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Universitätsmedizin Berlin, Aßmannshauser Strasse 4-6, D-14197 Berlin, Germany
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Objectives: This in vitro study evaluated the effects of nano-hydroxyapatite (n-HAp) tooth-

pastes on remineralization of bovine enamel and dentine subsurface lesions.

Methods: Specimens were demineralized, randomly divided into five groups, and exposed to

an aqueous remineralizing solution for two and five weeks (37 8C). Brushing procedures were

performed with the respective toothpaste/storage solution slurry twice daily (2 � 5 s; total

contact time of the slurries 2 � 120 s/d): storage in remineralizing solution only (0); additional

brushing with B (20 wt% zinc carbonate nano-hydroxyapatite, ZnCO3/n-HAp); BS (24 wt%

ZnCO3/n-HAp); E (0.14 wt% amine fluoride); or A (7 wt% pure n-HAp). Differences in mineral

loss (DDZ) before and after storage/treatment were microradiographically evaluated.

Results: Dentine groups 0, B, BS, and A showed significantly higher DDZ values compared to E

( p < 0.05; ANOVA). Enamel DDZ values of group A were significantly higher compared to

group E ( p < 0.05), whilst no significant differences of these groups could be observed

compared to 0, B, and BS ( p > 0.05).

Conclusions: With the in vitro conditions chosen, toothpastes containing n-HAp revealed

higher remineralizing effects compared to amine fluoride toothpastes with bovine dentine,

and comparable trends were obtained for enamel.

# 2011 Elsevier Ltd. Open access under CC BY-NC-ND license.
1. Introduction

The process of de- and remineralization is governed by the

degree of saturation of oral fluids (saliva and plaque) with

respect to apatite minerals.1 Given an appropriate change in

conditions, remineralization may become the predominant

process, thus leading to lesion repair.2,3 To enhance lesion

remineralization, increase of calcium or fluoride concentra-

tions in the oral fluids would seem reasonable.4
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For this purpose, fluorides have traditionally been used in

various formulations, and the concomitant cariostatic

mechanisms can be explained by an increased driving force

for fluoridated apatites.5 The decline in dental caries experi-

enced in most industrialized countries can be attributed

largely to the widespread use of fluorides,6 and this preventive

effect is mainly due to the formation of calcium fluoride-like

precipitates hampering demineralization, whilst fluoride

levels needed for remineralization are assumed to be higher

than those to prevent lesion formation.7
.
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Nano-hydroxyapatite (n-HAp) is considered one of the

most biocompatible and bioactive materials, and has gained

wide acceptance in medicine and dentistry in recent years.8

Whilst former attempts to use hydroxyapatites clinically did

not succeed, synthesis of nano-scaled zinc carbonate hy-

droxyapatite (ZnCO3/n-HAp) yielded a significant progress,

and showed considerable affinity to the enamel surface.9

Nano-sized particles have similarity to the apatite crystals of

tooth enamel in morphology and crystal structure.10 Recently,

a few reports have shown that n-HAp has some potential to

repair dental enamel,11–15 but no information is available for

established dentine lesions. To date, it can be summarized

that for remineralization of subsurface lesions by n-HAp

containing products, different formulations have been devel-

oped, and early data have suggested remineralizing proper-

ties.8 However, evidence is still incomplete to substantiate

claims by manufacturers,16,17 and, so far, none of these

products has been shown to be more effective than fluorides.

Therefore, the aim of the present study was to evaluate the

effects of daily treatment with different n-HAp toothpastes on

the remineralization of bovine enamel and dentine subsurface

lesions stored in a remineralizing solution. An amine fluoride

toothpaste was used as a reference for comparative reasons.

