

ARTIFICIAL INTELLIGENCE
EXPERT CERTIFICATE

CAIEC®

Certiprof® es una entidad certificadora fundada en los Estados Unidos en 2015, ubicada actualmente en
Sunrise, Florida.

Nuestra filosofía se basa en la creación de conocimiento en comunidad y para ello su red colaborativa está
conformada por:

• Nuestros Lifelong Learners (LLL) se identifican como Aprendices Continuos, lo que demuestra su
compromiso inquebrantable con el aprendizaje permanente, que es de vital importancia en el mundo
digital en constante cambio y expansión de hoy. Independientemente de si ganan o no el examen.

• Las universidades, centros de formación, y facilitadores en todo el mundo forman parte de nuestra red de
aliados CPLS (Certified Partner For Learning Solutions).

• Los autores (co-creadores) son expertos de la industria o practicantes que, con su conocimiento,
desarrollan contenidos para la creación de nuevas certificaciones que respondan a las necesidades de la
industria.

• Personal Interno: Nuestro equipo distribuido con operaciones en India, Brasil, Colombia y Estados Unidos
está a cargo de superar obstáculos, encontrar soluciones y entregar resultados excepcionales.

¿Quién es Certiprof®?

Nuestras Afiliaciones

IT Certification Council - ITCC
Certiprof® es un miembro activo de ITCC.
Una de las ventajas de hacer parte del ITCC es como líderes del sector colaboran entre sí en un
formato abierto para explorar maneras nuevas o diferentes formas de hacer negocios que
inspiran y fomentan la innovación, estableciendo y compartiendo buenas prácticas que nos
permiten extender ese conocimiento a nuestra comunidad.

Certiprof ha contribuido a la elaboración de documentos blancos en el Career Path Ways
Taskforce, un grupo de trabajo que se implementó internamente para ofrecer a los estudiantes
la oportunidad de saber qué camino tomar después de una certificación.

Algunos de los miembros del ITCC
• IBM
• CISCO
• ADOBE
• AWS
• SAP
• GOOGLE
• ISACA

Agile Alliance

Certiprof® es un miembro corporativo de Agile Alliance.

Al unirnos al programa corporativo Agile Alliance,
continuamos empoderando a las personas ayudándolas a
alcanzar su potencial a través de la educación. Cada día,
brindamos más herramientas y recursos que permiten a
nuestros socios formar profesionales que buscan mejorar su
desarrollo profesional y sus habilidades.

https://www.agilealliance.org/organizations/certiprof/

https://www.agilealliance.org/organizations/certiprof/

Credly
Esta alianza permite que las personas y empresas certificadas con
Certiprof® cuenten con una distinción a nivel mundial a través de un
distintivo digital.

Credly es el emisor de insignias más importante del mundo y
empresas líderes en tecnología como IBM, Microsoft, PMI,Nokia, la
Universidad de Stanford, entre otras, emiten sus insignias con
Credly.

Empresas que emiten insignias de validación de conocimiento con
Credly:

• IBM
• Microsoft
• PMI
• Universidad de Stanford
• Certiprof

Insignias Digitales

• Según el estudio del IT Certification Council (ITCC),
años atrás, la gente sabía muy poco sobre las
insignias digitales. Hoy, grandes empresas e
instituciones educativas de todo el mundo expiden
insignias.

• Las insignias digitales contienen metadatos
detallados sobre quién las ha obtenido, las
competencias requeridas y la organización que las
ha expedido. Algunas insignias incluso están
vinculadas a las actividades necesarias para
obtenerlas.

• Para las empresas e instituciones educativas, las
insignias y la información que proporcionan son tan
importantes que muchas decisiones, como las de
contratación o admisión, se basan en los datos que
aportan.

• Las insignias digitales permiten a los profesionales
mostrar y verificar sus logros de manera
instantánea y global. Según un informe de Credly,
los perfiles de LinkedIn con insignias digitales
reciben un 40% más de atención por parte de
reclutadores y empleadores.

• Facilidad de Compartir y Verificar Logros:

En una encuesta realizada por Pearson y Credly, el
85% de los usuarios que obtuvieron insignias
digitales las compartieron en LinkedIn, y el 75%
reportó que esto mejoró su credibilidad profesional
en sus redes. Además, el 76% de los empleadores
encuestados afirmó que las insignias digitales les
ayudan a identificar rápidamente habilidades
específicas.

• Visibilidad en Plataformas Digitales:

¿Por qué son importantes?

¿Por qué son importantes?

Un estudio de la Asociación Internacional de
Gestión de Proyectos (PMI) encontró que los
candidatos que muestran insignias digitales de
gestión de proyectos tienen un 60% más de
probabilidades de ser contratados en comparación
con aquellos que solo mencionan sus habilidades
sin verificación digital.

• Impacto en la Contratación:

¿Por qué son importantes?

La visibilidad y verificación instantánea proporcionada
por las insignias digitales permiten a los profesionales no
solo demostrar sus habilidades, sino también construir
una marca personal fuerte. Según un estudio de LinkedIn,
los profesionales que utilizan insignias digitales tienen un
24% más de probabilidades de avanzar en sus carreras.
La certificación y las insignias digitales no son solo una
validación del conocimiento, sino también una
herramienta poderosa para la mejora continua y la
empleabilidad. En un mundo donde el aprendizaje
permanente se ha convertido en la norma, estas
credenciales son clave para el desarrollo profesional y la
competitividad en el mercado laboral global.

• Empoderamiento de la Marca Personal:

• No todas las insignias son iguales, y en Certiprof, estamos

comprometidos con ofrecerte más que un simple

reconocimiento digital. Al obtener una insignia emitida por

certiprof, estarás recibiendo una validación de tu

conocimiento respaldada por una de las entidades líderes

en certificación profesional a nivel mundial.

• Da el siguiente paso y obtén la insignia que te abrirá

puertas y te posicionará como un experto en tu campo.

¿Por qué es importante obtener su certificado?

• Prueba de experiencia: Su certificado es un reconocimiento
formal de las habilidades y conocimientos que ha adquirido.
Sirve como prueba verificable de sus cualificaciones y
demuestra su compromiso con la excelencia en su campo.

• Credibilidad y reconocimiento: En el competitivo mercado
laboral actual, las empresas y los compañeros valoran las
credenciales que le distinguen de los demás. Un certificado de
una institución reconocida, como Certiprof, proporciona
credibilidad instantánea e impulsa su reputación profesional.

• Avance profesional: Tener tu certificado puede abrirte las
puertas a nuevas oportunidades. Ya se trate de un ascenso, un
aumento de sueldo o un nuevo puesto de trabajo, las
certificaciones son un factor diferenciador clave que los
empleadores tienen en cuenta a la hora de evaluar a los
candidatos.

¿Por qué es importante obtener su certificado?

• Oportunidades de establecer contactos: Poseer un certificado
le conecta con una red de profesionales certificados. Muchas
organizaciones cuentan con grupos de antiguos alumnos o de
trabajo en red en los que puede compartir experiencias,
intercambiar ideas y ampliar su círculo profesional.

• Logro personal: Obtener una certificación es un logro
importante, y su certificado es un recordatorio tangible del
trabajo duro, la dedicación y el progreso que ha realizado. Es
algo de lo que puede sentirse orgulloso y mostrar a los demás.

https://www.credly.com/org/certiprof/badge/artificial-intelligence-expert-certificate-caiec.1

Insignia

https://www.credly.com/org/certiprof/badge/artificial-intelligence-expert-certificate-caiec.1

Aprendizaje Permanente
• Certiprof ha creado una insignia especial para reconocer a

los aprendices constantes.
• Para el 2024, se han emitido más de 1,000,000 de estas

insignias en más de 11 idiomas.
Propósito y Filosofía
• Esta insignia está destinada a personas que creen

firmemente en que la educación puede cambiar vidas y
transformar el mundo.

• La filosofía detrás de la insignia es promover el compromiso
con el aprendizaje continuo a lo largo de la vida.

Acceso y Obtención de la Insignia
• La insignia de Lifelong Learning se entrega sin costo a

aquellos que se identifican con este enfoque de aprendizaje.
• Cualquier persona que se considere un aprendiz constante

puede reclamar su insignia visitando:

https://certiprof.com/pages/certiprof-lifelong-learning

https://certiprof.com/pages/certiprof-lifelong-learning

I. Fundamentos del Aprendizaje Profundo

I.1.1 Modelos no lineales

La inspiración de las redes neuronales artificiales (o "redes neuronales" para abreviar) proviene en parte
de las redes neuronales biológicas. Las células de la mayoría de los cerebros (incluido el nuestro) se
conectan y trabajan juntas. Llamamos neurona a cada una de estas células de una red neuronal. Las
neuronas del cerebro humano se comunican mediante el intercambio de señales eléctricas.

Los modelos de redes neuronales se inspiran en la estructura de las neuronas de nuestro cerebro y en la
forma en que se transmiten los mensajes. Sin embargo, las similitudes entre las redes neuronales
biológicas y las redes neuronales artificiales terminan aquí.

Una red neuronal profunda es un tipo específico de red neuronal que destaca por captar relaciones no
lineales en los datos. Las redes neuronales profundas han superado muchos puntos de referencia en la
clasificación de audio e imágenes. Anteriormente, se solían utilizar modelos lineales con
transformaciones no lineales descubiertas meticulosamente a mano.

En esta lección, exploraremos las redes neuronales profundas. Estos son algunos de los aspectos que
puedes esperar al final de esta lección:

I.1 Representación de Redes Neuronales

• Cómo representar visualmente las redes neuronales
• Cómo implementar la regresión lineal y logística como redes neuronales
• Las diferencias entre las funciones de activación no lineales

Para aprovechar al máximo esta lección, necesitarás conocer las bibliotecas NumPy, sklearn y
pandas. También necesitarás sentirte cómodo programando en Python. Nos basaremos en la
estadística, el cálculo y el álgebra lineal. Se debe entender el flujo de trabajo del aprendizaje
automático tradicional, así como los modelos de regresión lineal y logística.

I.1 Representación de Redes Neuronales

I.1.2 Grafos

Solemos representar las redes neuronales como grafos. Un grafo es una estructura de datos formada
por nodos (representados como círculos)y conectados por aristas (representadas como líneas).

I.1 Representación de Redes Neuronales

Solemos utilizar los grafos para representar las relaciones o vínculos entre los componentes de un
sistema. Por ejemplo, el Grafo Social de Facebook describe la interconexión de todos los usuarios de
Facebook (y este grafo cambia constantemente a medida que los usuarios añaden y eliminan amigos).
Google Maps utiliza grafos para representar ubicaciones en el mundo físico como nodos y carreteras
como aristas.

I.1 Representación de Redes Neuronales

Grafo Social de Facebook Google Maps

https://en.wikipedia.org/wiki/Social_graph

Los grafos son una estructura de datos muy flexible; incluso se puede representar una lista de
valores como un grafo. A menudo clasificamos los grafos por sus propiedades, que actúan como
restricciones. Puedes leer sobre las diferentes formas de clasificar los grafos en Wikipedia.

I.1 Representación de Redes Neuronales

https://en.wikipedia.org/wiki/Graph_%28discrete_mathematics%29#Types_of_graphs

Una forma de clasificar los grafos es la presencia de la dirección de las aristas. Dentro de los
grafos dirigidos, los grafos son cíclicos o acíclicos.

I.1 Representación de Redes Neuronales

I.1.3 Grafos Computacionales

Los grafos proporcionan un modelo mental para pensar en una clase específica de modelos: los que
consisten en una serie de funciones ejecutadas en un orden específico. En el contexto de las redes
neuronales, los grafos nos ayudan a expresar la ejecución de una serie de funciones en sucesión.

I.1 Representación de Redes Neuronales

Esta línea de producción tiene 2 etapas de funciones que se suceden en secuencia:
• En la primera etapa, se calcula L1:

• En la primera etapa, se calcula L2:

La segunda etapa no puede ocurrir sin la primera porque L1 es una entrada para la segunda etapa. El cómputo
sucesivo de funciones está en el corazón de los modelos de redes neuronales. Se trata de un grafo
computacional. Un grafo computacional utiliza nodos para describir variables y aristas para describir la
combinación de variables. He aquí un ejemplo sencillo:

I.1 Representación de Redes Neuronales

El grafo computacional es una representación poderosa porque nos permite representar modelos
con muchas capas de anidamiento. De hecho, un árbol de decisión es realmente un tipo
específico de grafos computacionales. No hay una forma compacta de expresar un modelo de
árbol de decisión utilizando sólo ecuaciones y notación algebraica estándar.

Para entender mejor esta representación, representaremos un modelo de regresión lineal
utilizando la notación de red neuronal. Esto le ayudará a aprender esta representación única, y nos
permitirá explorar parte de la terminología de las redes neuronales.

I.1 Representación de Redes Neuronales

I.1.4 Red neuronal frente a regresión lineal

ෝ𝑦 he aquí una representación de un modelo de regression lineal:

• ෝ𝑦 a0 representa el intercepto (también conocido como el sesgo)
• ෝ𝑦 a1 hasta an representan los pesos del modelo entrenado
• ෝ𝑦 x1 hasta xn representan las características
• ෝ𝑦 representan el valor previsto

El primer paso es reescribir este modelo utilizando la notación del álgebra lineal, como un producto de
dos vectores.

I.1 Representación de Redes Neuronales

He aquí un ejemplo de este modelo:

Representación de Redes Neuronales

En la representación de la red neuronal de este modelo, vemos lo siguiente:
• Una neurona de entrada representa cada columna de características en un conjunto de datos
• Cada valor de peso se representa como una flecha desde la columna de características que

multiplica hasta la neurona de salida

Las neuronas y las flechas representan la suma ponderada, que es la combinación de las
columnas de características y los pesos.

