SeaHawk Tutors

AQA Chemistry GCSE Topic 4.5 - Energy Changes

Topic 4.5 only

1. The combustion reaction of Pentane has the equation:

$$C_5H_{12} + 8 O_2 \rightarrow 5 CO_2 + 6 H_2O$$

The bond in Carbon Dioxide is a double bond. The relevant bond energies are as follow:

Bond	C - C	С - Н	C = O	O - H	O = O
Bond Energy (kJ/mol)	346	413	740	463	497

Calculate the overall energy change for this reaction.	[4]

2. The combustion reaction of Propane has the equation:

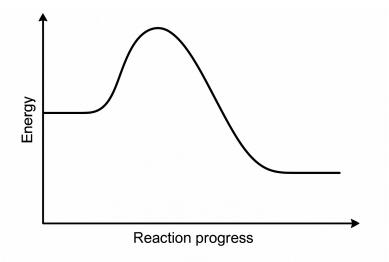
$$C_3H_8 + 5 O_2 \rightarrow 3 CO_2 + 4 H_2O$$

The bond in Carbon Dioxide is a double bond. The relevant bond energies are as follow:

Bond	C - C	C - H	C = O	O - H	0 = 0
Bond Energy (kJ/mol)	346	413	740	463	

The overall energy change for this reaction is -1,663 kJ/mol.

a. Explain why Propane is useful as a fuel for camping stoves.


b.	Calculate the bond energy of the O = O bond.	[4]

Total marks [6]

- 3. The diagram shows the energy changes in a reaction.
 - a. Mark on the diagram:
 - i. Reactants and Products
 - ii. Activation energy
 - iii. Overall energy change

[3]

[2]

b.	Explain whether the reaction is exothermic or endothermic.	[2]
	_	

Total marks [5]

4. This question is about energy changes in chemical reactions.

A chemist conducts a neutralisation reaction between Sodium Hydroxide and Nitric Acid in a beaker. They observe that the contents of the beaker in which the reaction took place became warmer.

- a. Ring the correct word. We can deduce that this reaction is exothermic / endothermic. [1]
- b. Complete the following sentence using words from the table below. You may use each word once, more than once or not at all. [3]

In chemical reactions the bonds of the reactants are ______ and new bonds are _____ that create the products. When bonds are _____ energy is _____ and when bonds are _____ energy is _____ . If more energy is _____ than is _____ then the reaction is exothermic and thermal energy will be _____ to the surroundings.

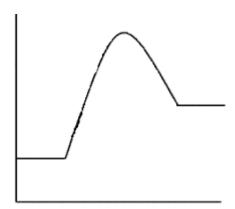
released	used	broken	made
----------	------	--------	------

The reaction between Carbon monoxide and Oxygen has the equation:

$$2 CO + O_2 \rightarrow 2 CO_2$$

The bond in Carbon Monoxide is a triple bond, in Carbon Dioxide it is a double bond. The relevant bond energies are as follow:

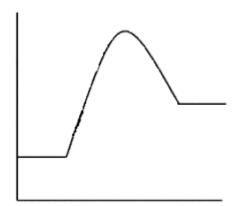
Bond	C = O	C≡O	0 = 0
Bond Energy (kJ/mol)	799	1072	495


State whether this reaction is exothermic or endothermic.	[

Total marks [9]

Alkanes are a homologo a. Define the term 'F			ns.		[]
b. Tick the correct go	eneral formu	ıla for the Al	kanes.		[:
\Box C_nH_2					
C_nH_{2n}					
C_nH_{2n}	+2				
C_nH_{2n}	-2				
Alkanes are widely used c. Explain the prope		es that make	s them suita	ble for use a	ns fuels. [
All Hydrocarbons burn i d. Write the balanced					ane. [
e. Calculate the ener double bond. The	· ·				Dioxide is
Bond	C - C	C - H	C = O	O - H	0 = 0
Bond Energy (kI/mol)	346	413	740	463	497

f.	Calculate the energy released when 240cm ³ of Methane is burned.	[3]
	Total marks	[12]
Synopi	c topics: 4.3, 4.7	
The c	iagram shows the energy changes in a reaction.	
a.	Label the axes.	[2]
b.	Mark on the diagram:	
	i. Reactants and Productsii. Activation energy	
	ii. Activation energyiii. Overall energy change	[3]


6.

c. Explain whether the reaction is exothermic or endothermic.

[2]

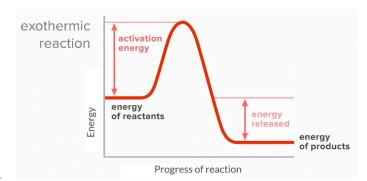
d. The original reaction can be speeded up by using a catalyst. Draw on the diagram below the energy profile diagram for the reaction with a catalyst. [2]

Total marks

[9]

Synoptic topics: 4.6

Answers


1.

Bonds Broken	Number	Energy	Total
C - C	4	346	1,384
C - H	12	413	4,956
0 = 0	8	497	3,976
Bonds Made			10,316
C = O	10	740	7,400
O = H	12	463	5,556
			12,956

Overall energy change = 10,316 - 12,956 = -2,640 kJ/mol

a. Combustion reaction is EXOTHERMIC => releases energy to the surroundingsb.

Bonds Broken	Number	Energy	Total
C – C	2	346	692
С – Н	8	413	3,304
0 = 0	5	n	5n
Bonds Made			3,996 + 5n
C = O	6	740	4,440
O = H	8	463	3,704
			8,144

а

b. Exothermic because energy of products is less than energy of reactants

4.

a. Exothermic

b. Broken, made, broken, used, made, released

C.

Bonds Broken	Number	Energy	Total
$C \equiv O$	2	1,072	2,144
0 = 0	1	495	495
Bonds Made			2,639
C = O	2	799	1,598
			1,998

Energy change = 2639 - 1998 = +641 kJ/mol M1 for any correct total for a given bond M1 for subtracting product energy from reactant energy A1 for correct answer with + sign

d. Endothermic

5

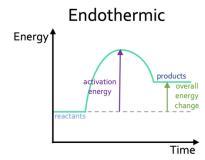
a. A substance made up of only (A1) (atoms of) Hydrogen and Carbon (A1)

b. C_nH_{2n+2}

c. They have **exothermic combustion** reactions so they **release energy (to the surroundings)** when burned

d. $CH_4 + 2 O_2 -> CO_2 + 2 H_2O$

e.


Bonds Broken	Number	Energy	Total
C – H	4	413	1,652
0 = 0	2	497	994
Bonds Made			2,646
C = O	2	740	1,480

O = H	4	463	1,852
			3,332

Energy change = 2646 - 3332 = -686 lJ/mol M1 for any one correct total energy for one bond M1 for subtracting product energy from reactant energy A1 for correct figure with correct -ve sign

f. 240cm³ = 0.24 dm³ = 1/100 mole (M1) 686 kJ / mol x 0.01 mol (M1) = 6.86 kJ (A1)

6.

Allow Progress of Reaction for Time

- b. As above
- c. Endothermic, because energy of products is greater than energy of reactants / energy is taken out of the surroundings