We hypothesized (H0) that additional brushing with n-HAp or

fluoride toothpastes would result in equal remineralizing

effects compared to a pure remineralizing solution (positive

control). This null hypothesis was tested against the alterna-

tive hypothesis of a difference between products.
2. Materials and methods

2.1. Specimen preparation and demineralization

From 35 bovine incisors 70 enamel specimens (6 � 4 � 4 mm3)

were prepared from the labial aspects. Dentine specimens

(n = 85) derived from the cervical regions (4 � 3 � 4 mm3), and

were prepared as described previously.18 One quarter of each

specimen’s surface was covered with acid-resistant nail

varnish (Jet-Set; Loreal, Karlsruhe, Germany) to serve as

sound control. Following earlier studies, enamel lesions were

prepared by immersion in a solution (5 l) containing 6 mM

methylhydroxydiphosphonate (MHDP), 3 mM calcium chlo-

ride dihydrate (CaCl2�2H2O), 3 mM potassium dihydrogen
Table 1 – Treatment products, regimes and specimen groupin

Treatment products Code Active compound

(Remineralizing solution) 0 Calcium and phosphate

ZnCO3/n-HApa

batch no. 928751019

B Zinc carbonate-

nano-hydroxyapatite

ZnCO3/n-HApa

batch no. 90001091_26-01-2010

BS

Fluorideb

batch no. 435909

E Aminefluoride

n-HAc

batch no. 20.10.11

A Nano-hydroxyapatite

a BioRepair and BioRepair Sensitive; Dr. Kurt Wolff, Bielefeld, Germany.
b Elmex Kariesschutz; GABA, Lörrach, Germany.
c ApaCare; Cumdente, Tübingen, Germany.
phosphate (KH2PO4), and 50 mM acetic acid (CH3COOH)

(Merck, Darmstadt, Germany) at pH 4.95 in an incubator

(37 8C; BR 6000; Heraeus Kulzer) for 14 days.19 Dentine lesions

were prepared by immersion in a solution containing

0.0476 mM sodium fluoride (NaF), 2.2 mM calcium chloride

dihydrate (CaCl2�2H2O), 2.2 mM potassium dihydrogen phos-

phate (KH2PO4), 50 mM acetic acid (CH3COOH), and 10 mM

potassium hydroxide (KOH) (all chemicals from Merck) at pH

5.0 (37 8C) for five days.20 The solutions were not stirred or

replaced during the demineralization period. The pH values of

the demineralizing solutions were monitored daily (pH-

electrode GE 100 BNC connected to pH-meter GMH 3510;

Greisinger, Regenstauf, Germany), and slight elevations were

corrected with small amounts of hydrochloric acid (HCl) to

maintain a constant pH value between 4.94 and 4.96 for

enamel as well as 4.99 and 5.01 for dentine during the

demineralization period. Standard buffer solutions (Sigma–

Aldrich, Steinheim, Germany) with nominal pH values of 4.0

and 7.0, respectively, and with an accuracy of 0.01 units were

used to calibrate the pH metre.

2.2. Solution preparation and treatment of the specimens

Subsequently, half of each demineralized surface was covered

with nail varnish (control of baseline demineralization) again.

Specimens were randomly divided into five groups (enamel

n = 14; dentine n = 17), and were separately stored in a

remineralizing solution21,22 for two and five weeks (37 8C). In

accordance with EN ISO 11609 (European standards for

preparing artificial saliva/toothpaste slurries), the respective

toothpaste (Table 1) was diluted in three parts (1:3) of the

remineralizing solution to obtain a homogeneous slurry. Test

products were commercially available toothpastes with either

ZnCO3/n-HAp or n-HAp (all without any fluorides) as active

ingredients; a toothpaste containing amine fluorides served as

reference group (Table 1). The pH values of the slurries were

measured directly after preparation.

Subsequently, specimens were manually brushed by hand

with a soft toothbrush (Meridol; GABA, Lörrach, Germany), and

with minimum pressure; brushing procedures were carried

out in each subgroup twice daily for 5 s each (with an

additional contact time with the slurry of 115 s, thus resulting

in a total contact time of 120 s). After each brushing treatment,

specimens were washed with deionized water (10 s). Every two
g.

Concentration Treatment pH

1.5 mM Only storage no further treatment 7.00

20 wt% Slurry (ratio 1:3) from toothpaste

with the remineralizing storage

solution and brushing for 5 s with a

total contact time of 120 s twice

daily in all groups

7.39

24 wt% 7.34

0.14 wt% 5.24

7 wt% 6.94
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days the remineralizing solutions were replenished (250 ml

per group each time), and pH values were checked. After two

weeks, half of the exposed surfaces were nail-varnished to

evaluate interim effects (effect after two weeks).

2.3. Transverse microradiography

After in vitro exposure, thin sections (100 mm) were prepared.

