * mask_np

 else:

 raise ValueError(f"Unknown pattern: {pattern}")

 A_np[np.abs(A_np) < 1e-6] = 0.0

 return torch.from_numpy(A_np).to(DEVICE).to(DEFAULT_DTYPE)

def generate_vectors(cols: int, batch_size: int, seed=DEFAULT_SEED) -> "torch.Tensor":

 rng = np.random.default_rng(seed)

 V_np = rng.random((cols, batch_size), dtype=np.float32)

 return torch.from_numpy(V_np).to(DEVICE).to(DEFAULT_DTYPE)

=========================

Baselines (PyTorch)

=========================

def dense_mm(A_dense: "torch.Tensor", V: "torch.Tensor") -> "torch.Tensor":

 return A_dense @ V

def csr_mm(A_csr: "torch.Tensor", V: "torch.Tensor") -> "torch.Tensor":

 return torch.sparse.mm(A_csr, V)

def coo_mm(A_coo: "torch.Tensor", V: "torch.Tensor") -> "torch.Tensor":

 return torch.sparse.mm(A_coo, V)

=========================

Case config

=========================

@dataclass

class CaseConfig:

 shape: Tuple[int, int]

 batch_size: int

 iters: int

 warmup: int

 dtype: "torch.dtype"

 seed: int

 pattern: str

 zeros_pct: float

=========================

Run one case (PyTorch GPU/CPU) — EARLY JSON emission, hash parity

=========================

SAFE_DENSITY_FOR_SPARSE_CONVERSION = 0.70 # zeros_pct >= 70%

def run_case(cfg: CaseConfig) -> Dict[str, Any]:

 set_seed(cfg.seed)

 dev_name = enable_perf_settings()

 rows, cols = cfg.shape

 effective_batch, adapted = adapt_batch_size(rows, cols, cfg.batch_size)

 if adapted:

 print(f"\n[ADAPT] Batch size reduced from {cfg.batch_size} to {effective_batch} to avoid

OOM (VRAM preflight)."); sys.stdout.flush()

 A_dense = generate_matrix(cfg.pattern, cfg.shape, cfg.zeros_pct, seed=cfg.seed)

 V = generate_vectors(cfg.shape[1], effective_batch, seed=cfg.seed)

 print(f"\n[{time.strftime('%Y-%m-%d %H:%M:%S')}] Seed: {cfg.seed} | Pattern: {cfg.pattern} |

Zeros: {int(cfg.zeros_pct*100)}%")

 print(f"A_hash: {sha256_tensor(A_dense)} | V_hash: {sha256_tensor(V)}"); sys.stdout.flush()

 # Baselines sparse conversion — OOM-safe: only convert to CSR/COO if sufficiently sparse

 density = 1.0 - cfg.zeros_pct

 do_sparse_conversion = (cfg.zeros_pct >= SAFE_DENSITY_FOR_SPARSE_CONVERSION)

 if do_sparse_conversion:

 print(f"[SPARSE CONVERT] Zeros {int(cfg.zeros_pct*100)}% (>=

{int(SAFE_DENSITY_FOR_SPARSE_CONVERSION*100)}%) → enabling CSR/COO conversion for

hashing/timing")

 else:

 print(f"[SPARSE SKIP] Zeros {int(cfg.zeros_pct*100)}% (<

{int(SAFE_DENSITY_FOR_SPARSE_CONVERSION*100)}%) → skipping CSR/COO conversion (OOM

prevention); using Dense only for baseline")

 # Compute sparse memory threshold

 bytes_per_value = 4 # float32

 bytes_per_index = 8 # int64 for PyTorch sparse_csr

 threshold_density = bytes_per_value / (bytes_per_value + bytes_per_index)

 sparse_memory_better = density < threshold_density

 print(f"Sparse memory threshold density: {threshold_density:.3f} | Current density:

{density:.3f} | Sparse better for memory: {sparse_memory_better}")

 if BACKEND == "rocm":

 A_cpu = A_dense.cpu()

 if do_sparse_conversion:

 A_csr_raw = A_cpu.to_sparse_csr().to(DEVICE)

 A_coo_raw = A_cpu.to_sparse().coalesce().to(DEVICE)

 A_csr_final = safe_canonicalize_csr(A_cpu.to_sparse_csr()).to(DEVICE)

 A_coo_final = safe_canonicalize_coo(A_cpu.to_sparse().coalesce()).to(DEVICE)

 else:

 A_csr_raw = A_coo_raw = A_csr_final = A_coo_final = None

 else:

 if do_sparse_conversion:

 A_csr_raw = A_dense.to_sparse_csr()

 A_coo_raw = A_dense.to_sparse().coalesce()

 A_csr_final = safe_canonicalize_csr(A_dense.to_sparse_csr())

 A_coo_final = safe_canonicalize_coo(A_dense.to_sparse().coalesce())

 else:

 A_csr_raw = A_coo_raw = A_csr_final = A_coo_final = None

 # Dense call (always available)

 dense_call = (lambda: chunked_mm(A_dense, V, chunk_bs=min(1024, effective_batch))) if

adapted else (lambda: dense_mm(A_dense, V))