I.1 Representación de Redes Neuronales

Inspirada en las redes neuronales biológicas,
una función de activación determina si la
neurona se dispara o no. En un modelo de red
neuronal, la función de activación transforma la
suma ponderada de los valores de entrada.
Para esta red, la función de activación es la
función de identidad. La función identidad
devuelve el mismo valor que se pasó en lo
siguiente: f(x)=x

Aunque la función de activación no es
interesante para una red que realiza una
regresión lineal, es útil para la regresión
logística y las redes más complejas. He aquí
una comparación de ambas representaciones
del mismo modelo de regresión lineal:

I.1 Representación de Redes Neuronales

Algebra
lineal

Red
Neuronal

Función de
Activación

https://en.wikipedia.org/wiki/Identity_function

I.1.5 Manipulación de datos de regresión

Empezaremos a trabajar con datos que generaremos nosotros mismos en lugar de un conjunto de datos
externo. Generar los datos nosotros mismos nos da más control sobre las propiedades del conjunto de datos
(por ejemplo, como el número de características, las observaciones y el ruido en las características). Los
conjuntos de datos que creamos en los que las redes neuronales destacan contienen la misma no linealidad
que los conjuntos de datos del mundo real, por lo que podemos aplicar lo que aprendemos aquí.

Scikit-learn contiene las siguientes funciones convenientes para generar datos:
• sklearn.datasets.make_regression()
• sklearn.datasets.make_classification()
• sklearn.datasets.make_moons()

El siguiente código genera un conjunto de datos de regresión con 3 características, 1000 observaciones y una
semilla aleatoria de 1:

I.1 Representación de Redes Neuronales

http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_regression.html
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html#sklearn.datasets.make_moons

La función make_regression() devuelve una tupla de dos objetos NumPy

Las características están en la primera matriz NumPy, y las etiquetas están en la segunda matriz
NumPy:

I.1 Representación de Redes Neuronales

Podemos entonces utilizar el constructor pandas.DataFrame() para crear DataFrames :

Vamos a generar algunos datos para la red que estamos construyendo.

Instrucciones

1. Gener un grupo de datos para regresion que incluya lo siguiente:
• Exactamente 100 observaciones
• Exactamente 3 caracteristicas
• La muestra aleatoria 1
2. Convertir la matriz NumPy de características generadas en un DataFrame de pandas, y asignar

a las características (features)
3. Convertir el array NumPy de etiquetas generadas en una serie de pandas y asignar a las

etiquetas (labels)

I.1 Representación de Redes Neuronales

Soluciones

I.1.6 Ajuste de una Red Neuronal de Regresión Lineal

Dado que las entradas de una capa de neuronas alimentan la siguiente capa de la única neurona
de salida, llamamos a esta red una red feedforward. En el lenguaje de los grafos, una red de
alimentación es un grafo dirigido y acíclico.

I.1 Representación de Redes Neuronales

https://en.wikipedia.org/wiki/Feedforward_neural_network

Cómo montar una red

A continuación se presentan dos enfoques diferentes para entrenar un modelo de regresión lineal:
• Descenso gradual
• Mínimos cuadrados ordinarios

I.1 Representación de Redes Neuronales

El descenso de gradiente es la técnica más común para ajustar modelos de redes neuronales. En
esta lección nos basaremos en la implementación de scikit-learn del descenso de gradiente.

Esta implementación está en la clase SGDRegressor. La utilizaremos de la misma manera que lo
hacemos con la clase LinearRegression:

Ahora tenemos todo lo que necesitamos para implementar esta red. Como nos estamos
centrando en la construcción de la intuición, entrenaremos y probaremos con el mismo conjunto
de datos. En los escenarios de la vida real, siempre se quiere utilizar una técnica de validación
cruzada de algún tipo.

I.1 Representación de Redes Neuronales

http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDRegressor.html

Instrucciones

1. Añade una columna llamada bias que contenga el valor 1 para cada fila del DataFrame de características
2. Importe SGDRegressor de sklearn.linear_model
3. Defina dos funciones:

• train(features, labels): toma las features (características) DataFrame y los labels (etiquetas) de las series
y realiza el ajuste del modelo

• Utilice la clase SGDRegressor de scikit-learn para manejar el ajuste del modelo
• Esta función debería devolver sólo una matriz NumPy 1D de pesos para el modelo de regresión lineal.
• feedforward(features, weights): toma el DataFrame de features (características) y el array NumPy de

weights (pesos)
• Realiza la multiplicación matricial entre los features (100 filas por 4 columnas) y los weights (4 filas por 1

columna) y asigna el resultado a las predicciones
• Predicciones de retorno (Return predictions). Omitiremos la implementación de la función de identidad

ya que simplemente devuelve el mismo valor que se pasó
4. Descomente el código que hemos añadido para usted y ejecute las funciones train() y feedforward(). Las

predicciones finales estarán en linear_predictions

I.1 Representación de Redes Neuronales

http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDRegressor.html

Soluciones

I.1 Representación de Redes Neuronales

I.2.7 Generación de Datos de Clasificación

Para generar un conjunto de datos apto para la clasificación, podemos utilizar la función
make_classification() de scikit-learn.

El siguiente código genera un conjunto de datos de clasificación con 4 características, 1000
observaciones y una semilla aleatoria de 1:

La función make_classification() devuelve una tupla de dos objetos NumPy.

I.1 Representación de Redes Neuronales

http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html

Al igual que con los datos generados por make_regression(), las características están en la
primera matriz NumPy, y las etiquetas están en la segunda matriz NumPy:

Podemos entonces utilizar el constructor pandas.DataFrame() para crear DataFrames:

Vamos a generar algunos datos de clasificación para la red que estamos construyendo.

I.1 Representación de Redes Neuronales

Instrucciones

1. Genere un conjunto de datos para la clasificación que incluya lo siguiente:
• Exactamente 100 observaciones
• Exactamente 4 caracteristicas
• La semilla aleatoria 1

2. Convertir el array NumPy de características generadas en un DataFrame de pandas y asignarlo
a class_features

3. Convertir el array NumPy de etiquetas generadas en una serie de pandas, y asignar a
class_labels

Soluciones

I.1 Representación de Redes Neuronales

I.2.8 Implementar Redes Neuronales para Clasificación

En las pantallas anteriores, hemos reproducido la regresión lineal como un modelo de red neuronal
feedforward y hemos aprendido sobre las funciones de activación no lineales. Ahora tenemos una
mejor idea de lo que define a una red neuronal. Hasta ahora, sabemos que las redes neuronales
necesitan lo siguiente:
• Una estructura de red (¿Cómo se conectan los nodos? ¿En qué dirección fluyen los datos y los

cálculos?)
• Una función feedforward (¿Cómo se combinan los pesos de los nodos y los valores de

observación?)
• Una función de activación (¿Qué transformaciones se realizan en los datos?)
• Una función de ajuste del modelo (¿Cómo se ajusta el modelo?)

Ahora exploraremos cómo construir una red neuronal que replique un modelo de regresión
logística. Empezaremos con una rápida recapitulación.

I.1 Representación de Redes Neuronales

Clasificación Binaria y Regresión Logística

En la clasificación binaria, queremos encontrar un modelo que pueda diferenciar entre dos valores
categóricos (normalmente 0 y 1). Los valores 0 y 1 no tienen ningún peso numérico y actúan como
marcadores de posición numéricos para las dos categorías. Podemos intentar aprender la
probabilidad de que una determinada observación pertenezca a una u otra categoría.

En el lenguaje de la probabilidad condicional, nos interesa la probabilidad de que una
determinada observación x pertenezca a cada categoría: P(y=0∣x)=0.3P(y=1∣x)=0.7

Como el universo de posibilidades sólo está formado por estas dos categorías, las probabilidades
de ambas deben sumar 1. Esto nos permite simplificar lo que queremos que aprenda un modelo de
clasificación binaria:
• P(y=1∣x)=?
• Si P(y=1∣x)>0,5, queremos que el modelo lo asigne a la categoría 1
• Si P(y=1∣x)<0,5, queremos que el modelo lo asigne a la categoría 0

I.1 Representación de Redes Neuronales

Implementación de un Modelo de Regresión Logística

Un modelo de regresión logística consta de dos componentes principales:
• Calcular la combinación lineal ponderada de pesos y características (como en un modelo de

regresión lineal):

• Aplicar una función de transformación para aplastar el resultado de manera que varíe entre 0 y
1:

Combinando estos dos pasos se obtiene la siguiente definición de un modelo de regresión
logística:

La literatura sobre redes neuronales suele referirse a esta función como la función sigmoidea
(sigmoid function). Este es un gráfico de la función sigmoidea:

I.1 Representación de Redes Neuronales

https://en.wikipedia.org/wiki/Sigmoid_function
https://en.wikipedia.org/wiki/Sigmoid_function

Verás que la función sigmoidea tiene asíntotas
horizontales en 0 y 1, lo que significa que
cualquier valor de entrada siempre dará un
valor entre 0 y 1.

Para implementar una red que realice la
clasificación, lo único que tenemos que cambiar
de la red de regresión lineal que
implementamos es la función de activación. En
lugar de utilizar la función de identidad, tenemos
que utilizar la función sigmoidea.

I.1 Representación de Redes Neuronales

Este es un diagrama de esta red:

I.1 Representación de Redes Neuronales

Clasificación Binaria Capa de
Entrada

Capa de
Salida

Capa de
Entrada

Capa de
Salida

Instrucciones

1. Añade una columna llamada bias que contenga el valor 1 para cada fila del DataFrame class_features.
2. Defina tres funciones:
• log_train(class_features, class_labels): toma las series class_features DataFrame y class_labels y realiza el ajuste del

modelo
• Utiliza la clase SGDClassifier de scikit-learn para manejar el ajuste del modelo.
• Esta función debería devolver una matriz NumPy 2D de pesos para el modelo de regresión logística.
• sigmoid(linear_combination): toma una matriz NumPy 2D y aplica la función sigmoid para cada valor: 11+e-x
• log_feedforward(class_features, log_train_weights): toma el DataFrame class_features y la matriz NumPy

log_train_weights
• Realiza la multiplicación matricial entre class_features (100 filas por 5 columnas) y log_train_weights (1 fila por 5

columnas) transpuesta, y la asigna a linear_combination
• Utilizar la función sigmoide() para transformar linear_combinations y asignar el resultado a log_predictions
• Convierta cada valor de log_predictions en una etiqueta de clase:
• Si el valor es mayor o igual a 0,5, sobrescribir el valor a 1
• Si el valor es inferior a 0,5, sobrescribir el valor en 0
• Devuelve log_predictions
3. Quite los comentarios del código que hemos añadido y ejecute las funciones log_train() y log_feedforward(). Las

predicciones finales estarán en log_predictions

I.1 Representación de Redes Neuronales

http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html

Soluciones

I.1 Representación de Redes Neuronales

I.2 Funciones de Activación no Lineal

En la última misión, nos familiarizamos con los grafos computacionales y con la forma de
representar los modelos de redes neuronales. También nos familiarizamos con la terminología de
las redes neuronales como:
• Paso adelante
• Neuronas de entrada
• Neuronas de salida

En esta misión, profundizaremos en el papel que desempeñan las funciones de activación no
lineales. Para motivar nuestra exploración, empecemos por reflexionar sobre el propósito de un
modelo de aprendizaje automático.

El propósito de un modelo de aprendizaje automático es transformar las entradas de datos de
entrenamiento al modelo (que son características) para aproximar los valores de salida de
entrenamiento. Esto se logra mediante:
• Seleccionando un modelo específico para utilizar
• Encontrar los parámetros adecuados para este modelo que mejor funcionen
• Probar el modelo para saber si se generaliza a los nuevos datos

Regresión Lineal

Utilizamos la regresión lineal cuando pensamos que los valores de salida pueden aproximarse
mejor mediante una combinación lineal de las características y los pesos aprendidos. Este modelo
es un sistema lineal, porque cualquier cambio en el valor de salida es proporcional a los cambios
en los valores de entrada.

Cuando los valores objetivo y pueden ser aproximados por una combinación lineal de las
características x1 a xn, la regresión lineal es la opción ideal. Aquí hay un GIF que visualiza la
expresabilidad potencial de un modelo de regresión lineal (imitando conceptualmente lo que hace
el descenso de gradiente).

I.2 Funciones de Activación no Lineal

Veamos ahora una situación en la que los valores de salida no pueden aproximarse eficazmente
utilizando una combinación lineal de los valores de entrada.

I.2 Funciones de Activación no Lineal

Regresión Logística

En un problema de clasificación binaria, los valores objetivo son 0 y 1 y la relación entre las
características y los valores objetivo no es lineal. Esto significa que necesitamos una función que
pueda realizar una transformación no lineal de las características de entrada.

La función sigmoidea es una buena elección, ya que todos sus valores de entrada se aplastan
para que oscilen entre 0 y 1.

La adición de la transformación sigmoidea ayuda al modelo a aproximarse a esta relación no
lineal que subyace en las tareas comunes de clasificación binaria. El siguiente GIF muestra cómo
cambia la forma del modelo de regresión logística a medida que aumentamos el peso único
(imitando conceptualmente lo que hace el descenso de gradiente):

I.2 Funciones de Activación no Lineal

I.2 Funciones de Activación no Lineal

Red Neuronal

Los modelos de regresión logística aprenden un conjunto de pesos que inciden en la fase de
combinación lineal y luego se alimentan a través de una única función no lineal (la función
sigmoide). En esta misión, nos sumergiremos en las funciones de activación más utilizadas. Las
tres funciones de activación más utilizadas en las redes neuronales son:
• La función sigmoidea
• La función ReLU
• La función tanh

Como ya hemos cubierto la función sigmoidea, nos centraremos en las dos últimas funciones.

I.2 Funciones de Activación no Lineal

1.2.1 Función de Activación ReLU

Empezaremos introduciendo la función de activación ReLU, que es una función de activación
comúnmente utilizada en las redes neuronales para resolver problemas de regresión. ReLU
significa unidad lineal rectificada y se define como sigue: ReLU(x)=max(0,x).

La llamada a la función max(0,x) devuelve el valor máximo entre 0 y x. Esto significa que:
• Cuando x es menor que 0, se devuelve el valor 0
• Cuando x es mayor que 0, se devuelve el valor x

I.2 Funciones de Activación no Lineal

Aquí hay un gráfico de la función: La función ReLU devuelve el componente
positivo del valor de entrada. Visualicemos la
expresividad de un modelo que realiza una
combinación lineal de las características y
pesos seguida de la transformación ReLU:

I.2 Funciones de Activación no Lineal

Hay varias formas de implementar la función ReLU en el código. Lo dejaremos como un ejercicio
para que lo implementes.