Following, contact microradiographs of the specimens were

obtained by transverse microradiography, and these were

evaluated using a dedicated software (TMR for Windows

2.0.27.2; Inspektor Research System, Amsterdam, The

Netherlands) as described previously;23,24 ethylene glycol

(C2H4(OH)2) (99%; Sigma–Aldrich, Munich, Germany) was used

to avoid shrinkage of dentine lesions.25 The investigator was

blinded with respect to group allocation.

Mineral density profiles were evaluated from which

integrated mineral loss (DZ) and lesion depth (LD) values were

calculated following initial demineralization (DZDemin, LDDe-

min) and after treatment for either two (DZEffect 2, LDEffect 2) or

five weeks (DZEffect 5, LDEffect 5). Each pair of values was

corrected by subtracting the respective values for sound

enamel (DZSound and LDSound) before data analysis. Changes in

mineral loss (DDZ2 = DZDemin � DZEffect 2, DDZ5 = DZDemin � D-

ZEffect 5) and lesion depth (DLD2 = LDDemin � LDEffect 2,

DLD5 = LDDemin � LDEffect 5) were analyzed for treatment

differences. Positive and negative values of DDZ or DLD

indicated net remineralization and net demineralization,

respectively.

[()TD$FIG]

Fig. 1 – Mean mineral density profiles (enamel and dentine) afte

treatment (0 = no further treatment; B = ZnCO3/n-HAp 20 wt%; B

A = n-HA 7 wt%) compared to baseline. Lesion bodies and surfa

hypermineralization of dentine surface layer occurred with gro
2.4. Statistical analyses

Normal distribution of DDZ and DLD was tested (Kolmo-

gorov–Smirnov). For overall comparison of solutions one-

way ANOVA was applied; pairwise comparisons used

Tukey’s post hoc tests. Comparisons of changes in mineral

loss and lesion depth before and after storage/treatment

were performed by adjusted paired t-test (Bonferroni;

correction factor �5). Level of significance was set

at a = 0.05 (two-sided). Statistical analyses were

performed using PASW for Windows (version 18.0; SPSS,

Chicago, IL).
3. Results

Thirteen enamel and two dentine specimens were lost with

preparation procedures. All de- and remineralized speci-

mens developed subsurface lesions consistently revealing a

surface layer that was more mineralized than the body of

the lesion, and none of the treatment regimens yielded

surface erosions. Baseline DZDemin and LDDemin values (after

demineralization) did not differ significantly between the

various groups ( p > 0.161; ANOVA). With dentine, speci-

mens of group E revealed a hypermineralized surface layer

(with an increased thickness), and subsurface lesions could

be found with all groups (Fig. 1). The pH values of the

remineralizing solutions remained stable for the experi-

mental period.
r two and five weeks with or without additional toothpaste

S = ZnCO3/n-HAp 24 wt%; E = amine fluoride 0.14 wt%;

ce layers of baseline lesions consistently remineralized;

up E, but without any decrease of lesion depths.
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Fig. 2 – Means and confidence intervals (95%; enamel and dentine) of differences in mineral change (DDZ; vol% T mm) and

lesion depth (DLD; mm) after two (grey) and five weeks (black) storage/treatment (0 = only storage and no further treatment;

B = ZnCO3/n-HAp 20 wt%; BS = ZnCO3/n-HAp 24 wt%; E = amine fluoride 0.14 wt%; A = n-HA 7 wt%). Different letters indicate

significant differences between groups within each storage/treatment period ( p < 0.05; ANOVA, Tukey post hoc test).
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Enamel DDZEffect 2 and DLDEffect 2 values did not differ

significantly between groups (p > 0.705; ANOVA, Tukey; Fig. 2).

DDZEffect 5 values of group A were significantly higher

compared to group E (p = 0.017), whilst no significant

differences of both groups could be observed compared to 0,

B, and BS ( p > 0.221). Comparable results were evaluated for

lesion depths after both periods. With dentine, significantly

higher DDZEffect 2 values could be observed for groups 0 and B

compared to E (p < 0.05), whilst no differences could be seen

compared to BS and A (p > 0.101). Groups 0, B, BS, and A

showed significantly higher DDZEffect 5 and DLDEffect 2/DLDEffect 5

values compared to E (p < 0.05).