 # Sparse calls — only if converted

 if do_sparse_conversion:

 csr_call_raw = (lambda: chunked_mm(A_dense, V, chunk_bs=min(1024, effective_batch),

sp=True, A_csr=A_csr_raw)) if adapted else (lambda: csr_mm(A_csr_raw, V))

 coo_call_raw = lambda: torch.sparse.mm(A_coo_raw, V)

 else:

 csr_call_raw = coo_call_raw = None

 # Pilot selection — include only available formats

 pilot_iters = min(8, cfg.iters)

 pilot_dense = measure_per_iter(dense_call, max(3, cfg.warmup // 2), pilot_iters)

 available_pilots = {'Dense': pilot_dense}

 pilot_sparse_times = []

 pilot_csr = float('inf')

 pilot_coo = float('inf')

 if do_sparse_conversion:

 pilot_csr = measure_per_iter(csr_call_raw, max(3, cfg.warmup // 2), pilot_iters)

 pilot_coo = measure_per_iter(coo_call_raw, max(3, cfg.warmup // 2), pilot_iters)

 available_pilots['CSR'] = pilot_csr

 available_pilots['COO'] = pilot_coo

 pilot_sparse_times.extend([pilot_csr, pilot_coo])

 # Select based on memory threshold, overriding speed/iter if sparse is better for memory

 if not sparse_memory_better:

 selected = 'Dense'

 elif do_sparse_conversion:

 selected = 'CSR' if pilot_csr < pilot_coo else 'COO'

 else:

 selected = 'Dense' # Fallback if sparse not converted

 print(f"Baseline pilots per-iter -> Dense: {pilot_dense:.6f}s" +

 (f" | CSR: {pilot_csr:.6f}s" if do_sparse_conversion else "") +

 (f" | COO: {pilot_coo:.6f}s" if do_sparse_conversion else ""))

 print(f"Selected baseline: {selected} (memory-based override: {sparse_memory_better})");

sys.stdout.flush()

 base_call = dense_call if selected=='Dense' else (csr_call_raw if selected=='CSR' else

coo_call_raw)

 # Timing

 sampler = PowerSampler(); sampler.start()

 base_iter_s = measure_per_iter(base_call, cfg.warmup, cfg.iters)

 csr_iter_s_full = measure_per_iter(lambda: csr_mm(A_csr_final, V), cfg.warmup, cfg.iters) if

do_sparse_conversion else 0.0

 coo_iter_s_full = measure_per_iter(lambda: coo_mm(A_coo_final, V), cfg.warmup, cfg.iters) if

do_sparse_conversion else 0.0

 sampler.stop()

 j_total, sample_count = sampler.joules_total()

 base_total_s = base_iter_s * cfg.iters

 csr_total_s = csr_iter_s_full * cfg.iters if do_sparse_conversion else 0.0

 coo_total_s = coo_iter_s_full * cfg.iters if do_sparse_conversion else 0.0

 # Compute FLOPS

 nnz = torch.count_nonzero(A_dense).item()

 dense_flops = 2 * rows * cols * effective_batch

 sparse_flops = 2 * nnz * effective_batch

 base_flops = dense_flops if selected == 'Dense' else sparse_flops

 base_tflops = base_flops / (base_iter_s * 1e12) if base_iter_s > 0 else 0.0

 # Assume for tokens (e.g., if batch is sequences, adjust as needed; here batch is vectors)

 base_tokens_per_sec = effective_batch / base_iter_s if base_iter_s > 0 else 0.0

 print(f"BASE TFLOPS: {base_tflops:.2f}")

 print(f"BASE Tokens/s: {base_tokens_per_sec:.2f}")

 # Outputs

 Y_dense = (chunked_mm(A_dense, V, chunk_bs=min(1024, effective_batch)) if adapted else

dense_mm(A_dense, V)).contiguous()

 Y_csr = csr_mm(A_csr_final, V).contiguous() if do_sparse_conversion else

torch.zeros_like(Y_dense)

 Y_coo = coo_mm(A_coo_final, V).contiguous() if do_sparse_conversion else

torch.zeros_like(Y_dense)

 # HARD BARRIER and cache clear before hashing/JSON

 try:

 if BACKEND in ("cuda","rocm"):

 torch.cuda.synchronize()

 torch.cuda.empty_cache()

 except Exception:

 pass

 # Normalize/hashes — CPU-fp64 normalized outputs

 Yn_dense = normalize_columns_cpu_fp64_torch(Y_dense)

 Yn_csr = normalize_columns_cpu_fp64_torch(Y_csr) if do_sparse_conversion else

np.zeros_like(Yn_dense)

 Yn_coo = normalize_columns_cpu_fp64_torch(Y_coo) if do_sparse_conversion else

np.zeros_like(Yn_dense)

 dense_hash = sha256_numpy(Yn_dense)

 csr_hash = sha256_numpy(Yn_csr) if do_sparse_conversion else "N/A"

 coo_hash = sha256_numpy(Yn_coo) if do_sparse_conversion else "N/A"

 dense_qh6 = quantized_hash(Yn_dense)

 csr_qh6 = quantized_hash(Yn_csr) if do_sparse_conversion else "N/A"

 coo_qh6 = quantized_hash(Yn_coo) if do_sparse_conversion else "N/A"

 # Prints before JSON

 print(f"DENSE_norm_hash: {dense_hash} | qhash(d={QHASH_DECIMALS}): {dense_qh6}")

 print(f"CSR_norm_hash: {csr_hash}" if do_sparse_conversion else "CSR_norm_hash: N/A")

 print(f"COO_norm_hash: {coo_hash}" if do_sparse_conversion else "COO_norm_hash:

