

SeaHawk Tutors

Yr 11 Maths Paper 3 (1 hour)

1.

a. Rationalise the denominator of:
$$\frac{15}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{15\sqrt{3}}{3}$$
 [2]

= 5N3 AC

b. Show that
$$(\sqrt{7} + 2)(\sqrt{28} - 1)$$
 can be simplified as $3(4 + \sqrt{7})$. [3] $(\sqrt{7} + 2)(\sqrt{28} - 1) = \sqrt{7}\sqrt{28} - \sqrt{7} + 2\sqrt{28} - 2$

 $= 14 - \sqrt{7} + 2 \times 2\sqrt{7} - 2$ $= 12 + 3\sqrt{7} + 4\sqrt{7} = 12 + 3\sqrt{7} = 3(4 + \sqrt{7})$

2. Show that 0.45 is equal to
$$\frac{5}{11}$$
. $\frac{5}{11} = \frac{5}{11} =$

3. E = {children in Year 9 of a school}

A = {children taller than 120 cm}

B = {children whose birthday is in September, October or November}

C = {children in top set maths}

A Year 9 student is selected at random. She is 115cm tall, with a birthday in April and she is in top set for maths.

(a) Write down the set, A, B or C, of which this student is a member. [1]

(b) Describe in words children that are members of the set $A \cup C$.

Year 9 children, taller than 120cm or in top set

 $B' \cap A = \emptyset$

(c) Explain what this statement tells us about the students in Year 9.

[1]

No Year 9 students with birthdays Decamber to Beauthor to Break August are taller than Rock.

[3]

b. 37,800 can be written as $2^3 \times 3^3 \times 5^2 \times 7$. Write 378,000 as the product of its prime factors. [2]

$$378,000 = 27,800 \times 10$$

= $2^3 \times 3^3 \times 5^2 \times 7 \times 2 \times 5 \times 10$
= $2^4 \times 3^3 \times 5^3 \times 7 \times 10$

5. The diagram below shows the positions of Albaville (A) and Barkham (B) on a scale map.

a. How far is Albaville from Barkham? [2]

Measure 6-3 cm

6-3 \times 50 = 315 km

Mow 6-1-6-5 cm

= 305 - 325 km

b. What is the bearing of Barkham from Albaville? [2]

Measure either 18° or 162° (MI)
Bearity = 180 + 18° OR 360-162° = 198° (MI)
Mlow ± 2°.

c. Culstead is 320km from Albaville on a bearing of 104°. Mark the position of Culstead on the map. [2]

Scale: 1cm = 50km

6. In the diagram, EAB is a straight line. ABCD is a quadrilateral with the following angles:

$$\angle$$
ABC = 152°
 \angle BCD = 47°
 \angle ADC = 121°
 \angle EDC = 149°

Find angle AED. Explain your working at each stage.

[3]

- 7. f(x) = 2(x 12) and $g(x) = -x^2$ for $x \in \mathbb{R}$.
 - a. Write down the range of g(x).

[1]

 $q(x) \leq 0$

b. Find gf(x).

 $-12(x-12)^{2} = -4(x-12)^{2}$

[2]

c. Find the values of a that satisfy f(a) = g(a).

[3]

 $2(a-12)=-a^2$ $2a - 24 = -a^2$ $a^2 + 2a - 24 = 0$ (a+6)(a-4)=0a=401-6

8. Three friends make a group that plays the lottery each week. They always split the prize in a fixed ratio. One week they have a win, and they each receive £30, £12 and £18 respectively. A few weeks later the group wins £7,000. How much does each receive this time? [3]

£ 30 12 18 = 60 MRoutio (5:2:3) (-6)=10 $(\times 70)$ £ 3500 1400 2100 £7000

a. In a class of 40 students there are 15 who play a musical instrument. What percentage of the class play an instrument? [2]

15 × 100% (M) = 37.5% (A)

b. Bilal is a goalkeeper in a football team. Last season his team conceded 26 goals. This season they have conceded 22 goals. What is the percentage decrease in goals conceded, to the nearest 1%? [2]

 $26-22 = 4 \quad \frac{4}{26} \times (00\% = 15.4\%)$

c. I put £50 into my bank account. It earns 5.3% interest per annum. How much money will I have in 6 years' time? [3]

much money will I have in 6 years? time? $50 \times (1-053)^6$ = £68.16At must be 2dp.

10. The first four terms of an arithmetic sequence are 3, 7, 11, 15.

a. Find an expression for the *n*th term of this sequence. [2]

Un= 4n-1 (A) Mr Por either 4n

- b. Write down the 100th term of the sequence. [1] $0 = 100 \quad \therefore \quad u_{100} = 4 \times 100 1 = 399$
- c. Is 199 a term of the sequence? Explain your answer. [2]

An-1 = 199 => An = 200 => n = 50 nic an integer => Y=3 A) Correct prof.

d. Find the sum of the first 16 terms of this sequence. [3]

 $S_{1} = \frac{1}{2} \left[2a + (n-1)d \right]$ 0 = 16 $S_{16} = \frac{16}{2} \left[2x^{3} + (1k-1)x^{4} \right]$ a = 3 d = 4 $= 8 \left[6 + (5x^{4}) \right] = 8x66$ = 528 = 6