Enamel groups 0, E, and A showed significantly decreased

DZEffect 2 values compared with baseline demineralization

(p < 0.05; adjusted t-test, Table 2); B and A significantly

decreased DZEffect 5 values (p < 0.05). Comparable LDEffect 2/

LDEffect 5 values were observed. All dentine specimens revealed

significantly decreased DZEffect 2/DZEffect 5 values if compared

with baseline (p < 0.05). LDEffect 5 values of groups 0, B, BS, and

A decreased significantly compared with baseline (p < 0.05),

whereas values increased for E (p < 0.05).
4. Discussion

The present in vitro study mainly showed that the different

nano-hydroxyapatite toothpastes exert similar capacities to

remineralize enamel and dentine subsurface lesions. Further-

more, the fluoride toothpaste displayed the lowest reminer-

alizing effects on both hard tissues, along with an increase in

lesion depths. Thus, the null hypothesis (stating that

additional brushing with n-HAp or fluoride toothpastes would

not result in significantly different remineralizing effects

compared to control) was partially rejected.

Rationales for using bovine enamel and dentine specimens

have been discussed previously,26 and this source represents

an accepted substitute for human dental hard substances.27–29

Furthermore, several individual factors could have potential

impact on remineralization (e.g., behavioural changes, activity

of the lesion, depth of the lesion, diet, stimulation of salivary

flow, antibacterial and plaque removal strategies, brushing

with fluoride toothpaste),3,30,31 and these factors may modu-

late the natural process of lesion arrest (or repair).



Table 2 – Means with confidence intervals (CI 95%) of mineral losses (DZ; vol% T mm) and lesion depths (LD; mm) of enamel
and dentine specimens after in vitro demineralization (DZDemin, LDDemin) and storage/treatment for two (DZEffect 2, LDEffect 2)
and five weeks (DZEffect 5, LDEffect 5).

Enamel

Code Mineral loss (vol% � mm)

DZDemin DZEffect 2 DZEffect 5

Mean CI 95% Mean CI 95% p Mean CI 95% p

0 1288 942;1633 655 420;889 0.015 816 410;1221 1.000

B 1572 1014;2131 1124 705;1543 0.170 905 309;1502 0.015

BS 1848 1236;2460 1407 623;2191 0.075 1333 838;1828 0.070

E 1633 1317;1948 1064 625;1503 0.005 1563 994;2131 1.000

A 2147 1547;2746 1429 817;2042 0.005 1202 737;1666 0.010

Code Lesion depth (mm)

LDDemin LDEffect 2 LDEffect 5

Mean CI 95% Mean CI 95% p Mean CI 95% p

0 83 67;97 58 45;71 0.030 58 39;78 0.180

B 86 70;102 70 52;88 0.220 59 40;78 0.035

BS 90 75;104 77 57;97 0.085 78 61;95 0.230

E 87 77;97 79 61;96 1.000 99 79;118 0.635

A 102 91;114 82 62;102 0.045 75 61;89 0.005

Dentine

Code Mineral loss (vol% � mm)

DZDemin DZEffect 2 DZEffect 5

Mean CI 95% Mean CI 95% p Mean CI 95% p

0 3916 3540;4291 2667 2400;2935 0.0005 2217 1923;2511 0.0005

B 3919 3632;4205 2727 2448;3007 0.0005 1980 1739;2220 0.0005

BS 3708 3539;3878 2818 2579;3056 0.0005 2013 1802;2224 0.0005

E 3888 3605;4172 3145 2876;3413 0.0005 3033 2751;3316 0.0005

A 3870 3533;4207 2724 2465;2983 0.0005 2337 1961;2713 0.0005

Code Lesion depth (mm)

LDDemin LDEffect 2 LDEffect 5

Mean CI 95% Mean CI 95% p Mean CI 95% p

0 197 180;214 176 162;189 0.015 162 144;180 0.0005

B 191 181;201 176 162;189 0.065 151 140;163 0.0005

BS 185 172;198 168 152;184 0.035 149 140;157 0.0005

E 193 179;206 206 193;219 0.195 210 195;224 0.045

A 199 182;215 173 160;187 0.005 176 153;198 0.010

p-Values of differences between the values after demineralization and storage/treatment for either two or five weeks within each group as

analyzed by adjusted paired t-tests (Bonferroni correction factor �5) are given. Pairs differing significantly are highlighted (grey:

demineralization; black: remineralization). Treatment code: 0 = only storage and no further treatment; B = ZnCO3/n-HAp 20 wt%;