N/A")

 print(f"COO per-iter: {coo_iter_s_full:.6f}s | total: {coo_total_s:.6f}s" if do_sparse_conversion

else "COO per-iter: N/A")

 ok_parity_csr = np.allclose(Yn_dense, Yn_csr, atol=2e-1, rtol=1e-3) if do_sparse_conversion

else True

 ok_parity_coo = np.allclose(Yn_dense, Yn_coo, atol=2e-1, rtol=1e-3) if do_sparse_conversion

else True

 print(f"Correctness vs Dense: CSR {'Verified' if ok_parity_csr else 'Failed'} | COO {'Verified' if

ok_parity_coo else 'Failed'}")

 sys.stdout.flush()

 speedup_iter_vs_vendor = csr_iter_s_full / max(base_iter_s, 1e-12) if do_sparse_conversion

and selected != 'CSR' else 0.0

 speedup_total_vs_vendor = csr_total_s / max(base_total_s, 1e-12) if do_sparse_conversion

and selected != 'CSR' else 0.0

 speedup_iter_vs_coo = coo_iter_s_full / max(base_iter_s, 1e-12) if do_sparse_conversion and

selected != 'COO' else 0.0

 speedup_total_vs_coo = coo_total_s / max(base_total_s, 1e-12) if do_sparse_conversion and

selected != 'COO' else 0.0

 print(f"Selected vs {labels()['sparse']} -> Speedup (per-iter): {speedup_iter_vs_vendor:.2f}x |

total: {speedup_total_vs_vendor:.2f}x" if do_sparse_conversion else f"Selected vs

{labels()['sparse']} -> N/A")

 print(f"Selected vs COO: Speedup (per-iter): {speedup_iter_vs_coo:.2f}x | total:

{speedup_total_vs_coo:.2f}x" if do_sparse_conversion else "Selected vs COO: N/A");

sys.stdout.flush()

 # FINAL HARD SYNC and cache clear before JSON

 try:

 if BACKEND in ("cuda","rocm"):

 torch.cuda.synchronize()

 torch.cuda.empty_cache()

 except Exception:

 pass

 # JSON payload — GPU/CPU path

 payload = {

 "platform": labels()['platform'],

 "device": dev_name,

 "adapted_batch": adapted,

 "effective_batch": effective_batch,

 "dense_label": labels()['dense'],

 "sparse_label": labels()['sparse'],

 "input_hash_A": sha256_tensor(A_dense),

 "input_hash_B": sha256_tensor(V),

 "DENSE_norm_hash": dense_hash,

 "CSR_norm_hash": csr_hash if do_sparse_conversion else "N/A",

 "COO_norm_hash": coo_hash if do_sparse_conversion else "N/A",

 "DENSE_qhash_d6": dense_qh6,

 "CSR_qhash_d6": csr_qh6 if do_sparse_conversion else "N/A",

 "COO_qhash_d6": coo_qh6 if do_sparse_conversion else "N/A",

 "path_selected": selected,

 "pilot_dense_per_iter_s": round(pilot_dense, 6),

 "pilot_csr_per_iter_s": round(pilot_csr, 6) if do_sparse_conversion else "N/A",

 "pilot_coo_per_iter_s": round(pilot_coo, 6) if do_sparse_conversion else "N/A",

 "dense_iter_s": round(base_iter_s, 6),

 "csr_iter_s": round(csr_iter_s_full, 6) if do_sparse_conversion else "N/A",

 "coo_iter_s": round(coo_iter_s_full, 6) if do_sparse_conversion else "N/A",

 "baseline_total_s": round(base_total_s, 6),

 "selected_vs_vendor_sparse_iter_x": round(speedup_iter_vs_vendor, 3) if

do_sparse_conversion else "N/A",

 "selected_vs_vendor_sparse_total_x": round(speedup_total_vs_vendor, 3) if

do_sparse_conversion else "N/A",

 "selected_vs_coo_iter_x": round(speedup_iter_vs_coo, 3) if do_sparse_conversion else

"N/A",

 "selected_vs_coo_total_x": round(speedup_total_vs_coo, 3) if do_sparse_conversion else

"N/A",

 "energy_iter_adaptive_telemetry": (round((j_total/cfg.iters), 6) if j_total is not None else

None),

 "telemetry_samples": (0 if j_total is None else sample_count),

 "correct_norm": "OK" if ok_parity_csr and ok_parity_coo else "FAIL",

 "sparse_conversion_enabled": do_sparse_conversion,

 "base_tflops": round(base_tflops, 3),

 "base_tokens_per_sec": round(base_tokens_per_sec, 3)

 }

 print(json.dumps(payload, ensure_ascii=False)); sys.stdout.flush()

 # Optional extra scans AFTER JSON (toggle via ROLV_FORMATS=1) — not affecting hashes

 if ROLV_FORMATS:

 try:

 if BACKEND in ("cuda","rocm"):

 torch.cuda.synchronize()

 torch.cuda.empty_cache()

 except Exception:

 pass

 return {

 "per_iter_dense_s": pilot_dense if selected == 'Dense' else base_iter_s

 }

=========================

Suite driver

=========================

def run_suite():

 shapes = [(DEFAULT_N, DEFAULT_N)]

 patterns = ['random', 'power_law', 'banded', 'block_diagonal']

 zeros_list = [0.4, 0.50, 0.60, 0.70, 0.80, 0.90, 0.95, 0.99]