Instrucciones

• Definir la función relu()
• Esta función debe poder trabajar con un solo valor o con una lista de valores
• Llama a la función relu(), pasa x y asigna el valor devuelto a relu_y
• Imprime tanto x como relu_y
• Generar un gráfico de líneas con x en el eje x y relu_y en el eje y

I.2 Funciones de Activación no Lineal

Soluciones

I.2 Funciones de Activación no Lineal

1.2.2 Activación Trigonométrica

La última función de activación comúnmente utilizada en las redes neuronales que discutiremos
es la función tanh (también conocida como la función tangente hiperbólica). Empezaremos por
repasar algo de trigonometría discutiendo la función tan (abreviatura de tangente) y luego
trabajaremos hasta la función tanh (en la siguiente pantalla). Aunque no proporcionaremos aquí
la profundidad necesaria para aprender trigonometría desde cero, recomendamos la Serie de
Trigonometría en Khan Academy (Trigonometry Series on Khan Academy) si eres nuevo en la
trigonometría.

¿Qué es la Trigonometría?

La trigonometría es la abreviatura de la geometría de los triángulos y proporciona fórmulas,
marcos y modelos mentales para razonar sobre los triángulos. Los triángulos se utilizan
ampliamente en las matemáticas teóricas y aplicadas, y se basan en el trabajo matemático
realizado durante muchos siglos. Empecemos por definir claramente qué es un triángulo.

I.2 Funciones de Activación no Lineal

https://www.khanacademy.org/math/trigonometry

Un triángulo es un polígono que tiene las siguientes propiedades:
• 3 aristas
• 3 vértices
• Los ángulos entre aristas suman 180 grados

Los triángulos se pueden clasificar de dos formas principales: por los ángulos internos o por la
longitud de las aristas. El siguiente diagrama describe los tres tipos de triángulos según las
propiedades de la longitud de sus aristas:

I.2 Funciones de Activación no Lineal

Escaleno
Las tres aristas tienen longitudes

diferentes. Ángulos tienen diferentes
medidas.

Isósceles
Dos aristas iguales

Equilátero
Todas las aristas

iguales

Clasificación de triángulos
por longitud de las aristas

https://en.wikipedia.org/wiki/Polygon

Un triángulo importante que se clasifica por los
ángulos internos es el triángulo rectángulo. En un
triángulo rectángulo, uno de los ángulos es de 90
grados (también conocido como ángulo recto). La
arista opuesta al ángulo recto se llama
hipotenusa.

Una función trigonométrica es una función que
introduce un valor angular (normalmente
representado como θ) y da como resultado algún
valor. Estas funciones calculan relaciones entre las
longitudes de los bordes. Aquí están las 3 primeras
funciones trigonométricas:

Definamos mejor estos términos:
• Hipotenusa describe la línea que no toca el

ángulo recto
• Opuesta se refiere a la línea opuesta al ángulo
• Adyacente se refiere a la línea que toca el

ángulo y que no es la hipotenusa

I.2 Funciones de Activación no Lineal

Triángulo de ángulo
recto

Hipotenusa

Este es un ejemplo de la función tangente. Instrucciones

• Utiliza la función numpy.tan() para calcular
la tangente de los valores de x y asigna el
valor devuelto a tan_y

• Imprime tanto x como tan_y
• Genera un gráfico de líneas con x en el eje x y

tan_y en el eje y

Soluciones

I.2 Funciones de Activación no Lineal

Aplicación de la función
tangente

Adyacent
e Opuesto

Hipotenus
a

https://docs.scipy.org/doc/numpy-1.15.1/reference/generated/numpy.tan.html

1.2.3 Reflexión sobre la Función Tangente

La función tangente de la última pantalla generó el siguiente gráfico:

I.2 Funciones de Activación no Lineal

Los picos agudos periódicos que se ven en el gráfico se conocen como asíntotas verticales
(vertical asymptotes). En esos puntos, el valor no está definido, pero el límite se aproxima al
infinito negativo o positivo (dependiendo de la dirección desde la que te aproximes al valor de x).

La clave de la gráfica es que la función tangente es una función periódica que se repite. Una
función periódica es aquella que devuelve el mismo valor a intervalos regulares. Veamos una tabla
con algunos valores de la función tangente:

La función tangente se repite cada π, lo que se conoce como período. La función tangente no es
conocida por ser utilizada como función de activación en redes neuronales (o cualquier modelo de
aprendizaje automático en realidad) porque la naturaleza periódica no es un patrón que se
encuentre en conjuntos de datos reales.

I.2 Funciones de Activación no Lineal

https://en.wikipedia.org/wiki/Asymptote#Vertical_asymptotes

Aunque se han realizado algunos experimentos con funciones periódicas (experiments with
periodic functions) como función de activación para redes neuronales, la conclusión general ha
sido que las funciones periódicas como la tangente no ofrecen ninguna ventaja única para el
modelado.

En general, las funciones de activación que se utilizan en las redes neuronales son funciones
crecientes (increasing functions). Una función creciente f es una función en la que f(x) siempre
permanece igual o aumenta a medida que x aumenta.

Todas las funciones de activación que hemos visto (y veremos) en esta misión cumplen este
criterio.

I.2 Funciones de Activación no Lineal

https://ieeexplore.ieee.org/document/819741
https://ieeexplore.ieee.org/document/819741
https://en.wikipedia.org/wiki/Monotonic_function

I.3 Capas Ocultas

En las dos últimas misiones, hemos trabajado
con redes neuronales de una sola capa. Estas
redes tenían una sola capa de neuronas. Para
hacer una predicción, una sola capa de
neuronas en estas redes alimentaba
directamente sus resultados a la(s) neurona(s)
de salida.

En esta misión, exploraremos cómo las redes
multicapa (también conocidas como redes
neuronales profundas) son capaces de captar
mejor la no linealidad de los datos. En una red
neuronal profunda, la primera capa de
neuronas de entrada alimenta una segunda
capa intermedia de neuronas. Este es un
diagrama que representa esta arquitectura:

Capa de
neuronas

de
entrada

Capa
Oculta

Resultado

18
Pesos

6
Pesos

Incluimos las dos funciones que se utilizan para
calcular cada neurona oculta y la neurona de
salida para ayudar a aclarar cualquier
confusión. Notarás que el número de neuronas
de la segunda capa es mayor que el de la capa
de entrada. La elección del número de neuronas
en esta capa es un poco un arte y todavía no
una ciencia en la literatura de redes neuronales.
De hecho, podemos añadir más capas
intermedias, y esto suele conducir a una mayor
precisión del modelo (debido a una mayor
capacidad de aprendizaje de la no linealidad).

I.3 Capas Ocultas

Capa de
neuronas

de
entrada

Capa
Oculta 1

Resultado

18
Pesos

4
Pesos

Capa
Oculta 2

24
Pesos

Las capas intermedias se conocen como capas ocultas, porque no están representadas
directamente en los datos de entrada ni en las predicciones de salida. En cambio, podemos
pensar en cada capa oculta como características intermedias que se aprenden durante el
proceso de entrenamiento. Comparación con los modelos de árbol de decisión.

En realidad, esto es muy similar a cómo se estructuran los árboles de decisión. Las ramas y
divisiones representan algunas características intermedias que son útiles para hacer predicciones
y son análogas a las capas ocultas en una red neuronal:

I.3 Capas Ocultas

Características
Intermedias

Características
Intermedias

Resultad
os

Cada una de estas capas ocultas tiene su propio conjunto de pesos y sesgos, que se descubren
durante el proceso de entrenamiento. En los modelos de árbol de decisión, las características
intermedias del modelo representan algo más concreto que podemos entender (rangos de
características).

Los modelos de árboles de decisión se denominan modelos de caja blanca (white box models)
porque pueden observarse y entenderse, pero no se pueden modificar fácilmente. Después de
entrenar un modelo de árbol de decisión, podemos visualizar el árbol, interpretarlo y tener nuevas
ideas para ajustar el modelo. Las redes neuronales, en cambio, están mucho más cerca de ser una
caja negra. En un modelo de caja negra (black box), podemos entender las entradas y las salidas,
pero las características intermedias son realmente difíciles de interpretar y comprender. Más difícil
aún, y quizás más importante, es entender cómo ajustar una red neuronal basándose en estas
características intermedias.

En esta misión, aprenderemos cómo añadir más capas a una red y añadir más neuronas en las
capas ocultas puede mejorar la capacidad del modelo para aprender relaciones más complejas.

I.3 Capas Ocultas

https://en.wikipedia.org/wiki/White_box_(software_engineering)
https://en.wikipedia.org/wiki/Black_box#Testing_the_black_box_model

I.3.1 Generación de datos con función de no
linealidad

Para generar datos con no linealidad en las
características (tanto entre las características
como entre las características y la columna
objetivo), podemos utilizar la función
make_moons() de scikit-learn:

Por defecto, make_moons() generará 100 filas
de datos con 2 características. Aquí hay un
gráfico que visualiza una característica contra la
otra:

I.3 Capas Ocultas

http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html#sklearn.datasets.make_moons

Para hacer las cosas más interesantes, vamos a
añadir un poco de Ruido Gaussiano (Gaussian
noise)a los datos. El ruido gaussiano es un tipo
de ruido estadístico que sigue la distribución
gaussiana, y es una forma común de intentar
recrear el ruido que a menudo se encuentra en
los datos del mundo real.

Podemos utilizar el parámetro noise para
especificar la desviación estándar del ruido
gaussiano que queremos añadir a los datos.
También establezcamos random_state a 3 para
que los datos generados puedan ser recreados:

Al igual que en una misión anterior, podemos
separar el objeto NumPy resultante en 2
dataframes de pandas:

I.3 Capas Ocultas

https://en.wikipedia.org/wiki/Gaussian_noise
https://en.wikipedia.org/wiki/Gaussian_noise

Instrucciones

• Utilice la función make_moons() para generar datos con no linealidad:
• Generar 100 valores
• Establezca la semilla aleatoria en 3
• Establezca el parámetro de ruido en 0,04

• Convertir el array de NumPy de características generadas en un dataframe de pandas y asignarlo a las
features (características)

• Convertir la matriz NumPy de etiquetas generadas en una serie de pandas y asignarla a las etiquetas
• Generar un gráfico de dispersión en 3D de los datos:

• Crear un objeto matplotlib figure y establecer figsize en (8,8)
• Cree y adjunte un objeto de eje único a esta figura utilizando la proyección 3d: ax = fig.add_subplot(111,

projection='3d')
• Generar un gráfico de dispersión 3d (3d scatter plot) con la primera columna de features

(características) en el eje x, la segunda columna de features (características) en el eje y y los labels
(etiqueta) en el eje z

• Establezca las etiquetas 'x1', 'x2' e 'y', respectivamente

I.3 Capas Ocultas

https://matplotlib.org/mpl_toolkits/mplot3d/api.html#mpl_toolkits.mplot3d.axes3d.Axes3D.scatter

Soluciones

I.3 Capas Ocultas

I.3.2 Capa oculta con una sola neurona

En la última misión, aprendimos cómo la adición de una función de activación no lineal ampliaba
la gama de patrones que un modelo podía intentar aprender. El siguiente GIF muestra cómo la
adición de la función sigmoide permite a un modelo de regresión logística capturar la no
linealidad de manera más eficaz:

I.3 Capas Ocultas

Podemos pensar en un modelo de regresión logística como una red neuronal con una función de
activación pero sin capas ocultas. Para hacer predicciones, se realiza una combinación lineal de
las características y los pesos, seguida de una única transformación sigmoidea.

I.3 Capas Ocultas

Clasificación
Binaria

Capa de Entrada Capa de
Salida

Para mejorar la capacidad expresiva, podemos añadir una capa oculta de neuronas entre la capa
de entrada y la de salida. Este es un ejemplo en el que hemos añadido una sola capa oculta con
una sola neurona entre la capa de entrada y la de salida:

I.3 Capas Ocultas

Etapa 1 Etapa
2

4
Pesos

1
Peso

Etapa 1

Etapa
2

Esta red contiene dos conjuntos de pesos que se aprenden durante la fase de entrenamiento:
• 4 pesos entre la capa de entrada y la capa oculta
• 1 peso entre la capa oculta y la capa de salida

En la siguiente pantalla, aprenderemos a entrenar una red neuronal con una capa oculta
utilizando scikit-learn. Compararemos este modelo con un modelo de regresión logística.

I.3 Capas Ocultas

I.3.3 Entrenamiento de una red neuronal con Scikit-learn

Scikit-learn contiene dos clases para trabajar con redes neuronales:
• MLPClassifier
• MLPRegressor

Vamos a centrarnos en la clase MLPClassifier. Como todas las clases de modelos en scikit-learn,
MLPClassifier sigue el patrón estándar model.fit() y model.predict():

I.3 Capas Ocultas

http://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html

Podemos especificar el número de neuronas ocultas que queremos utilizar en cada capa
utilizando el parámetro hidden_layer_sizes. Este parámetro acepta una tupla en la que el valor del
índice corresponde al número de neuronas de esa capa oculta. El parámetro se establece a la
tupla (100) por defecto, que corresponde a cien neuronas en una sola capa oculta. El siguiente
código especifica una capa oculta de seis neuronas:

Podemos especificar la función de activación (activation) que queremos que se utilice en todas las
capas utilizando el parámetro de activación. Este parámetro sólo acepta los siguientes valores de
cadena:
• 'identity': la función de identidad
• 'logistic': la función sigmoidea
• 'tanh': la función tangente hiperbólica (tanh)
• 'relu': la función ReLU

I.3 Capas Ocultas

Este es un modelo instanciado con la función de activación sigmoidea:

Aunque scikit-learn es fácil de usar cuando se aprenden nuevos conceptos, tiene algunas
limitaciones cuando se trata de trabajar con redes neuronales en producción.
• En el momento de escribir esto, scikit-learn sólo admite el uso de la misma función de activación

para todas las capas
• Scikit-learn también tiene dificultades para escalar a conjuntos de datos más grandes

• Bibliotecas como Theano y TensorFlow permiten descargar algunos cálculos a la GPU para
superar los cuellos de botella

I.3 Capas Ocultas

http://deeplearning.net/software/theano/
https://www.tensorflow.org/

Instrucciones

• Entrene dos modelos diferentes utilizando scikit-learn en el conjunto de entrenamiento:
• Un modelo de regresión logística estándar
• Una red neuronal con:

• Una sola capa oculta
• Una sola neurona en la capa oculta
• La función de activación sigmoidea

• Realice y asigne predicciones (a efectos de comprobación de respuestas, debe respetarse el orden):
• Realice predicciones sobre el conjunto de pruebas utilizando el modelo de red neuronal y asígnelas a

nn_predicciones
• Realice predicciones sobre el conjunto de pruebas utilizando el modelo de regresión logística y

asígnelas a log_predictions
• Calcule la puntuación de precisión (accuracy score) de log_predictions y asígnela a log_accuracy
• Calcule la puntuación de precisión (accuracy score) de nn_predicciones y asígnela a nn_precisión
• Imprima tanto log_accuracy como nn_accuracy

I.3 Capas Ocultas

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html

Soluciones

I.3 Capas Ocultas

I.3.4 Capa oculta con múltiples neuronas

En la última pantalla, hemos entrenado un modelo de regresión logística y un modelo de red
neuronal con una capa oculta que contiene una sola neurona. Aunque no recomendamos utilizar
las puntuaciones de precisión para evaluar los modelos de clasificación en un entorno de
producción, pueden ser útiles cuando estamos aprendiendo y experimentando porque son fáciles
de entender.