BS = ZnCO3/n-HAp 24 wt%; E = amine fluoride 0.14 wt%; A = n-HA 7 wt%.
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The present set-up used abraded and polished specimens; a

recent study reported that the in vitro demineralization pattern

of unabraded samples more closely resembles the pattern of a

natural white spot lesions. However, the inter-sample variation

was greater than with abraded specimens,31 and, therefore, we

used abraded specimens for standardization reasons.27 The

current brushing procedure was accomplished by brushing the

specimens with toothpaste/remineralizing solution slurry for

5 s (with 120 s total contact time of the slurry) twice daily. The

specimens were manually brushed without any considerable

force by the same operator. Indeed, this should not be

considered as a completely standardized procedure (i.e., using

a brushing machine), even if slightly differing forces should

have averaged during the study period.
Some specimens were lost during preparation for TMR. Main

problems were surface losses due to sawing or polishing, and

these brittle specimens were not suitable for further investiga-

tion. In some cases, thin section preparation could be repeated,

but this procedure was limited, due to the small dimensions of

the specimens. This problem can be only avoided by using non-

destructive techniques (like T-WIM).32 However, due to the

surface misalignment in the outer�15 mm, this method was not

considered useful for the current experimental set-up.

In a clinical setting, toothpaste will be diluted, and this

strongly depends on individual salivary secretion;33 with the

present experimental set-up, one part of toothpaste was

dissolved in three parts (1:3) of remineralizing solution to obtain

a homogeneous slurry. A major factor of the de- and reminer-
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alization equilibrium of enamel is the ambient pH. For slightly

acidic fluoride toothpaste slurries with a pH between 4.5 and 5.1,

increased remineralization could be observed compared to

higher pH values;34 a pH of 5.24 was evaluated with the fluoride

toothpaste (according to the manufacturer, the pH is 4.6 for 10%

in water). However, only pH values higher than 5.5 have been

assumed to promote lesion arrest and to facilitate remineraliza-

tion.30 In contrast, pH values of n-HAp toothpastes slurries have

not been studied up to now, and it might be speculated that the

higher pH values of the n-HAp slurries increased remineraliza-

tion. Recently, for calcium phosphate based solutions a higher

mineral gain could be observed with a pH of 6.5 compared to

5.5.19 Moreover, a (constant) remineralization model wasusedto

evaluate the effects of the different toothpastes (n-HAp or

ZnCO3/n-HAp versus fluoride). Whilst pH-cycling experiments

(including demineralizing periods) might mimic the clinical

dynamics more adequately, remineralization-only models offer

the opportunity to effectively monitor caries-preventive regi-

mens on dental hard tissues on a short-time basis, thus

simulating a best-case scenario.35 With the present approach,

initial screening of the effects of hydroxyapatite was accom-

plished, thus highlighting the advantages of experimental

control, even if the breadth of relevant biological aspects was

limited.36 Notwithstanding, the current results provide valuable

information on n-HAp containing toothpastes, and are consid-

ered a sound basis for further experiments.

Dental enamel comprises by 85–90 vol% of a calcium-

deficient carbonate hydroxyapatite, whilst dentine contains

considerably lower amounts (�50 vol%).37 With this in mind,

in environments supersaturated with respect to apatites,

quantity of dentine remineralization should be higher

compared to enamel,38 and this was corroborated by the

present results. Thus, the current findings with dentine as

substrate seem to indicate a meaningful direction, whilst the

observations with enamel lesions are of predominantly

confirmative value, but not less momentous.

Treatment of specimens with n-HAp or ZnCO3/n-HAp

toothpastes did not show any superior effects, but results were

comparable to the pure remineralizing solution. From this

outcome, one might speculate that n-HAp had no influence at

all. However, it should be considered that the used reminer-

alizing control (Buskes’ solution) represents a solution with a

substantial remineralizing potential,21 and, therefore, allego-

rized a positive control. As a consequence, treatment with n-

HAp toothpastes revealed no additionally beneficial effect on

remineralization. Therefore, usage of a solution with a lower

remineralizing potential24 in combination with n-HAP tooth-

pastes might have resulted in superior effects on mineraliza-

tion compared to only storage under remineralizing

conditions. Future pH cycling studies should elucidate these

assumptions and are indicated to verify the observed results.