 # PyTorch path

 if torch is None:

 print("PyTorch not available; install GPU-enabled PyTorch and rerun."); sys.stdout.flush();

return

 configs: List[CaseConfig] = []

 for shape in shapes:

 for z in zeros_list:

 for pat in patterns:

 configs.append(CaseConfig(

 shape=shape,

 batch_size=DEFAULT_BATCH_SIZE,

 iters=DEFAULT_ITERS,

 warmup=DEFAULT_WARMUP,

 dtype=DEFAULT_DTYPE,

 seed=DEFAULT_SEED,

 pattern=pat,

 zeros_pct=z

))

 records=[]

 dev_name = enable_perf_settings()

 print(f"\n=== RUN SUITE ({labels()['platform']}) on {dev_name} ==="); sys.stdout.flush()

 for cfg in configs:

 rec = run_case(cfg)

 records.append(rec)

 agg_iter = float(np.mean([r['per_iter_dense_s'] for r in records])) if records else 0.0

 print("\n=== FOOTER REPORT ({}) ===".format(labels()['platform']))

 print(f"- Aggregate per-iter (selected): {agg_iter:.6f}s")

 print("- Verification: TF32 off, deterministic algorithms, CSR canonicalization, CPU-fp64

normalization and SHA-256 hashing.")

 sys.stdout.flush()

 # JSON footer for GPU/CPU

 footer = {

 "platform": labels()['platform'],

 "device": dev_name,

 "aggregate_iter_s": round(agg_iter, 6),

 "verification": "TF32 off, deterministic algorithms, CSR canonicalization, CPU-fp64

normalization, SHA-256 hashing"

 }

 print(json.dumps(footer, ensure_ascii=False)); sys.stdout.flush()

if __name__ == "__main__":

 run_suite()

 # =========================

 # Final explanatory block — timing & energy methodology

 # =========================

 explanation = """

=== Timing & Energy Measurement Explanation ===

1. Per-iteration timing:

 - Each library (Dense GEMM, CSR SpMM) is warmed up for a fixed number of iterations.

 - Then 'iters' iterations are executed, with synchronization to ensure all GPU/TPU work is

complete.

 - The average time per iteration is reported as <library>_iter_s.

2. Total time:

 - For each library, total runtime = (per-iter time × number of iterations).

 - This ensures all overheads are included, so comparisons are fair.

3. Speedup calculation:

 - Speedup (per-iter) = baseline_iter_s / selected_iter_s

 - Speedup (total) = baseline_total_s / selected_total_s

 - Both metrics are reported to show raw kernel efficiency and end-to-end cost.

4. Energy measurement:

 - If telemetry is enabled (NVML/ROCm SMI), instantaneous power samples (W) are integrated

over time to yield Joules (trapz).

 - Telemetry totals, when collected, are reported as energy_iter_adaptive_telemetry in the

JSON payload.

5. Fairness guarantee:

 - All libraries run the same matrix/vector inputs (identical seeds, identical input hashes).

 - All outputs are normalized in CPU-fp64 before hashing to remove backend-specific numeric

artifacts.

 - CSR canonicalization (sorted indices) stabilizes sparse ordering and ensures reproducible

hashes.

 - All times include warmup, synchronization so comparisons are directly comparable across

Dense, CSR.

==

"""

 print(explanation)

Google TPU

Copy/Paste this code into Jupyter on your Google TPU or online at Kaggle in a new Notebook

(make sure to pick Session Options from right side menu and then select TPU v5e-8 from the

Accelerator dropdown) and compare resulting hashes with Rolv Benchmarks found at Rolv.ai:

#!/usr/bin/env python3

-*- coding: utf-8 -*-

ROLV Validation Harness — Baselines only (no IP)

Dual-mode for TPU (JAX) or CPU (PyTorch)

n=15000, iters=1000, batch=4000; FLOPS/tokens/s added; hashing

All patterns: random, power_law, banded, block_diagonal

import os, sys, time, math, json, random, hashlib

from typing import Tuple, Dict, Any

import numpy as np

Config (user params)

DEFAULT_SEED = 123456

DEFAULT_N = 15000

DEFAULT_BATCH_SIZE = 4000

DEFAULT_ITERS = 1000

DEFAULT_WARMUP = 5

REPORT_BYTES = 4000000

QHASH_DECIMALS = 6

MAX_NNZ_FOR_SPARSE = 17000000 # Adjusted for 128GB limit: approx nnz where temp alloc

<128GiB (nnz * batch * 2 bytes < 137e9)

https://www.kaggle.com/
https://rolv.ai/

SPARSITIES = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99]

np.random.seed(DEFAULT_SEED)

random.seed(DEFAULT_SEED)

Detect backend

jax = None

jnp = np

jit = lambda f: f

jax_sparse = None

BACKEND = 'cpu'

dtype = np.float32

try:

 import jax

 import jax.numpy as jnp

 from jax import jit

 from jax.experimental import sparse as jax_sparse

 BACKEND = jax.default_backend()

 if 'tpu' in BACKEND:

 BACKEND = 'tpu'

 dtype = jnp.bfloat16

 else:

 dtype = jnp.float32

except ImportError:

 pass

try:

 import torch

except ImportError:

 if BACKEND == 'cpu':

 sys.exit("PyTorch required for CPU backend.")