El modelo de regresión logística se comportó mucho mejor (precisión del 88%) en comparación
con el modelo de red neuronal con una capa oculta y una neurona (48%). Desgraciadamente, esta
arquitectura de red no da al modelo mucha capacidad para captar la no linealidad de los datos,
por lo que la regresión logística funcionó mucho mejor.

Veamos una red con una sola capa oculta de múltiples neuronas:

I.3 Capas Ocultas

I.3 Capas Ocultas

Capa de
neuronas

de
entrada

Capa
Oculta

Resultado

18
Pesos

6
Pesos

Esta red tiene 3 neuronas de entrada, 6 neuronas en la única capa oculta y 1 neurona de salida.
Verás que hay una flecha entre cada neurona de entrada y cada neurona oculta (3 x 6 = 18
conexiones), lo que representa un peso que hay que aprender durante el proceso de
entrenamiento. Verás que también hay un peso que hay que aprender entre cada neurona oculta
y la neurona de salida final (6 x 1 = 6 conexiones).

Dado que cada neurona tiene una conexión entre sí y todas las neuronas de la capa siguiente,
esto se conoce como una red totalmente conectada. Por último, dado que el cálculo fluye de la
izquierda (capa de entrada) a la derecha (capa oculta y luego a la capa de salida), podemos
llamar a esta red una red totalmente conectada, de tipo feedforward.

Hay dos matrices de pesos (a1 y a2) que deben aprenderse durante el proceso de entrenamiento,
una para cada etapa del cálculo. Veamos la representación en álgebra lineal de esta red.

I.3 Capas Ocultas

I.3 Capas Ocultas

Etapa 1 Etapa
2

Etapa 1

Etapa
2

18
Pesos

6
Pesos

Aunque hemos hablado de diferentes arquitecturas en este curso, una red neuronal profunda se
reduce a una serie de multiplicaciones de matrices emparejadas con transformaciones no
lineales. Estas son las ideas clave que subyacen en todas las arquitecturas de redes neuronales.
Echa un vistazo a este diagrama conceptual del Instituto Asimov (the Asimov Institute) que
muestra una variedad de arquitecturas de redes neuronales:

I.3 Capas Ocultas

http://www.asimovinstitute.org/neural-network-zoo/

I.3 Capas Ocultas

Instrucciones

• Cree la siguiente lista de recuentos de neuronas y asígnelos a neurons: [1, 5, 10, 15, 20, 25]
• Crear una lista vacía llamada accuracies (precisiones)
• Para cada valor de neurons:

• Entrena una red neuronal:
• Con el número de neuronas en la capa oculta fijado en el valor actual
• Utilizando la función de activación sigmoidea en el conjunto de entrenamiento

• Realiza predicciones en el conjunto de prueba y calcula el valor de precisión
• Añade el valor de precisión a las accuracies (precisiones)

• Imprima las accuracies (precisiones)

I.3 Capas Ocultas

Soluciones

I.3 Capas Ocultas

I.3.5 Capa Oculta Múltiple

Parece que la precisión de la predicción del conjunto de pruebas mejoró hasta el 0,86 cuando se
utilizaron diez o quince neuronas en la capa oculta. A medida que aumentamos el número de
neuronas en la capa oculta, la precisión mejoró enormemente entre los modelos:

Parece que la precisión de la predicción del conjunto de pruebas mejoró hasta el 0,86 cuando se
utilizaron diez o quince neuronas en la capa oculta. A medida que aumentamos el número de
neuronas en la capa oculta, la precisión mejoró enormemente entre los modelos:

I.3 Capas Ocultas

I.3 Hidden Layers

Capa de
neuronas

de
entrada

Capa
Oculta 1

Resultado

18
Pesos

4
Pesos

Capa
Oculta 2

24
Pesos

Para determinar el número de pesos entre las capas, multiplique el número de neuronas entre
esas dos capas. Recuerda que estos pesos se representarán como matrices de pesos.

Para especificar el número de capas ocultas y el número de neuronas en cada capa oculta,
cambiamos la tupla que pasamos al parámetro hidden_layer_sizes:

I.3 Capas Ocultas

El número de capas ocultas y el número de neuronas en cada capa oculta son hiperparámetros
que actúan como mandos para el comportamiento del modelo. La optimización de los
hiperparámetros de las redes neuronales está, por desgracia, fuera del alcance de este curso, ya
que requiere una base matemática más sólida que planeamos proporcionar en futuros cursos.

Vamos a entrenar los siguientes modelos de redes neuronales:
• Modelo con dos capas ocultas, cada una con una neurona
• Modelo con dos capas ocultas, cada una con cinco neuronas
• Modelo con dos capas ocultas, cada una con diez neuronas
• Modelo con dos capas ocultas, cada una con quince neuronas
• Modelo con dos capas ocultas, cada una con veinte neuronas
• Modelo con dos capas ocultas, cada una con veinticinco neuronas

Cambiemos también la función de activación utilizada en las capas ocultas por la función ReLU.

I.3 Capas Ocultas

Las redes neuronales suelen tardar mucho en converger durante el proceso de entrenamiento y
muchas bibliotecas tienen valores por defecto para el número de iteraciones de descenso de
gradiente a ejecutar. Podemos aumentar el número de iteraciones del descenso de gradiente que
se realiza durante el proceso de entrenamiento modificando el parámetro max_iter, que está
fijado en 200 por defecto.

I.3 Capas Ocultas

Instrucciones

• Cree la siguiente lista de recuentos de neuronas y asígnelos a las neuronas - neurons: [1, 5, 10, 15,
20, 25]

• Cree una lista vacía llamada nn_accuracies
• Para cada valor de las neurons:

• Entrene una red neuronal:
• Con dos capas ocultas, cada una con el mismo número de neuronas (el valor actual en

neuronas)
• Usando la función de activación relu
• Usando 1000 iteraciones de descenso de gradiente
• En el conjunto de entrenamiento

• Realiza predicciones en el conjunto de pruebas y calcula el valor de precisión
• Añada el valor de precisión a nn_accuracies

• Imprimir nn_accuracies

I.3 Capas Ocultas

Soluciones

I.3 Capas Ocultas

I.4 Proyecto Guiado: Construcción de un Clasificador de Dígitos Escritos
a Mano

En la última misión, aprendimos cómo la adición de capas ocultas de neuronas a una red neuronal
puede mejorar su capacidad para capturar la no linealidad en los datos. Probamos diferentes modelos
de redes neuronales en un conjunto de datos que generamos con no linealidad deliberada.

En este proyecto guiado, vamos a:
• Explorar por qué la clasificación de imágenes es una tarea difícil
• Observar las limitaciones de los modelos tradicionales de aprendizaje automático para la

clasificación de imágenes
• Entrenar, probar y mejorar algunas redes neuronales profundas diferentes para la clasificación de

imágenes

Como mencionamos en la primera misión de este curso, las redes neuronales profundas se han
utilizado para alcanzar un rendimiento de vanguardia en tareas de clasificación de imágenes en la
última década. Para algunas tareas de clasificación de imágenes, las redes neuronales profundas
realmente se desempeñan tan bien o ligeramente mejor que el punto de referencia humano. Puede leer
sobre la historia de las redes neuronales profundas aquí.

https://arxiv.org/pdf/1803.01164.pdf

Para terminar este curso, construiremos modelos que puedan clasificar los dígitos escritos a mano.
Antes del año 2000, instituciones como la Oficina de Correos de los Estados Unidos utilizaban
programas de reconocimiento de escritura a mano para leer direcciones, códigos postales, etc. En
este artículo se detalla uno de sus enfoques, que consiste en preprocesar las imágenes
manuscritas y luego alimentar un modelo de red neuronal:

¿Por qué la clasificación de imágenes es una tarea difícil?

En el campo del aprendizaje automático y el reconocimiento de patrones, la clasificación de
imágenes (especialmente de texto manuscrito) se encuentra en el extremo más difícil del
espectro. Esto se debe a varias razones.

En primer lugar, cada imagen de un conjunto de entrenamiento es altamente dimensional. Cada
píxel de una imagen es una característica y una columna independiente. Esto significa que una
imagen de 128 x 128 tiene 16384 características.

I.4 Proyecto Guiado: Construcción de un Clasificador de Dígitos Escritos
a Mano

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.852.5499&rep=rep1&type=pdf

En segundo lugar, las imágenes suelen reducirse a resoluciones inferiores y transformarse en
escala de grises (sin color). Por desgracia, esto es una limitación de la potencia de cálculo. La
resolución de una foto de 8 megapíxeles es de 3.264 por 2.448 píxeles, lo que supone un total de
7.990.272 rasgos (unos 8 millones). Las imágenes de esta resolución suelen reducirse a una escala
de entre 128 y 512 píxeles en cualquier dirección para que el procesamiento sea mucho más
rápido. Esto suele suponer una pérdida de detalles disponibles para el entrenamiento y la
comparación de patrones.

En tercer lugar, las características de una imagen no tienen una relación lineal o no lineal obvia
que pueda aprenderse con un modelo como la regresión lineal o logística. En escala de grises,
cada píxel se representa simplemente como un valor de brillo que va de 0 a 256.

Este es un ejemplo de cómo se representa una imagen en las diferentes abstracciones que nos
interesan:

I.4 Proyecto Guiado: Construcción de un Clasificador de Dígitos Escritos
a Mano

https://en.wikipedia.org/wiki/Grayscale

I.4 Proyecto Guiado: Construcción de un Clasificador de Dígitos Escritos
a Mano

Imagen Uniforme en la Base de
Datos

Valor de
Pixeles

Imagen
Renderizada

Una sola observación en los
datos

Miles de millones de
columnas

¿Por qué el aprendizaje profundo es eficaz en la
clasificación de imágenes?

El aprendizaje profundo es eficaz en la
clasificación de imágenes debido a la
capacidad de los modelos para aprender
representaciones jerárquicas. A alto nivel, un
modelo de aprendizaje profundo eficaz aprende
representaciones intermedias en cada capa del
modelo y las utiliza en el proceso de predicción.
Aquí hay un diagrama que visualiza lo que
representan los pesos en cada capa de una red
neuronal convolucional, un tipo de red que se
utiliza a menudo en la clasificación de imágenes
y que, lamentablemente, está fuera del alcance
de este curso, que fue entrenado para identificar
rostros.

I.4 Proyecto Guiado: Construcción de un Clasificador de Dígitos Escritos
a Mano

Observarás que en la primera capa oculta la red aprendió a representar bordes y rasgos
específicos de las caras. En la segunda capa oculta, los pesos parecían representar rasgos
faciales de mayor nivel, como ojos y narices. Por último, los pesos de la última capa oculta
representan rostros que podrían compararse. Cada capa sucesiva utiliza los pesos de las capas
anteriores para intentar aprender representaciones más complejas.

En este proyecto guiado, exploraremos la eficacia de las redes neuronales profundas y
feedforward para clasificar imágenes.

Scikit-learn contiene una serie de conjuntos de datos (datasets) precargados con la biblioteca,
dentro del espacio de nombres sklearn.datasets. La función load_digits()
(load_digits() function) devuelve una copia del hand-written digits dataset (conjunto de datos
de dígitos escritos a mano) de la UCI.

I.4 Proyecto Guiado: Construcción de un Clasificador de Dígitos Escritos
a Mano

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html
http://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits

Como los marcos de datos son una representación tabular de los datos, cada imagen se representa como
una fila de valores de píxeles. Para visualizar una imagen a partir del marco de datos, tenemos que remodelar
la imagen a sus dimensiones originales (28 x 28 píxeles). Para visualizar la imagen, tenemos que volver a dar
forma a estos valores de píxeles en 28 por 28 y trazarlos en una cuadrícula de coordenadas.

Para remodelar la imagen, necesitamos convertir un ejemplo de entrenamiento en un array de numpy
(excluyendo la columna de etiquetas (label)) y pasar el resultado a la función numpy.reshape()

Ahora que los datos tienen la forma adecuada, podemos visualizarlos utilizando la función pyplot.imshow():

I.4 Proyecto Guiado: Construcción de un Clasificador de Dígitos Escritos
a Mano

https://app.dataquest.io/m/244/guided-project:-building-a-handwritten-digits-classifier/2/working-with-image-data
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.imshow.html?highlight=matplotlib%20pyplot%20imshow#matplotlib.pyplot.imshow

Para mostrar múltiples imágenes en una figura de matplotlib, podemos utilizar la función
equivalente axes.imshow(). Usemos lo que hemos aprendido para mostrar imágenes de ambas
clases.

Instrucciones

• Importar load_digits() del paquete sklearn.datasets
• Transformar el array 2D de NumPy en un dataframe de pandas
• Utilizar matplotlib para visualizar algunas de las imágenes del conjunto de datos

• Generar una cuadrícula de dispersión, con 2 filas y 4 columnas
• En la primera fila:

• Mostrar las imágenes correspondientes a las filas 0, 100, 200 y 300
• En la segunda fila:

• Mostrar las imágenes correspondientes a las filas 1000, 1100, 1200, y 1300

I.4 Proyecto Guiado: Construcción de un Clasificador de Dígitos Escritos
a Mano

https://matplotlib.org/api/_as_gen/matplotlib.axes.Axes.imshow.html?highlight=axes%20imshow#matplotlib.axes.Axes.imshow
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html

II. Proyecto de Aprendizaje Automático

II.1 Recorrido por el Proyecto de Aprendizaje Automático: Depuración de
Datos

En este curso, recorreremos el ciclo de vida completo de la ciencia de datos, desde la limpieza de datos y la
selección de características hasta el aprendizaje automático. Nos centraremos en la modelización del crédito,
un conocido problema de la ciencia de datos que se centra en la modelización del riesgo crediticio de un
prestatario. El crédito ha desempeñado un papel clave en la economía durante siglos y alguna forma de
crédito ha existido desde el inicio del comercio. Trabajaremos con datos de préstamos financieros de Lending
Club. Lending Club es un mercado de préstamos personales que pone en contacto a prestatarios que buscan
un préstamo con inversores que quieren prestar dinero y obtener una rentabilidad. Puedes leer más sobre su
mercado aquí.