A direct incorporation of n-HAp or ZnCO3/n-HAp particles

into the lesions cannot be deduced from the present microra-

diographicdata;however,frompreviousstudiesit isknown,that

crystal growth can be generated with CO3/n-HAp particles.9,39

Nonetheless, the present results are hardly comparable, since a

control group (i.e., only storage in artificial saliva) was missing in

the mentioned papers. With the present set-up, dentine speci-

mens of group B revealed the highest mineral gain of all groups

after five weeks. Since the tested n-HAp toothpastes contained
variousactive compounds (zinc carbonate nano-hydroxyapatite

versus nano-hydroxyapatite), no direct inference seems deriv-

able from thepresentdata;additionally, froma recent paper, it is

known that different n-HAp concentrations (>5%) seem to be of

minor importance.12 Consequently, it seems reasonable to

assume that the higher pH value of group B slurry favoured

remineralization by incorporation of n-HAp particles into the

dentine lesions. Moreover, with other products (i.e., CPP–ACP) a

reduced fall in plaque pH following an immediate carbohydrate

challenge has been reported17 and this should be an interesting

focus even for n-HAp toothpastes.

It should be emphasized that the used fluoride toothpaste

(containing amine fluorides) is one of the well-known and

widely used cariostatic products on the market (with

documented remineralizing effects being higher than those

of toothpastes containing sodium fluorides or monofluoro-

phosphates),35 and, therefore, has been included for compar-

ative reasons. However, enamel and dentine specimens of

group E revealed lower mineral gains compared to all other

groups (including the controls). Additionally, dentine speci-

mens treated with E revealed a hypermineralization of the

surface layer (with an increased thickness), and it might be

surmised that a distinct calcium fluoride-like layer on the

specimens’ surfaces should have been established by this

regimen.40 Moreover, when preparing the slurry, the degree of

saturation with respect to calcium fluoride should have

increased, and calcium-fluoride-like precipitates should have

been favoured.41 Such precipitates may have blocked any

further ion transport into deeper lesion parts by decreasing the

pore volume of the surface layer and obstructing the diffusion

pathways,30 and this could have inhibited further reminer-

alization.42 Furthermore, the observed hypermineralization of

the surface layer was accompanied by an increase in lesion

depth. Most likely, the low pH (prevailing during brushing with

the slurry of group E) caused a redistribution of calcium and

phosphates, and minerals situated at the bottom of the lesion

should have diffused outwards and re-precipitated at the

surface layer. This would be in accordance with the observa-

tion that fluorides can drive demineralization further into

enamel by making the surface less soluble.43

Because of the different active toothpaste compounds, the

pH of the amine fluoride toothpaste slurry was nearly two

units lower compared to the hydroxyapatite toothpastes (5.24

and 6.94–7.34, respectively). Due to the lower pH, surface layer

mineralization should have increased compared to a higher

pH.44 Groups treated with hydroxyapatite toothpaste revealed

remineralized subsurface lesions compared to baseline, but

without any hypermineralization. The used nano-sized

particles (20 nm in size, with granular dimensions up to

100–150 nm)9 as well as the calcium arising from storage

solution should have followed a concentration gradient (with

the solution higher than the subsurface lesion), thus leading to

a remineralizing effect in deeper lesion parts.38
5. Conclusions

The prevention of tooth decay and the treatment of lesions are

ongoing challenges in dentistry, and nanotechnology has been

claimed as one of the most revolutionary approaches in this
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field. Notwithstanding, at the moment, the applied and

marketable dental products have been studied rarely.8

Interestingly enough, within the limitations of the present

in vitro set-up, the different nano-hydroxyapatite toothpastes

revealed similar remineralizing capacities with enamel and

dentine lesions. For dentine, even higher remineralization

effects could be achieved with n-HAp or ZnCO3/n-HAp

toothpastes compared to the amine fluoride dentifrice. From

the present outcome, we therefore speculate that nano-

hydroxyapatite in dental products might help to promote

remineralization. However, it is pertinent to note, that this

experimental study did not take into account all oral factors; in

particular, the complexity of any tooth–pellicle–plaque–saliva

interface was not simulated. Hence, the current findings

should be confirmed in future in vitro pH-cycling studies and

clinical settings.
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