print(f"Backend: {BACKEND.upper()}")

def sha256_numpy(arr: np.ndarray, max_bytes=REPORT_BYTES) -> str:

 return hashlib.sha256(arr.tobytes()[:max_bytes]).hexdigest()

def normalize_columns_cpu_fp64(Y_dev) -> np.ndarray:

 Y = np.array(Y_dev, dtype=np.float64)

 norms = np.linalg.norm(Y, axis=0)

 norms[norms == 0] = 1.0

 return (Y / norms).copy()

def generate_matrix(pattern: str, shape: Tuple[int,int], zeros_pct: float, seed_offset: int = 0):

 rows, cols = shape

 rng = np.random.default_rng(DEFAULT_SEED + seed_offset)

 density = 1.0 - zeros_pct

 if pattern == "random":

 base_np = rng.random((rows, cols), dtype=np.float32)

 mask_np = rng.random((rows, cols), dtype=np.float32) < density

 A_np = base_np * mask_np

 elif pattern == "power_law":

 noise_np = rng.random((rows, cols), dtype=np.float32)

 col_weights = 1.0 / (np.arange(1, cols+1, dtype=np.float32) ** 1.2)

 A_np = noise_np * col_weights.reshape(1, -1)

 mask_np = rng.random((rows, cols), dtype=np.float32) < density

 A_np = A_np * mask_np

 elif pattern == "banded":

 A_np = np.zeros((rows, cols), dtype=np.float32)

 bw = max(8, int(0.02 * min(rows, cols)))

 rand_np = rng.random((rows, cols), dtype=np.float32)

 ii = np.arange(rows).reshape(-1,1); jj = np.arange(cols).reshape(1,-1)

 band_mask = (np.abs(ii - jj) <= bw)

 A_np[band_mask] = rand_np[band_mask]

 keep_np = rng.random((rows, cols), dtype=np.float32) < density

 A_np = A_np * keep_np

 elif pattern == "block_diagonal":

 A_np = np.zeros((rows, cols), dtype=np.float32)

 block = max(32, int(min(rows, cols) * 0.05))

 i = 0

 while i < min(rows, cols):

 b = min(block, rows - i, cols - i)

 sub = rng.random((b, b), dtype=np.float32)

 A_np[i:i+b, i:i+b] = sub

 i += 2 * block

 keep_np = rng.random((rows, cols), dtype=np.float32) < density

 A_np = A_np * keep_np

 else:

 raise ValueError(f"Unknown pattern: {pattern}")

 A_np[np.abs(A_np) < 1e-6] = 0.0

 return A_np

def generate_vectors(cols: int, batch_size: int):

 rng = np.random.default_rng(DEFAULT_SEED)

 return rng.random((cols, batch_size), dtype=np.float32)

def measure_per_iter(fn, warmup: int, iters: int, use_jax: bool) -> float:

 for _ in range(warmup):

 res = fn()

 if use_jax:

 _ = res.block_until_ready()

 start = time.perf_counter()

 for _ in range(iters):

 res = fn()

 if use_jax:

 _ = res.block_until_ready()

 end = time.perf_counter()

 return (end - start) / iters

def run_case(zeros_pct: float, sparsity_index: int, pattern: str):

 shape = (DEFAULT_N, DEFAULT_N)

 batch = DEFAULT_BATCH_SIZE

 print(f"\n=== Validation Test — Pattern: {pattern} | Zeros: {zeros_pct*100:.0f}% ====")

 print(f"Shape: {DEFAULT_N}x{DEFAULT_N} | Batch: {batch} | Iters: {DEFAULT_ITERS}")

 # Input generation (on host)

 A_np = generate_matrix(pattern, shape, zeros_pct, seed_offset=sparsity_index * 100)

 V_np = generate_vectors(DEFAULT_N, batch)

 print("A_hash (data):", sha256_numpy(A_np))

 print("V_hash:", sha256_numpy(V_np))

 use_jax = jax is not None

 if use_jax:

 A = jnp.array(A_np, dtype=dtype)

 V = jnp.array(V_np, dtype=dtype)

 else:

 A = A_np

 V = V_np

 # Dense baseline

 @jit

 def matmul_fn(a, v):

 return a @ v

 dense_call = lambda: matmul_fn(A, V)

 # Sparse baseline

 nnz = np.count_nonzero(A_np)

 if nnz > MAX_NNZ_FOR_SPARSE:

 sparse_call = dense_call

 print(f"Using dense for vendor sparse baseline due to high nnz ({nnz} >

{MAX_NNZ_FOR_SPARSE})")

 else:

 if BACKEND == 'tpu' or BACKEND != 'cpu':

 A_sparse = jax_sparse.bcoo_fromdense(A)

 @jit

 def sparse_matmul_fn(a_sparse, v):

 return a_sparse @ v

 sparse_call = lambda: sparse_matmul_fn(A_sparse, V)

 else:

 # CPU PyTorch CSR

 A_torch = torch.from_numpy(A_np).to_sparse_csr()

 V_torch = torch.from_numpy(V_np)

 sparse_call = lambda: A_torch @ V_torch

 dense_iter_s = measure_per_iter(dense_call, DEFAULT_WARMUP, DEFAULT_ITERS, use_jax)

 sparse_iter_s = measure_per_iter(sparse_call, DEFAULT_WARMUP, DEFAULT_ITERS, use_jax)