Cada prestatario completa una solicitud exhaustiva, proporcionando su historial financiero anterior, el motivo
del préstamo, y más. Lending Club evalúa la puntuación de crédito de cada prestatario utilizando datos
históricos anteriores y su propio proceso de ciencia de datos para asignar un tipo de interés al prestatario. El
tipo de interés es el porcentaje adicional al importe del préstamo solicitado que el prestatario tiene que
devolver. Puedes leer más sobre el tipo de interés que asigna Lending Club aquí. Lending Club también intenta
verificar toda la información que el prestatario proporciona, pero no puede verificar toda la información
(normalmente por razones de regulación).

https://en.wikipedia.org/wiki/Credit_risk
https://www.lendingclub.com/company/about-us?
https://www.lendingclub.com/loans/personal-loans/rates-fees.

Un tipo de interés más alto significa que el prestatario es un riesgo y que es más improbable que
devuelva el préstamo. Mientras que un tipo de interés más bajo significa que el prestatario tiene un
buen historial crediticio y es más probable que devuelva el préstamo. Los tipos de interés van
desde el 5,32% hasta el 30,99% y cada prestatario recibe una calificación (grade) según el tipo de
interés que se le haya asignado. Si el prestatario acepta el tipo de interés, el préstamo aparece en
el mercado de Lending Club.

A los inversores les interesa sobre todo recibir un rendimiento de sus inversiones. Los préstamos
aprobados aparecen en el sitio web de Lending Club, donde los inversores cualificados pueden
consultar los préstamos aprobados recientemente, la puntuación crediticia del prestatario, la
finalidad del préstamo y otros datos de la solicitud. Una vez que están preparados para respaldar
un préstamo, seleccionan la cantidad de dinero que quieren financiar. Una vez que la cantidad
solicitada de un préstamo está totalmente financiada, el prestatario recibe el dinero que solicitó
menos la comisión de apertura (origination fee) que cobra Lending Club.

II.1 Recorrido por el Proyecto de Aprendizaje Automático: Depuración de
Datos

https://www.lendingclub.com/public/rates-and-fees.action
https://help.lendingclub.com/hc/en-us/articles/214501207-What-is-the-origination-fee-

El prestatario realizará pagos mensuales a
Lending Club en 36 o 60 meses. Lending Club
redistribuye estos pagos a los inversores. Esto
significa que los inversores no tienen que
esperar a que se pague la totalidad del importe
para ver un retorno en dinero. Si un préstamo se
liquida completamente a tiempo, los inversores
obtienen una rentabilidad que corresponde al
tipo de interés que el prestatario tuvo que pagar
además de la cantidad solicitada. Muchos
préstamos no se pagan completamente a
tiempo y algunos prestatarios no pagan el
préstamo (default).

Este es un diagrama de Bible Money Matters
que resume el proceso:

II.1 Recorrido por el Proyecto de Aprendizaje Automático: Depuración de
Datos

https://www.lendingclub.com/public/collections-process.action
http://www.biblemoneymatters.com/introduction-to-peer-to-peer-lending-signing-up-to-use-lending-club/

Mientras que Lending Club tiene que ser extremadamente inteligente y riguroso con su modelado
crediticio, los inversores en Lending Club tienen que ser igualmente inteligentes a la hora de
determinar qué préstamos tienen más probabilidades de ser pagados. Al principio, uno puede
preguntarse por qué los inversores invierten dinero en cualquier cosa que no sea un préstamo de
bajo interés. El incentivo que tienen los inversores para respaldar los préstamos con mayor interés
es, bueno, el mayor interés. Si los inversores creen que el prestatario puede devolver el préstamo,
incluso si tiene un historial financiero débil, entonces los inversores pueden ganar más dinero a
través de la mayor cantidad adicional que el prestatario tiene que pagar.

La mayoría de los inversores utilizan una estrategia de cartera para invertir pequeñas cantidades
en muchos préstamos, con mezclas saludables de préstamos de bajo, medio y alto interés. En este
curso, nos centraremos en la mentalidad de un inversor conservador que sólo quiere invertir en los
préstamos que tienen una buena oportunidad de ser pagados a tiempo. Para ello, primero
tendremos que entender las características del conjunto de datos y luego experimentar con la
construcción de modelos de aprendizaje automático que predigan de forma fiable si un préstamo
se pagará o no.

II.1 Recorrido por el Proyecto de Aprendizaje Automático: Depuración de
Datos

II.2.1 Descripción de Datos

Lending Club publica periódicamente los datos de todas las solicitudes de préstamo aprobadas y
rechazadas en su sitio web. Puede seleccionar diferentes rangos de años para descargar los
conjuntos de datos (en formato CSV) para los préstamos aprobados y rechazados.

También encontrará un diccionario de datos (en formato XLS) que contiene información sobre los
diferentes nombres de las columnas al final de la página. Le recomendamos que descargue el
diccionario de datos para poder consultarlo siempre que quiera saber más sobre lo que
representa una columna en los conjuntos de datos. Aquí tienes un enlace al archivo del diccionario
de datos alojado en Google Drive.

Antes de entrar en los conjuntos de datos, vamos a familiarizarnos con el diccionario de datos. La
hoja LoanStats describe los conjuntos de datos de préstamos aprobados y RejectStats describe
los conjuntos de datos de préstamos rechazados. Dado que las solicitudes rechazadas no
aparecen en el mercado de Lending Club y no están disponibles para la inversión, nos
centraremos en los préstamos aprobados.

II.1 Recorrido por el Proyecto de Aprendizaje Automático: Depuración de
Datos

https://www.lendingclub.com/info/download-data.action
https://docs.google.com/spreadsheets/d/191B2yJ4H1ZPXq0_ByhUgWMFZOYem5jFz0Y3by_7YBY4/edit

Los conjuntos de datos de préstamos aprobados contienen información sobre los préstamos
actuales, los préstamos completados y los préstamos impagados. Definamos ahora el
planteamiento del problema para este proyecto de aprendizaje automático:
• ¿Podemos construir un modelo de aprendizaje automático que pueda predecir con precisión si

un prestatario pagará su préstamo a tiempo o no?

Antes de empezar a realizar el aprendizaje automático, tenemos que definir qué características
queremos utilizar y qué columna representa el objetivo que queremos predecir. Empecemos por
leer y explorar el conjunto de datos.

II.1 Recorrido por el Proyecto de Aprendizaje Automático: Depuración de
Datos

II.2.2 Lectura en Pandas

En esta lección, nos centraremos en los datos de préstamos aprobados de 2007 a 2011, ya que un
buen número de los préstamos ya han finalizado. En los conjuntos de datos de los años
posteriores, muchos de los préstamos están vigentes y todavía se están pagando.

Si completamos lo siguiente, podremos reducir el tamaño del conjunto de datos para facilitar su
uso
• Eliminar la columna desc:

• Que contiene una larga explicación de texto para cada préstamo
• Eliminar la columna url:

• Que contiene un enlace a cada préstamo en Lending Club al que sólo se puede acceder con
una cuenta de inversor

• Eliminar todas las columnas que contienen más del 50% de valores perdidos:
• Lo que nos permite movernos más rápido ya que podemos pasar menos tiempo tratando

de llenar estos valores

II.1 Recorrido por el Proyecto de Aprendizaje Automático: Depuración de
Datos

En primer lugar, vamos a leer el conjunto de datos en un Dataframe para que podamos empezar a
explorar los datos y las características restantes.

Instrucciones

• Leer loans_2007.csv en un DataFrame llamado loans_2007 y utilizar la función de impresión
para mostrar la primera fila del Dataframe

• Utilice la función print para:
• Mostrar la primera fila de loans_2007
• El número de columnas de loans_2007

II.1 Recorrido por el Proyecto de Aprendizaje Automático: Depuración de
Datos

II.2.3 Primer Grupo de Columnas

El Dataframe contiene muchas columnas y puede ser engorroso tratar de explorarlas todas a la
vez. Separemos las columnas en 3 grupos de 18 columnas y utilicemos el data dictionary
(diccionario de datos) para familiarizarnos con lo que representa cada columna. A medida que
entienda cada característica, busque cualquier característica que:
• Revelar información del futuro (después de que el préstamo ya haya sido financiado)
• No afectan a la capacidad del prestatario para devolver el préstamo (por ejemplo, un valor de

identificación generado aleatoriamente por Lending Club)
• Necesitan ser limpiados y están mal formateados
• Requieren más datos o mucho procesamiento para convertirse en una función útil
• Contienen información redundante

II.1 Recorrido por el Proyecto de Aprendizaje Automático: Depuración de
Datos

https://docs.google.com/spreadsheets/d/191B2yJ4H1ZPXq0_ByhUgWMFZOYem5jFz0Y3by_7YBY4/edit

Debemos prestar especial atención a la fuga de datos, ya que puede hacer que nuestro modelo se
sobreajuste. Esto se debe a que el modelo utiliza datos sobre la columna objetivo que no estarían
disponibles cuando utilizamos el modelo en futuros préstamos. Le animamos a que se tome su
tiempo para entender cada columna, porque una mala comprensión podría hacerle cometer
errores en el proceso de análisis de datos y de modelización. A medida que avanza por el
diccionario, tenga en cuenta que debemos seleccionar una de las columnas como la columna
objetivo que queremos utilizar para la fase de aprendizaje automático.

En esta pantalla y en las siguientes, vamos a centrarnos sólo en las columnas que tenemos que
eliminar de la consideración. Luego, podemos volver atrás y diseccionar más las columnas que
decidimos mantener.

Para facilitar este proceso, creamos una tabla que contiene el nombre, el tipo de datos, el valor de
la primera fila y la descripción del diccionario de datos para las primeras 18 filas.

II.1 Recorrido por el Proyecto de Aprendizaje Automático: Depuración de
Datos

II.1 Recorrido por el Proyecto de Aprendizaje Automático: Depuración de
Datos

Nombre dtype Primer valor Descripción

id Object 1077501 Una identificación única asignada a LC para la lista de préstamos.

member_id Float64 1.2966e+06 Un LC único asignado Id para el miembro prestatario.

loan_amnt float64 5000 El monto indicado del préstamo solicitado por el prestatario

funded_amnt float64 5000 El monto total comprometido con ese préstamo en ese momento

funded_amnt_in
v float64 49750 El importe total comprometido por los inversores para ese préstamo en ese momento

term object 36 months El número de pagos del préstamo. Los valores están en meses y pueden ser 36 o 60
int_rate object 10.65% Tasa de interés del préstamo

installment float64 162.87 El pago mensual adeudado por el prestatario si el préstamo se origina.

grade object B LC assigned loan grade
sub_grade object B2 LC assigned loan subgrade

emp_title object NaN El título de trabajo proporcionado por el Prestatario al solicitar el préstamo

emp_length object 10+ years Duración del empleo en años. Los valores posibles están entre 0 y 10 donde 0 significa menos de un
año y 10 significa diez o más años

home_ownershi
p object RENT El estado de propiedad de la vivienda proporcionado por el prestatario durante el registro. Nuestros

valores son: ALQUILER, PROPIEDAD, HIPOTECA, OTROS

annual_inc float64 24000 Los ingresos anuales auto informaron proporcionados por el prestatario durante el registro
verification_stat

us object Verified Indica si los ingresos fueron verificados por LC, no verificados, o si la fuente de ingresos fue verificada

issue_d object Dec-2011 El mes en que se financió el préstamo
loan_status object Charged Off Estado actual del préstamo

pymnt_plan object n Indica si se ha establecido un plan de pago para el préstamo

purpose object car Una categoría proporcionada por el prestatario para la solicitud de préstamo

Tras analizar cada columna, podemos concluir que es necesario eliminar las siguientes características:
• id: campo generado aleatoriamente por Lending Club sólo con fines de identificación única
• member_id: también es un campo generado aleatoriamente por Lending Club con fines de identificación

única
• funded_amnt: filtra datos del futuro (después de que el préstamo haya empezado a financiarse)
• funded_amnt_inv: también filtra datos del futuro (después de que el préstamo haya empezado a

financiarse)
• grade: contiene información redundante como la columna del tipo de interés (int_rate)
• sub_grade: también contiene información redundante como la columna del tipo de interés (int_rate)
• emp_title: requiere otros datos y mucho procesamiento para ser potencialmente útil
• issue_d: filtra datos del futuro (después de que el préstamo ya esté completamente financiado)

Recordemos que Lending Club asigna un grado y un subgrado en función del tipo de interés del prestatario.
Mientras que los valores de grade y sub_grade son categóricos, la columna int_rate contiene valores
continuos, que son más adecuados para el aprendizaje automático.

II.1 Recorrido por el Proyecto de Aprendizaje Automático: Depuración de
Datos

Ahora vamos a eliminar estas columnas del Dataframe antes de pasar al siguiente grupo de
columnas.

Utilice el método Dataframe drop para eliminar las siguientes columnas del Dataframe
loans_2007:
• Id
• member_id
• funded_amnt
• funded_amnt_inv
• grade
• sub_grade
• emp_title
• issue_d

II.1 Recorrido por el Proyecto de Aprendizaje Automático: Depuración de
Datos

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.drop.html

II.2.4 Segundo grupo de columnas
Veamos ahora las siguientes 18 columnas:

II.1 Recorrido por el Proyecto de Aprendizaje Automático: Depuración de
Datos

Name dtype First Value Description

title object Computer El título del préstamo proporcionado por el prestatario

zip_code object 860xx Los primeros 3 números del código postal proporcionados por el prestatario en la solicitud de préstamo

addr_state object AZ El estado proporcionado por el prestatario en la solicitud de préstamo

dti float64 27.65
Una relación calculada utilizando los pagos mensuales totales de la deuda del prestatario sobre las
obligaciones totales de la deuda, excluyendo la hipoteca y el préstamo LC solicitado, dividido por los
ingresos mensuales autoinformados del prestatario

delinq_2yrs float64 0 El número de incidencias vencidas de morosidad de más de 30 días en el archivo de crédito del
prestatario durante los últimos 2 años

earliest_cr_line object janv-85 El mes en que se abrió la primera línea de crédito reportada del prestatario

inq_last_6mths float64 1 El número de consultas en los últimos 6 meses (excluyendo consultas de automóviles e hipotecas)

open_acc float64 3 El número de líneas de crédito abiertas en el archivo de crédito del prestatario
pub_rec float64 0 Número de registros públicos despectivos

revol_bal float64 13648 Saldo rotatorio total del crédito

revol_util object 83.7% Tasa de utilización de la línea rotatoria, o la cantidad de crédito que el prestatario está utilizando en
relación con todo el crédito renovable disponible

total_acc float64 9 El número total de líneas de crédito actualmente en el archivo de crédito del prestatario

initial_list_status object f El estado inicial de listado del préstamo. Los valores posibles son – W, F
out_prncp float64 0 Capital pendiente restante por el monto total financiado

out_prncp_inv float64 0 Capital pendiente restante por una parte del monto total financiado por los inversores

total_pymnt float64 5863.16 Pagos recibidos hasta la fecha por el importe total financiado

total_pymnt_inv float64 5833.84 Pagos recibidos hasta la fecha por una parte del importe total financiado por los inversores

total_rec_prncp float64 5000 Principal recibido hasta la fecha

Dentro de este grupo de columnas, tenemos que eliminar las siguientes columnas:
• zip_code: redundante con la columna addr_state, ya que sólo son visibles los 3 primeros dígitos del código

postal de 5 cifras (que sólo puede utilizarse para identificar el estado en el que vive el prestatario)
• out_prncp: filtra datos del futuro, (después de que el préstamo ya haya empezado a pagarse)
• out_prncp_inv: también filtra datos del futuro, (después de que el préstamo haya empezado a pagarse)
• total_pymnt: también filtra datos del futuro, (después de que el préstamo haya empezado a pagarse)
• total_pymnt_inv: también filtra datos del futuro, (después de que el préstamo haya empezado a pagarse)
• total_rec_prncp: también filtra datos del futuro, (después de que el préstamo haya empezado a pagarse)

Las columnas out_prncp y out_prncp_inv describen el importe principal pendiente de un préstamo, que es el
importe restante que el prestatario aún debe. Estas dos columnas, así como la columna total_pymnt,
describen las propiedades del préstamo una vez que se ha financiado completamente y se ha empezado a
pagar. Esta información no está disponible para un inversor antes de que el préstamo esté totalmente
financiado y no queremos incluirla en nuestro modelo.

Sigamos adelante y eliminemos estas columnas del Dataframe.
.

II.1 Recorrido por el Proyecto de Aprendizaje Automático: Depuración de
Datos

Utilice el método Dataframe drop para eliminar las siguientes columnas del Dataframe loans_2007
:
• zip_code
• out_prncp
• out_prncp_inv
• total_pymnt
• total_pymnt_inv
• total_rec_prncp

II.1 Recorrido por el Proyecto de Aprendizaje Automático: Depuración de
Datos

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.drop.html

II.2.5 Tercer grupo de columnas
Pasemos ahora al último grupo de características:

II.1 Recorrido por el Proyecto de Aprendizaje Automático: Depuración de
Datos

Name dtype First Value Description
total_rec_int float64 863.16 Intereses recibidos hasta la fecha

total_rec_late_fee float64 0 Cargos por mora recibidos hasta la fecha
recoveries float64 0 Cargo posterior a la recuperación bruta

collection_recovery_fee float64 0 Cargo posterior a la tarifa de cobro
last_pymnt_d object janv-15 El mes pasado se recibió el pago

last_pymnt_amnt float64 171.62 Último monto total de pago recibido
last_credit_pull_d object juin-16 El mes más reciente LC retiró crédito por este préstamo

collections_12_mths_ex_med float64 0 Número de colecciones en 12 meses, excluidas las colecciones
médicas

policy_code float64 1 disponibles públicamente policy_code=1 nuevos productos no
disponibles públicamente policy_code=2

application_type object INDIVIDUAL Indica si el préstamo es una solicitud individual o una solicitud
conjunta con dos coprestatarios

acc_now_delinq float64 0 El número de cuentas en las que el prestatario está ahora en
mora.

chargeoff_within_12_mths float64 0 Número de cargos en un plazo de 12 meses

delinq_amnt float64 0 El monto vencido adeudado por las cuentas en las que el
prestatario está ahora en mora.

pub_rec_bankruptcies float64 0 Número de quiebras de registro público
tax_liens float64 0 Número de gravámenes fiscales

En el último grupo de columnas, tenemos que eliminar las siguientes columnas:
• total_rec_int: filtra datos del futuro, (después de que el préstamo haya empezado a pagarse)
• total_rec_late_fee: filtra datos del futuro, (después de que el préstamo haya empezado a

pagarse)
• recoveries: filtra datos del futuro, (después de que el préstamo haya empezado a pagarse)
• collection_recovery_fee: filtra datos del futuro, (después de que el préstamo haya empezado a

pagarse)
• last_pymnt_d: filtra datos del futuro, (después de que el préstamo haya empezado a pagarse)
• last_pymnt_amnt: filtra datos del futuro, (después de que el préstamo haya empezado a

pagarse)

Todas estas columnas filtran datos del futuro, lo que significa que describen aspectos del
préstamo después de que éste haya sido financiado en su totalidad y haya comenzado a ser
pagado por el prestatario.

II.1 Recorrido por el Proyecto de Aprendizaje Automático: Depuración de
Datos

Instrucciones

Utilice el método Dataframe drop para eliminar las siguientes columnas del Dataframe
loans_2007:
• total_rec_int
• total_rec_late_fee
• Recoveries
• collection_recovery_fee
• last_pymnt_d
• last_pymnt_amnt

Utilice la función print para mostrar la primera fila de loans_2007 y el número de columnas de
loans_2007.

Al familiarizarnos con las columnas del conjunto de datos, hemos podido reducir el número de
columnas de 52 a 32 columnas. Ahora tenemos que decidir la columna objetivo que queremos
utilizar para la modelización.

II.1 Recorrido por el Proyecto de Aprendizaje Automático: Depuración de
Datos

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.drop.html

We should use the loan_status column, since it's the only column that directly describes if a loan
was paid off on time, had delayed payments, or was defaulted on the borrower. Currently, this
column contains text values and we need to convert it to a numerical value for training a model.
Let's explore the different values in this column and come up with a strategy for converting the
values in this column.

Instrucciones

• Utilice el método de la serie value_counts para devolver la frecuencia de los valores únicos en
la columna loan_status

• Mostrar la frecuencia de cada valor único utilizando la función de print

II.1 Recorrido por el Proyecto de Aprendizaje Automático: Depuración de
Datos

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.value_counts.html

II.2.6 Clasificación Binaria

Hay 8 valores posibles para la columna loan_status. Puedes leer sobre la mayoría de los diferentes
estados de los préstamos en el sitio web de Lending Clube. Los dos valores que comienzan con "No
cumple con la política de crédito" no se explican por desgracia. Una rápida búsqueda en Google
nos lleva a explicaciones de la comunidad de prestamistas aquí.

Hemos recopilado la explicación de cada columna, así como los recuentos en el marco de datos,
en la siguiente tabla:

II.1 Recorrido por el Proyecto de Aprendizaje Automático: Depuración de
Datos

https://help.lendingclub.com/hc/en-us/articles/215488038-What-do-the-different-Note-statuses-mean-
http://www.lendacademy.com/forum/index.php?topic=2427.msg20813#msg20813

II.1 Recorrido por el Proyecto de Aprendizaje Automático: Depuración de
Datos

Loan Status Count Significado

Fully Paid 33136 El préstamo ha sido totalmente pagado

Charged Off 5634 Préstamo para el cual ya no hay una expectativa razonable de pagos
adicionales

Does not
meet the

credit policy.
Status: Fully

Paid

1988 Si bien el préstamo se pagó, la solicitud de préstamo de hoy ya no
cumpliría con la política de crédito y no se aprobaría en el mercado

Does not
meet the

credit policy.
Status:

Charged Off

761
Si bien el préstamo fue cobrado, la solicitud de préstamo de hoy ya
no cumpliría con la política de crédito y no sería aprobada en el
mercado.

In Grace
Period 20 El préstamo está vencido pero aún en el período de gracia de 15 días

Late (16-30
days) 8 El préstamo no se ha pagado en 16 a 30 días (retraso en el pago

actual)
Late (31-120

days) 24 El préstamo no se ha pagado en 31 a 120 días (retraso en el pago
actual)

Current 961 El préstamo está al día en los pagos actuales

Default 3 El préstamo está incumplido y no se ha realizado ningún pago
durante más de 121 días

Desde la perspectiva del inversor, lo que nos interesa es tratar de predecir si los préstamos se
pagarán a tiempo. Sólo los valores Fully Paid (Préstamo Pagado) y Charged Off (Préstamo
Castigado/No Pagado) describen el resultado final del préstamo. Los demás valores describen los
préstamos que aún están en curso y en los que todavía no se sabe si el prestatario pagará el
préstamo a tiempo o no. Mientras que el Default (estado de impago) se asemeja al estado de
"Charged Off", a los ojos de Lending Club, los préstamos "charged off" no tienen prácticamente
ninguna posibilidad de ser devueltos, mientras que los "default" tienen una pequeña posibilidad.

Como nos interesa poder predecir en cuál de estos dos valores caerá un préstamo, podemos
tratar el problema como una clasificación binaria. Eliminemos todos los préstamos que no
contengan el estado de Fully Paid (Préstamo Pagado) or Charged Off («Totalmente Pagado" o "
Préstamo Castigado/No Pagado“). Una vez eliminados los estados del préstamo, transformemos
los valores de Fully Paid en 1 para el caso positivo y los valores de Charged Off en 0 para el caso
negativo. Aunque hay varias formas de transformar todos los valores de una columna, utilizaremos
el método Dataframe replace (Dataframe method replace). Según la documentación, podemos
pasar al método replace un diccionario de mapeo anidado con el siguiente formato:

II.1 Recorrido por el Proyecto de Aprendizaje Automático: Depuración de
Datos

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.replace.html

Por último, hay que tener en cuenta el desequilibrio de clases entre los casos positivos y los
negativos. Mientras que hay 33.136 préstamos que han sido totalmente pagados, sólo hay 5.634
que fueron imputados. Este desequilibrio de clases es un problema común en la clasificación
binaria y, durante el entrenamiento, el modelo acaba teniendo un fuerte sesgo hacia la predicción
de la clase con más observaciones en el conjunto de entrenamiento y rara vez predice la clase
con menos observaciones. Cuanto más fuerte sea el desequilibrio, más sesgado estará el modelo.
Hay varias formas de abordar este desequilibrio de clases, que exploraremos más adelante.

II.1 Recorrido por el Proyecto de Aprendizaje Automático: Depuración de
Datos

Instrucciones
• Eliminar todas las filas de loans_2007 que contengan valores distintos de Fully Paid o Charged

Off para la columna loan_status
• Utilice el método Dataframe replace para sustituir

• Fully Paid (Préstamo Pagado) por 1
• Charged off (Préstamo Castigado/No Pagado) con 0

II.1 Recorrido por el Proyecto de Aprendizaje Automático: Depuración de
Datos

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.replace.html

II.2.7 Remover columnas de valor único

Para terminar esta lección, busquemos cualquier columna que contenga un solo valor único y
eliminémosla. Estas columnas no serán útiles para el modelo ya que no añaden ninguna
información a cada solicitud de préstamo. Además, la eliminación de estas columnas reducirá el
número de columnas que tendremos que explorar en el futuro.

Tendremos que calcular el número de valores únicos de cada columna y eliminar las columnas
que sólo contienen un valor único. Mientras que el método Series unique devuelve los valores
únicos en una columna, también cuenta el objeto Pandas missing value nan como un valor:

Como estamos tratando de encontrar columnas que contengan un valor único verdadero, primero
debemos eliminar los valores nulos y luego calcular el número de valores únicos:

II.1 Recorrido por el Proyecto de Aprendizaje Automático: Depuración de
Datos

Instrucciones

• Elimine cualquier columna de loans_2007 que contenga un único valor:
• Cree una lista vacía, drop_columns para llevar la cuenta de las columnas que desea

eliminar
• Para cada columna:

• Utilice el método dropna de la serie para eliminar cualquier valor nulo y luego utilice el
método unique de la serie para devolver el conjunto de valores únicos no nulos

• Utilice la función len() para devolver el número de valores en ese conjunto
• Añada la columna a drop_columns si sólo contiene un valor único

• Utilice el método Dataframe drop para eliminar las columnas de drop_columns de
loans_2007

• Utilizar la función print para mostrar drop_columns y saber cuáles se han eliminado

II.1 Recorrido por el Proyecto de Aprendizaje Automático: Depuración de
Datos

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.dropna.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.unique.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.drop.html

II.2 Recorrido por el Proyecto de Aprendizaje Automático: Preparación de las
Características

II.2.1 Recapitulación

Puede haber aprendido a eliminar todas las columnas que contenían información redundante, que
no eran útiles para el modelado, que requerían demasiado procesamiento para ser útiles o que
filtraban información del futuro. Después de exportar el Dataframe a un archivo CSV llamado
filtered_loans_2007.csv para diferenciar el archivo con el loans_2007.csv. En esta lección,
prepararemos los datos para el aprendizaje automático centrándonos en el manejo de los valores
perdidos, la conversión de las columnas categóricas en columnas numéricas y la eliminación de
cualquier otra columna extraña que encontremos a lo largo de este proceso.

Las matemáticas subyacentes a la mayoría de los modelos de aprendizaje automático asumen
que los datos son numéricos y no contienen valores perdidos. Para reforzar este requisito, scikit-
learn devolverá un error si se intenta entrenar un modelo utilizando datos que contienen valores
perdidos o valores no numéricos cuando se trabaja con modelos como la regresión lineal y la
regresión logística.

Empecemos por calcular el número de valores que faltan e ideemos una estrategia para
manejarlos. Luego, nos centraremos en las columnas categóricas.