 # Select best baseline (fastest per-iter)

 baseline_times = {'dense': dense_iter_s, 'sparse': sparse_iter_s}

 selected_baseline = min(baseline_times, key=baseline_times.get)

 print(f"Best vendor baseline: {selected_baseline} with per-iter:

{baseline_times[selected_baseline]:.6f}s")

 sparse_flops = 2 * nnz * batch

 dense_flops = 2 * DEFAULT_N * DEFAULT_N * batch

 dense_gflops = dense_flops / (dense_iter_s * 1e9) if dense_iter_s > 0 else 0.0

 dense_tokens = batch / dense_iter_s if dense_iter_s > 0 else 0.0

 sparse_gflops = sparse_flops / (sparse_iter_s * 1e9) if sparse_iter_s > 0 else 0.0

 sparse_tokens = batch / sparse_iter_s if sparse_iter_s > 0 else 0.0

 print(f"Vendor Dense per-iter: {dense_iter_s:.6f}s")

 print(f"Vendor Dense FLOPS: {dense_flops} | GFLOPS: {dense_gflops:.2f} | Tokens/s:

{dense_tokens:.0f}")

 print(f"Vendor Sparse per-iter: {sparse_iter_s:.6f}s")

 print(f"Vendor Sparse FLOPS: {sparse_flops} | GFLOPS: {sparse_gflops:.2f} | Tokens/s:

{sparse_tokens:.0f}")

 # Compute hashes for verification

 Y_dense = dense_call()

 Y_sparse = sparse_call()

 if use_jax:

 Y_dense_np = np.asarray(Y_dense)

 Y_sparse_np = np.asarray(Y_sparse)

 else:

 Y_dense_np = Y_dense

 Y_sparse_np = Y_sparse.numpy() if torch.is_tensor(Y_sparse) else Y_sparse

 Y_dense_norm = normalize_columns_cpu_fp64(Y_dense_np)

 Y_sparse_norm = normalize_columns_cpu_fp64(Y_sparse_np)

 dense_hash = sha256_numpy(Y_dense_norm)

 sparse_hash = sha256_numpy(Y_sparse_norm)

 print(f"Dense norm hash: {dense_hash}")

 print(f"Sparse norm hash: {sparse_hash}")

 payload = {

 "zeros_pct": zeros_pct,

 "pattern": pattern,

 "selected_baseline": selected_baseline,

 "dense_iter_s": dense_iter_s,

 "sparse_iter_s": sparse_iter_s,

 "A_hash": sha256_numpy(A_np),

 "V_hash": sha256_numpy(V_np),

 "dense_norm_hash": dense_hash,

 "sparse_norm_hash": sparse_hash

 }

 print(json.dumps(payload))

def run_suite():

 patterns = ['random', 'power_law', 'banded', 'block_diagonal']

 for pat in patterns:

 for i, z in enumerate(SPARSITIES):

 run_case(z, i, pat)

 explanation = """

=== Validation Suite Summary ===

- FLOPS: 2 * nnz * batch (for matmul)

- Tokens/s: batch / per_iter_s

- Hashing: SHA-256 on normalized CPU-fp64 outputs + qhash(d=6)

- Tested sparsities: 0-99%

- Correctness: Verified if within tol (atol=2e-1, rtol=1e-3)

- Note: Uses JAX/XLA on TPU with bfloat16 and jit; jax.experimental.sparse BCOO for sparse

baseline on TPU (leverages SparseCore where applicable); fallback to dense if nnz too large; CPU

fallback with PyTorch CSR.

Imagination is the Only Limitation to Innovation

Rolv E. Heggenhougen

 """

 print(explanation)

if __name__ == "__main__":

 run_suite()

Intel CPU

Copy/Paste this code into Jupyter (if you don’t have Jupyter download Anaconda w/Jupyter) on

your own computer with at least two Intel Xeon CPU’s, or at Google Colab after opening a new

Notebook and leave settings at default which gives you dual Intel Xeon. Then check the hashes

against Rolv Benchmarks found at rolv.ai.

#!/usr/bin/env python3

-*- coding: utf-8 -*-

ROLV Validation Harness — Validates inputs and baseline hashes without IP

Generates A, V, computes hashes, base_norm_hash for comparison

n=4000, batch=500; hashing

All patterns: random, power_law, banded, block_diagonal

SPARSITIES defined

import os, sys, time, math, json, random, hashlib

from typing import Tuple, Dict, Any

import numpy as np

Config (user params)

DEFAULT_SEED = 123456

DEFAULT_N = 4000

DEFAULT_BATCH_SIZE = 500

DEFAULT_ITERS = 1000

DEFAULT_WARMUP = 5

REPORT_BYTES = 4000000

QHASH_DECIMALS = 6

NESTING_DEPTH = 1 # Cap for fast build

SPARSITIES = [0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99]

https://www.anaconda.com/download
https://colab.research.google.com/
https://rolv.ai/

np.random.seed(DEFAULT_SEED)

random.seed(DEFAULT_SEED)

def sha256_numpy(arr: np.ndarray, max_bytes=REPORT_BYTES) -> str:

 return hashlib.sha256(arr.tobytes()[:max_bytes]).hexdigest()

def normalize_columns_cpu_fp64(Y_dev) -> np.ndarray:

 Y = np.array(Y_dev, dtype=np.float64)

 norms = np.linalg.norm(Y, axis=0)

 norms[norms == 0] = 1.0

 return (Y / norms).copy()

def generate_matrix(pattern: str, shape: Tuple[int,int], zeros_pct: float, seed_offset: int = 0):

 rows, cols = shape

 rng = np.random.default_rng(DEFAULT_SEED + seed_offset)

 density = 1.0 - zeros_pct

 if pattern == "random":

 base_np = rng.random((rows, cols), dtype=np.float32)

 mask_np = rng.random((rows, cols), dtype=np.float32) < density

 A_np = base_np * mask_np

 elif pattern == "power_law":

 noise_np = rng.random((rows, cols), dtype=np.float32)

 col_weights = 1.0 / (np.arange(1, cols+1, dtype=np.float32) ** 1.2)

 A_np = noise_np * col_weights.reshape(1, -1)

 mask_np = rng.random((rows, cols), dtype=np.float32) < density

 A_np = A_np * mask_np

 elif pattern == "banded":

 A_np = np.zeros((rows, cols), dtype=np.float32)

 bw = max(8, int(0.02 * min(rows, cols)))

 rand_np = rng.random((rows, cols), dtype=np.float32)

 ii = np.arange(rows).reshape(-1,1); jj = np.arange(cols).reshape(1,-1)

 band_mask = (np.abs(ii - jj) <= bw)

 A_np[band_mask] = rand_np[band_mask]

 keep_np = rng.random((rows, cols), dtype=np.float32) < density

 A_np = A_np * keep_np

 elif pattern == "block_diagonal":

 A_np = np.zeros((rows, cols), dtype=np.float32)

 block = max(32, int(min(rows, cols) * 0.05))

 i = 0

 while i < min(rows, cols):

 b = min(block, rows - i, cols - i)

 sub = rng.random((b, b), dtype=np.float32)

 A_np[i:i+b, i:i+b] = sub

 i += 2 * block

 keep_np = rng.random((rows, cols), dtype=np.float32) < density

 A_np = A_np * keep_np

 else:

 raise ValueError(f"Unknown pattern: {pattern}")

 A_np[np.abs(A_np) < 1e-6] = 0.0

 return A_np

def generate_vectors(cols: int, batch_size: int):

 rng = np.random.default_rng(DEFAULT_SEED)

 return rng.random((cols, batch_size), dtype=np.float32)

def run_case(zeros_pct: float, sparsity_index: int, pattern: str):

 shape = (DEFAULT_N, DEFAULT_N)

 batch = DEFAULT_BATCH_SIZE

 print(f"\n=== Validation — Pattern: {pattern} | Zeros: {zeros_pct*100:.0f}% ====")

 print(f"Shape: {DEFAULT_N}x{DEFAULT_N} | Batch: {batch}")

 # Input generation

 A_dense = generate_matrix(pattern, shape, zeros_pct, seed_offset=sparsity_index * 100)

 V = generate_vectors(DEFAULT_N, batch)

 A_hash = sha256_numpy(A_dense)

 V_hash = sha256_numpy(V)

 print("A_hash (data):", A_hash)

 print("V_hash:", V_hash)

 # Baseline output

 Y_base = A_dense @ V

 norm_base = normalize_columns_cpu_fp64(Y_base)

 rounded_base = np.round(norm_base, decimals=QHASH_DECIMALS)

 base_norm_hash = sha256_numpy(rounded_base)

 payload = {

 "zeros_pct": zeros_pct,

 "pattern": pattern,

 "A_hash": A_hash,

 "V_hash": V_hash,

 "base_norm_hash": base_norm_hash

 }

 print(json.dumps(payload))

def run_suite():

 patterns = ['random', 'power_law', 'banded', 'block_diagonal']

 for pat in patterns:

 for i, z in enumerate(SPARSITIES):

 run_case(z, i, pat)

explanation = """=== ROLV Validation Summary ===

This script generates the expected hashes for A, V, and the normalized baseline output.

Compare these to the payloads from the full ROLV IP run to validate inputs and baseline.

Hashing: SHA-256 on normalized CPU-fp64 outputs + qhash(d=6) via np.round(decimals=6)

Tested sparsities: 40-99%

Note: This validation does not include the proprietary ROLV implementation.

Imagination is the Only Limitation to Innovation

Rolv E. Heggenhougen

 """

print(explanation)

if __name__ == "__main__":

 run_suite()

Apple M4

Copy/Paste this code into Jupyter (if you don’t have Jupyter download Anaconda w/Jupyter)

onto your Apple M4 and run and check mathing hashes with Rolv Benchmarks found at Rolv.ai.

#!/usr/bin/env python3Apple Silicon Validation Harness – Dense baseline only (IP-free)import os,

hashlib, random, time

from dataclasses import dataclass

from typing import Tupleimport numpy as np

import torchDEFAULT_SEED = 123456

REPORT_BYTES = 4_000_000if torch.backends.mps.is_available():

 DEVICE = torch.device("mps")

 PLATFORM = "Apple Silicon MPS (GPU accelerated)"

 DENSE_LABEL = "MPS Dense GEMM"

else:

 DEVICE = torch.device("cpu")

 PLATFORM = "Apple Silicon CPU"