Podemos devolver el número de valores perdidos en el Dataframe de la siguiente manera:
• Primero utilizando el método de Pandas Dataframe isnull para devolver un Dataframe que

contenga valores booleanos:
• True si el valor original es nulo
• Falso si el valor original no es nulo

• A continuación, utilizando el método Pandas Dataframe sum para calcular el número de valores
nulos en cada columna

II.2 Recorrido por el Proyecto de Aprendizaje Automático: Preparación de las
Características

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.isnull.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.sum.html

Instrucciones

• Leer en filtered_loans_2007.csv como un Dataframe y asignarlo a los loans (préstamos)
• Utilice los métodos isnull y sum para devolver el número de valores nulos en cada columna.

Asigne el objeto Series resultante a null_counts
• Utilice la función de print para mostrar las filas de null_counts que son mayores que cero

Soluciones

II.2 Recorrido por el Proyecto de Aprendizaje Automático: Preparación de las
Características

II.2.2 Tratamiento de los valores perdidos

En la pantalla anterior obtuvimos una serie que muestra cuántos valores perdidos tiene cada
columna con valores perdidos:

Aunque la mayoría de las columnas no tienen valores perdidos, dos columnas tienen cincuenta o
menos filas con valores perdidos, y dos columnas, emp_length y pub_rec_bankruptcies,
contienen un número relativamente alto de valores perdidos.

El conocimiento del dominio nos dice que la duración del empleo se utiliza con frecuencia para
evaluar el riesgo de un posible prestatario, por lo que mantendremos esta columna a pesar de su
número relativamente elevado de valores perdidos.

II.2 Recorrido por el Proyecto de Aprendizaje Automático: Preparación de las
Características

Inspeccionemos los valores de la columna pub_rec_bankruptcies.

Vemos que esta columna ofrece muy poca variabilidad, casi el 94% de los valores están en la
misma categoría. Probablemente no tenga mucho valor predictivo. Vamos a eliminarla. Además,
eliminaremos las filas restantes que contienen valores nulos.

II.2 Recorrido por el Proyecto de Aprendizaje Automático: Preparación de las
Características

Esto significa que mantendremos las siguientes columnas y sólo eliminaremos las filas que
contengan valores perdidos para ellas:
• emp_length
• Title
• revol_útil
• last_credit_pull_d

Después de eliminar las filas que contienen valores perdidos, elimine la columna
pub_rec_bankruptcies por completo.

Utilicemos la estrategia de eliminar primero la columna pub_rec_bankruptcies y luego eliminar
todas las filas que contengan valores perdidos para cubrir estos dos casos. De este modo, sólo
eliminamos las filas que contienen valores perdidos para las columnas emp_length, title y
revol_util, pero no la columna pub_rec_bankruptcies.

II.2 Recorrido por el Proyecto de Aprendizaje Automático: Preparación de las
Características

Instrucciones

• Utilice el método drop (drop method) para eliminar la columna pub_rec_bankruptcies de los
préstamos

• Utilice el método dropna (dropna method) para eliminar todas las filas de los préstamos que
contengan algún valor perdido

• Utilice el atributo dtypes seguido del método value_counts() para devolver los recuentos de
cada tipo de dato de columna.

• Utilice la función print para mostrar estos recuentos

Soluciones

II.2 Recorrido por el Proyecto de Aprendizaje Automático: Preparación de las
Características

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.drop.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.dropna.html

II.2.3 Columnas de texto

Mientras que las columnas numéricas se pueden utilizar de forma nativa con scikit-learn, las
columnas de objetos que contienen texto necesitan ser convertidas a tipos de datos numéricos.
Devolvamos un nuevo dataframe que contenga sólo las columnas de objetos para poder
explorarlas en mayor profundidad. Se puede utilizar el método de dataframe select_dtypes para
seleccionar sólo las columnas de un determinado tipo de datos:

Seleccionemos sólo las columnas de los objetos y luego mostremos una fila de muestra para tener
una mejor idea de cómo están formateados los valores de cada columna.

II.2 Recorrido por el Proyecto de Aprendizaje Automático: Preparación de las
Características

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.select_dtypes.html

Instrucciones

• Utilizar el método dataframe select_dtypes para seleccionar sólo las columnas de tipo object
(objeto) de los loans (préstamos) y asignar al Dataframe resultante object_columns_df

• Mostrar la primera fila de object_columns_df utilizando la función print

Soluciones

II.2 Recorrido por el Proyecto de Aprendizaje Automático: Preparación de las
Características

II.2.4 Conversión de columnas de texto

Algunas de las columnas parecen representar valores categóricos, pero deberíamos confirmarlo
comprobando el número de valores únicos en esas columnas:
• home_ownership: estado de propiedad de la vivienda, sólo puede ser 1 de 4 valores categóricos

según el diccionario de datos
• verification_status: indica si los ingresos fueron verificados por Lending Club
• emp_length: número de años que el prestatario estaba empleado en el momento de la

solicitud
• term: número de pagos del préstamo, ya sea 36 o 60
• addr_state: estado de residencia del prestatario
• purpose: categoría proporcionada por el prestatario para la solicitud de préstamo
• title: título del préstamo facilitado por el prestatario

II.2 Recorrido por el Proyecto de Aprendizaje Automático: Preparación de las
Características

También hay dos columnas que representan valores numéricos y que hay que convertir:
• int_rate: tipo de interés del préstamo en %
• revol_util: tasa de utilización de la línea rotatoria o la cantidad de crédito que el prestatario está

utilizando en relación con todo el crédito disponible, lea más aquí

Basándonos en los valores de la primera fila para el purpose(propósito) y el title(título), parece que
estas columnas podrían reflejar la misma información. Exploremos los recuentos de valores únicos
por separado para confirmar si esto es cierto.

Por último, algunas de las columnas contienen valores de fecha que requerirían una buena
cantidad de ingeniería de características para que fueran potencialmente útiles:
• earliest_cr_line: El mes en que se abrió la primera línea de crédito del prestatario
• last_credit_pull_d: El mes más reciente en que Lending Club retiró el crédito para este préstamo

Dado que estas características de fecha requieren algo de ingeniería de características para fines
de modelado, eliminemos estas columnas de fecha del marco de datos.

II.2 Recorrido por el Proyecto de Aprendizaje Automático: Preparación de las
Características

http://blog.credit.com/2013/04/what-is-revolving-utilization-65530/

II.2.5 Primeras 5 columnas categóricas

Exploremos los recuentos de valores únicos de las columnas que parecen contener valores categóricos.

Instrucciones
• Mostrar los recuentos de valores únicos para las siguientes columnas: home_ownership, verification_status,

emp_lenght, term, addr state columns:
• Guarda estos nombres de columnas en una lista llamada cols
• Utiliza un bucle “for” para iterar sobre las cols:

• Utilice la función de print combinada con el método Series value_counts para mostrar los recuentos
de valores únicos de cada columna

Soluciones

II.2 Recorrido por el Proyecto de Aprendizaje Automático: Preparación de las
Características

II.2.6 El motivo del préstamo

Las columnas home_ownership, verification_status, emp_length, term y addr_state contienen
múltiples valores discretos. Deberíamos limpiar la columna emp_length y tratarla como numérica,
ya que los valores tienen ordenación (2 años de empleo son menos de 8 años).

En primer lugar, veamos los recuentos de valores únicos de las columnas purpose (propósito) y
title (título) para saber qué columna queremos conservar.

Instrucciones

Utilice el método value_counts y la función print para mostrar los valores únicos en las siguientes
columnas:
• Title
• purpose

II.2 Recorrido por el Proyecto de Aprendizaje Automático: Preparación de las
Características

Soluciones

II.2.7 Columnas categóricas

Las columnas home_ownership, verification_status, emp_length y term contienen cada una unos valores
categóricos discretos. Deberíamos codificar estas columnas como variables ficticias y mantenerlas.

Parece que las columnas purpose (propósito) y title (título) contienen información que se solapa, pero
mantendremos la columna purpose (propósito) ya que contiene algunos valores discretos. Además, la
columna de title (título) tiene problemas de calidad de datos, ya que muchos de los valores se repiten con
ligeras modificaciones (por ejemplo, Debt Consolidation and Debt Consolidation Loan and debt consolidation -
Consolidación de deuda y Préstamo de consolidación de deuda y consolidación de deuda).

II.2 Recorrido por el Proyecto de Aprendizaje Automático: Preparación de las
Características

Podemos utilizar el siguiente mapeo para limpiar la columna emp_length:
• "10+ years": 10
• "9 years": 9
• "8 years": 8
• "7 years": 7
• "6 years": 6
• "5 years": 5
• "4 years": 4
• "3 years": 3
• "2 years": 2
• "1 year": 1
• "< 1 year": 0
• "n/a": 0

II.2 Recorrido por el Proyecto de Aprendizaje Automático: Preparación de las
Características

Hemos sido precavidos con los mapeos de más de 10 años, < 1 año y n/a. Suponemos que las
personas que pueden haber trabajado más de 10 años sólo han trabajado realmente durante 10
años. También asumimos que las personas que han trabajado menos de un año o si la
información no está disponible que han trabajado durante 0. Esta es una heurística general pero
no es perfecta.

Por último, la columna addr_state contiene muchos valores discretos, y tendríamos que añadir 49
columnas de variables ficticias para utilizarla en la clasificación. Esto haría nuestro marco de datos
mucho más grande y podría ralentizar la velocidad de ejecución del código. Vamos a eliminar esta
columna de la consideración.

II.2 Recorrido por el Proyecto de Aprendizaje Automático: Preparación de las
Características

Instrucciones

• Eliminar las columnas last_credit_pull_d, addr_state, title y earliest_cr_line de los loans
(préstamos)

• Convertir las columnas int_rate y revol_util en columnas float mediante:
• Utilizando el accesorio str seguido del método de cadena rstrip para eliminar el signo de

porcentaje (%) de la derecha:
• loans['int_rate'].str.rstrip('%') devuelve una nueva Serie con % eliminado del lado derecho

de cada valor
• En el objeto Series resultante, utilice el método astype para convertirlo al tipo float
• Asigne la nueva serie de valores flotantes a las respectivas columnas del marco de datos

• Utilice el método replace para limpiar la columna emp_length

II.2 Recorrido por el Proyecto de Aprendizaje Automático: Preparación de las
Características

Soluciones

II.2 Recorrido por el Proyecto de Aprendizaje Automático: Preparación de las
Características

II.2.8 Variables ficticias (Dummy)

Ahora vamos a codificar las columnas home_ownership, verification_status, purpose y term como variables
dummy para poder utilizarlas en nuestro modelo. Primero tenemos que utilizar el método Pandas
get_dummies para devolver un nuevo Dataframe que contenga una nueva columna para cada variable
ficticia:

A continuación, podemos utilizar el método concat para añadir estas columnas ficticias al Dataframe original:

Y a continuación, suelte las columnas originales por completo utilizando el método de la caída (Drop Method):

II.2 Recorrido por el Proyecto de Aprendizaje Automático: Preparación de las
Características

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.get_dummies.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.concat.html

Instrucciones

• Codifique las columnas home_ownership, verification_status, purpose y term como valores
enteros:
• Utilice la función get_dummies para devolver un Dataframe que contenga las columnas

ficticias
• Utilice el método concat para añadir estas columnas ficticias a los loans (préstamos)
• Elimine las columnas originales no ficticias (home_ownership, verification_status, purpose y

term) de los loans (préstamos)

Soluciones

II.2 Recorrido por el Proyecto de Aprendizaje Automático: Preparación de las
Características

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.get_dummies.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.concat.html

II.3 Recorrido por el Proyecto de Aprendizaje Automático: Hacer
Predicciones

II.3.1 Recapitular

Nuestro objetivo es generar características a partir de los datos, que podemos introducir en un
algoritmo de aprendizaje automático. El algoritmo hará predicciones sobre si un préstamo se
pagará o no a tiempo, lo cual está contenido en la columna loan_status del conjunto de datos
limpio.

Cuando preparamos los datos, eliminamos las columnas que tenían problemas de fuga de datos,
que contenían información redundante o que requerían un procesamiento adicional para
convertirse en características útiles. Limpiamos las características que tenían problemas de
formato y convertimos las columnas categóricas en variables ficticias.

En la última lección, nos dimos cuenta de que hay un desequilibrio de clases en nuestra columna
objetivo, loan_status. Hay aproximadamente 6 veces más préstamos que fueron pagados a
tiempo (caso positivo, etiqueta de 1) que los que no lo fueron (caso negativo, etiqueta de 0). Los
desequilibrios pueden causar problemas con muchos algoritmos de aprendizaje automático,
donde parecen tener una alta precisión, pero en realidad no están aprendiendo de los datos de
entrenamiento. Debido a su potencial para causar problemas, debemos tener en cuenta el
desequilibrio de clases cuando construyamos modelos de aprendizaje automático.

Después de toda nuestra limpieza de datos, terminamos con el archivo csv llamado
clean_loans_2007.csv. Vamos a leer este archivo en un marco de datos y ver un resumen del
trabajo que hicimos.

II.3 Recorrido por el Proyecto de Aprendizaje Automático: Hacer
Predicciones

Instrucciones

• Leer clean_loans_2007.csv en un Dataframe llamado loans
• Utilice el método info() y la función print para mostrar un resumen del conjunto de datos

Soluciones

II.3 Recorrido por el Proyecto de Aprendizaje Automático: Hacer
Predicciones

II.3.2 Cómo hacer una métrica del error

Antes de sumergirnos en la predicción de loan_status con aprendizaje automático, volvamos a
nuestros primeros pasos cuando empezamos a limpiar el conjunto de datos de Lending Club.
Quizá recuerdes la pregunta original que queríamos responder:
• ¿Podemos construir un modelo de aprendizaje automático que pueda predecir con precisión si

un prestatario pagará su préstamo a tiempo o no?

Establecimos que este es un problema de clasificación binaria y convertimos la columna
loan_status en 0s y 1s como resultado. Antes de entrar en materia y seleccionar un algoritmo para
aplicarlo a los datos, debemos seleccionar una métrica de error.