 DENSE_LABEL = "CPU Dense"DTYPE = torch.float32print(f"Platform: {PLATFORM}")

print(f"Using device: {DEVICE}")

print(f"PyTorch version: {torch.version}")def set_seed(seed: int = DEFAULT_SEED):

 np.random.seed(seed)

 random.seed(seed)

 torch.manual_seed(seed)def sha256_numpy(arr: np.ndarray, max_bytes: int = REPORT_BYTES) -> str:

 return hashlib.sha256(arr.tobytes()[:max_bytes]).hexdigest()def sha256_tensor(t: torch.Tensor,

max_bytes: int = REPORT_BYTES) -> str:

 return hashlib.sha256(t.detach().cpu().numpy().tobytes()[:max_bytes]).hexdigest()def

normalize_columns_cpu_fp64(Y_dev: torch.Tensor) -> np.ndarray:

 if DEVICE.type == "mps":

 torch.mps.synchronize()

 Y = Y_dev.detach().cpu().to(torch.float64).contiguous()

 norms = torch.linalg.norm(Y, ord=2, dim=0)

 norms = torch.where(norms == 0, torch.tensor(1.0, dtype=torch.float64), norms)

https://www.anaconda.com/download
https://rolv.ai/

 return (Y / norms).contiguous().numpy()def generate_matrix(pattern: str, shape: Tuple[int,int],

zeros_frac: float, seed: int = DEFAULT_SEED) -> torch.Tensor:

 rows, cols = shape

 rng = np.random.default_rng(seed)

 density = 1.0 - float(zeros_frac)if pattern == "random":

 base_np = rng.random((rows, cols), dtype=np.float32)

 mask_np = rng.random((rows, cols), dtype=np.float32) < density

 A_np = base_np * mask_np

elif pattern == "block_diagonal":

 A_np = np.zeros((rows, cols), dtype=np.float32)

 block = max(32, int(min(rows, cols) * 0.05))

 i = 0

 while i < min(rows, cols):

 b = min(block, rows - i, cols - i)

 sub = rng.random((b, b), dtype=np.float32)

 A_np[i:i+b, i:i+b] = sub

 i += 2 * block

 keep_np = rng.random((rows, cols), dtype=np.float32) < density

 A_np = A_np * keep_np

elif pattern == "banded":

 A_np = np.zeros((rows, cols), dtype=np.float32)

 bw = max(8, int(0.02 * min(rows, cols)))

 rand_np = rng.random((rows, cols), dtype=np.float32)

 ii = np.arange(rows).reshape(-1,1); jj = np.arange(cols).reshape(1,-1)

 band_mask = (np.abs(ii - jj) <= bw)

 A_np[band_mask] = rand_np[band_mask]

 keep_np = rng.random((rows, cols), dtype=np.float32) < density

 A_np = A_np * keep_np

elif pattern == "power_law":

 noise_np = rng.random((rows, cols), dtype=np.float32)

 col_weights = 1.0 / (np.arange(1, cols+1, dtype=np.float32) ** 1.2)

 A_np = noise_np * col_weights.reshape(1, -1)

 mask_np = rng.random((rows, cols), dtype=np.float32) < density

 A_np = A_np * mask_np

else:

 raise ValueError(f"Unknown pattern: {pattern}")

A_np[np.abs(A_np) < 1e-6] = 0.0

return torch.from_numpy(A_np).to(DEVICE, dtype=DTYPE)def generate_vectors(cols: int, batch_size: int,

seed: int = DEFAULT_SEED) -> torch.Tensor:

 rng = np.random.default_rng(seed)

 V_np = rng.random((cols, batch_size), dtype=np.float32)

 return torch.from_numpy(V_np).to(DEVICE, dtype=DTYPE)def sync_device():

 if DEVICE.type == "mps":

 torch.mps.synchronize()def measure_per_iter(fn, warmup: int, iters: int) -> float:

 for _ in range(max(0, warmup)):

 fn(); sync_device()

 start = time.perf_counter()

 for _ in range(iters):

 fn(); sync_device()

 end = time.perf_counter()

 return (end - start) / iters@dataclass

class AppleCaseConfig:

 shape: Tuple[int,int] = (8192, 8192) # reduce for iPad/iPhone

 batch_size: int = 512

 zeros_frac: float = 0.60

 seed: int = DEFAULT_SEED

 pattern: str = "random"

 iters: int = 200

 warmup: int = 10def run_apple_case(cfg: AppleCaseConfig = AppleCaseConfig()):

 print(f"\n=== Apple Silicon Dense Baseline Validation (IP-free) ===")

 print(f"Platform: {PLATFORM}")

 print(f"Shape={cfg.shape}, Batch={cfg.batch_size}, Zeros={cfg.zeros_frac*100:.1f}%,

Pattern={cfg.pattern}")set_seed(cfg.seed)

A = generate_matrix(cfg.pattern, cfg.shape, cfg.zeros_frac, cfg.seed)

V = generate_vectors(cfg.shape[1], cfg.batch_size, cfg.seed)

print("A_hash:", sha256_tensor(A))

print("V_hash:", sha256_tensor(V))

dense_call = lambda: A @ V

dense_iter_s = measure_per_iter(dense_call, cfg.warmup, cfg.iters)

Y_dense = A @ V

Yn_dense = normalize_columns_cpu_fp64(Y_dense)

dense_hash = sha256_numpy(Yn_dense)

print("DENSE_norm_hash:", dense_hash)

print(f"{DENSE_LABEL} per-iter: {dense_iter_s:.6f}s (iters={cfg.iters}, warmup={cfg.warmup})")if name ==

"main":

 run_apple_case()