II.3 Recorrido por el Proyecto de Aprendizaje Automático: Hacer
Predicciones

Una métrica de error nos ayudará a averiguar cuándo nuestro modelo está funcionando bien y
cuándo está funcionando mal. Para relacionar las métricas de error con la pregunta original que
queríamos responder, digamos que estamos utilizando un modelo de aprendizaje automático
para predecir si debemos o no financiar un préstamo en la plataforma de Lending Club. Nuestro
objetivo es ganar dinero: queremos financiar suficientes préstamos que se paguen a tiempo para
compensar nuestras pérdidas por los préstamos que no se pagan. Una métrica de errores nos
ayudará a determinar si nuestro algoritmo nos hará ganar o perder dinero.

En este caso, nos preocupan principalmente los falsos positivos y los falsos negativos. Ambos son
diferentes tipos de errores de clasificación. Con un falso positivo, predecimos que un préstamo se
pagará a tiempo, pero en realidad no es así. Esto nos cuesta dinero, ya que financiamos
préstamos que nos hacen perder dinero. Con un falso negativo, predecimos que un préstamo no
se pagará a tiempo, pero en realidad se pagaría a tiempo. Esto nos hace perder dinero potencial,
ya que no financiamos un préstamo que realmente se habría pagado.

II.3 Recorrido por el Proyecto de Aprendizaje Automático: Hacer
Predicciones

He aquí un diagrama para simplificar los
conceptos:

En las columnas loan_status y prediction, un 0
significa que el préstamo no se pagaría a
tiempo, y un 1 significa que sí.

Como estamos viendo este problema desde el
punto de vista de un inversor conservador,
tenemos que tratar los falsos positivos de forma
diferente a los falsos negativos. Un inversor
conservador querría minimizar el riesgo y evitar
los falsos positivos en la medida de lo posible.
Estaría más seguro de perder oportunidades
(falsos negativos) que de financiar un préstamo
arriesgado (falsos positivos).

II.3 Recorrido por el Proyecto de Aprendizaje Automático: Hacer
Predicciones

Calculemos los falsos positivos y los verdaderos positivos en Python. Podemos usar múltiples condicionales,
separados por un & para seleccionar elementos en un array de NumPy que cumplan ciertas condiciones. Por
ejemplo, si tuviéramos una matriz llamada predictions (predicciones), podríamos seleccionar los elementos de
las predictions (predicciones) que sean iguales a 1 y donde los elementos de préstamos ["loan_status"] (estado
del prestamo) en la misma posición también sean iguales a 1 utilizando esto:

El código anterior nos dará todos los elementos de las predictions que son verdaderos positivos, es decir, los
casos en los que predijimos que el préstamo se pagaría a tiempo y realmente se pagó a tiempo. Utilizando la
función len para encontrar el número de elementos, podemos encontrar el número de verdaderos positivos.

Utilizando el diagrama anterior como referencia, es posible calcular las otras 3 cantidades que hemos
mencionado: falsos positivos, verdaderos negativos y falsos negativos.

Hemos generado algunas predicciones automáticamente y se almacenan en un array de NumPy llamado
predictions.

II.3 Recorrido por el Proyecto de Aprendizaje Automático: Hacer
Predicciones

Instrucciones

• Encontrar el número de verdaderos negativos
• Encuentre el número de elementos en los que predictions son 0, y la entrada correspondiente

en loans["loan_status"] también es 0
• Asignar el resultado a tn
• Encontrar el número de verdaderos positivos
• Encuentre el número de elementos en los que predictions son 1, y la entrada correspondiente

en loans["loan_status"] también es 1
• Asignar el resultado a tp
• Encontrar el número de falsos negativos
• Encuentre el número de elementos en los que predictions son 0, y la entrada correspondiente

en loans["loan_status"] también es 1
• Asignar el resultado a fn
• Encontrar el número de falsos positivos
• Encuentre el número de elementos en los que predictions son 1, y la entrada correspondiente

en loans["loan_status"] también es 0
• Asignar el resultado a fp

II.3 Recorrido por el Proyecto de Aprendizaje Automático: Hacer
Predicciones

Soluciones

II.3 Recorrido por el Proyecto de Aprendizaje Automático: Hacer
Predicciones

II.3.3 Desequilibrio de clases

Ya hemos mencionado que existe un importante
desequilibrio de clases en la columna
loan_status. Hay 6 veces más préstamos que
fueron pagados a tiempo (1), que préstamos
que no fueron pagados a tiempo (0). Esto
provoca un problema importante cuando
utilizamos la precisión como métrica. Debido al
desequilibrio de clases, un clasificador puede
predecir 1 para cada fila, y aún así tener una alta
precisión. Este es un diagrama que ilustra el
concepto:

II.3 Recorrido por el Proyecto de Aprendizaje Automático: Hacer
Predicciones

En el diagrama anterior, nuestras predicciones
tienen una precisión del 85,7%: hemos
identificado correctamente loan_status en el
85,7% de los casos. Sin embargo, hemos hecho
esto prediciendo 1 para cada fila. Lo que esto
significa es que realmente perderemos dinero.
Digamos que prestamos 1000 dólares de media
a cada prestatario. Cada prestatario nos
devuelve el 10% de interés. Obtendremos un
beneficio previsto de 100 dólares por cada
préstamo. En el diagrama anterior, en realidad
perderíamos dinero:

II.3 Recorrido por el Proyecto de Aprendizaje Automático: Hacer
Predicciones

Como puedes ver, ganamos 600 dólares en intereses de los prestatarios que nos devolvieron el
dinero, pero perdimos 1.000 dólares con el único prestatario que nunca nos devolvió el dinero, así
que en realidad acabamos perdiendo 400 dólares en total, aunque nuestro modelo es
técnicamente preciso.

Por eso es importante tener siempre en cuenta las clases desequilibradas en los modelos de
aprendizaje automático y ajustar la métrica de error en consecuencia. En este caso, no queremos
usar la precisión y deberíamos usar en su lugar métricas que nos digan el número de falsos
positivos y falsos negativos.

Esto significa que deberíamos optimizar para:
• Una alta recuperación (recall) (tasa de verdaderos positivos)
• Baja caída (tasa de falsos positivos) (fall-out)

Podemos calcular la tasa de falsos positivos y la tasa de verdaderos positivos, utilizando los
números de verdaderos positivos, verdaderos negativos, falsos negativos y falsos positivos.

II.3 Recorrido por el Proyecto de Aprendizaje Automático: Hacer
Predicciones

https://en.wikipedia.org/wiki/Precision_and_recall#Recall
https://en.wikipedia.org/wiki/Information_retrieval#Fall-out

La tasa de falsos positivos es el número de falsos positivos dividido por el número de falsos
positivos más el número de verdaderos negativos. Esto divide todos los casos en los que
pensamos que un préstamo se pagaría por todos los préstamos que no se pagaron:

La tasa de verdaderos positivos es el número de verdaderos positivos dividido por el número de
verdaderos positivos más el número de falsos negativos. Esto divide todos los casos en los que
pensamos que un préstamo se pagaría por todos los préstamos que se pagaron:

II.3 Recorrido por el Proyecto de Aprendizaje Automático: Hacer
Predicciones

Las formas sencillas de pensar en cada término son:
• False Positive Rate (Tasa de falsos positivos): "el porcentaje de los préstamos que no deberían

financiarse y que yo financiaría"
• True Positive Rate (Tasa de verdaderos positivos): "el porcentaje de préstamos que deberían

financiarse y que yo financiaría"

Por lo general, si reducimos la tasa de falsos positivos, la tasa de verdaderos positivos también
bajará. Esto se debe a que si queremos reducir el riesgo de falsos positivos, no pensaríamos en
financiar préstamos más arriesgados en primer lugar.

II.3 Recorrido por el Proyecto de Aprendizaje Automático: Hacer
Predicciones

Instrucción

• Calcular la tasa de falsos positivos de las predictions (predicciones)
• Calcule el número de falsos positivos y divídalo por el número de falsos positivos más el número

de verdaderos negativos
• Asignar a fpr
• Calcular la tasa de verdaderos positivos de las predictions (predicciones)
• Calcular el número de verdaderos positivos y dividirlo por el número de verdaderos positivos

más el número de falsos negativos
• Asignar a tpr
• Imprimir fpr y tpr para verificar

II.3 Recorrido por el Proyecto de Aprendizaje Automático: Hacer
Predicciones

II.3 Recorrido por el Proyecto de Aprendizaje Automático: Hacer
Predicciones

II.3.4 Regresión Logistica

En la última pantalla, puede haber notado que tanto fpr como tpr eran 1. Esto se debe a que hemos predicho 1
para cada fila. Esto significa que hemos identificado correctamente todos los préstamos buenos (tasa de
verdaderos positivos), pero también hemos identificado incorrectamente todos los préstamos malos (tasa de
falsos positivos). Ahora que hemos configurado las métricas de error, podemos pasar a hacer predicciones
utilizando un algoritmo de aprendizaje automático.

Como vimos en la primera pantalla de la misión, nuestro conjunto de datos depurado contiene 41 columnas,
todas ellas de tipo int64 o float64. No hay valores nulos en ninguna de las columnas. Esto significa que ahora
podemos aplicar cualquier algoritmo de aprendizaje automático a nuestro conjunto de datos. La mayoría de
los algoritmos no pueden tratar con valores no numéricos o faltantes, por lo que tuvimos que hacer mucha
limpieza de datos.

Para ajustar los modelos de aprendizaje automático, utilizaremos la biblioteca Scikit-learn. Aunque hemos
construido nuestras propias implementaciones de algoritmos en misiones anteriores, es más fácil y rápido
utilizar algoritmos que alguien ya ha escrito y ajustado para obtener un alto rendimiento.

II.3 Recorrido por el Proyecto de Aprendizaje Automático: Hacer
Predicciones

http://scikit-learn.org/

Un buen primer algoritmo para aplicar a los problemas de clasificación binaria es la regresión
logística (logistic regression), por las siguientes razones:
• Es rápido de entrenar y podemos iterar más rápidamente
• Es menos propenso al sobreajuste que otros modelos más complejos como los árboles de

decisión
• Es fácil de interpretar

Instrucciones

• Cree un marco de datos llamado features que contenga sólo las columnas de características
• Elimine la columna loan_status
• Cree una serie denominada target que contenga sólo la columna target (loan_status)
• Utilice el método fit de lr para ajustar una regresión logística a las features (características) y al

target (objetivo)
• Utilice el método predict de lr para hacer predicciones sobre las features (características).

Asigne las predicciones a predictions

II.3 Recorrido por el Proyecto de Aprendizaje Automático: Hacer
Predicciones

https://en.wikipedia.org/wiki/Logistic_regression
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html#sklearn.linear_model.LogisticRegression.fit
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html#sklearn.linear_model.LogisticRegression.predict

Soluciones

II.3 Recorrido por el Proyecto de Aprendizaje Automático: Hacer
Predicciones

II.3.6 Validación cruzada

Aunque generamos predicciones en la última pantalla, esas predicciones estaban sobreajustadas. Estaban
sobreajustadas porque generamos predicciones utilizando los mismos datos con los que entrenamos nuestro
modelo. Cuando usamos esto para evaluar un error, obtenemos una representación irreal de la precisión del
algoritmo, porque ya "conoce" las respuestas correctas. Es como pedirle a alguien que memorice un montón
de ecuaciones físicas y luego pedirle que introduzca números en las ecuaciones. Puede decir la respuesta
correcta, pero no puede explicar un concepto para el que no ha memorizado una ecuación.

Para obtener una representación realista de la exactitud del modelo, vamos a realizar una validación cruzada
k-fold (k-fold cross validation). Podemos utilizar la función cross_val_predict() function del paquete
sklearn.model_selection. Este es el aspecto del flujo de trabajo:

II.3 Recorrido por el Proyecto de Aprendizaje Automático: Hacer
Predicciones

https://en.wikipedia.org/wiki/Cross-validation
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_val_predict.html
http://scikit-learn.org/stable/modules/classes.html#module-sklearn.model_selection

Una vez que hemos validado las predicciones de forma cruzada, podemos calcular la tasa de
verdaderos positivos y la tasa de falsos positivos.

Instrucciones

• Generar predicciones de validación cruzada para las (características)
• Llame a cross_val_predict utilizando lr, features (características) y target (objetivo)
• Establezca el parámetro cv en 3, para que se realice una validación cruzada triple
• Asigne las predicciones a predictions
• Utilice la clase Series para convertir predictions en un objeto pandas Series
• Calcule la tasa de verdaderos positivos y la tasa de falsos positivos
• Asigne la tasa de verdaderos positivos a tpr
• Asignar la tasa de falsos positivos a fpr
• Mostrar fpr y tpr para evaluarlos

II.3 Recorrido por el Proyecto de Aprendizaje Automático: Hacer
Predicciones

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_val_predict.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html

Soluciones

II.3 Recorrido por el Proyecto de Aprendizaje Automático: Hacer
Predicciones

II.3.7 Penalización del clasificador

Como se puede ver en la última pantalla, nuestros fpr y tpr están alrededor de lo que
esperaríamos si el modelo estuviera prediciendo todos los unos. Podemos mirar las primeras filas
de predicciones para confirmar:

Por desgracia, aunque no estemos utilizando la precisión como métrica de error, el clasificador sí lo
hace, y no tiene en cuenta el desequilibrio de las clases. Hay algunas formas de conseguir que un
clasificador corrija el desequilibrio de las clases. Las dos formas principales son:

II.3 Recorrido por el Proyecto de Aprendizaje Automático: Hacer
Predicciones

• Utilizar el sobremuestreo y el submuestreo para garantizar que el clasificador reciba una entrada con un
número equilibrado de cada clase

• Decirle al clasificador que penalice las clasificaciones erróneas de la clase menos prevalente más que la
otra clase

Primero veremos el sobremuestreo y el submuestreo. Se trata de tomar una muestra que contenga el mismo
número de filas en las que loan_status (estado de préstamo) es 0 y en las que loan_status es 1. De este modo,
el clasificador se ve obligado a realizar predicciones reales, ya que predecir todos los 1 o todos los 0 sólo dará
lugar a una precisión del 50% como máximo.

El inconveniente de esta técnica es que, al tener que preservar una proporción igual, tiene que:
• Desechar muchas filas de datos. Si quisiéramos un número igual de filas en las que el estado del préstamo

es 0 y en las que el estado del préstamo es 1, una forma de hacerlo es eliminar las filas en las que el estado
del préstamo es 1

• Copiar las filas varias veces. Una forma de igualar los 0s y 1s es copiar las filas donde loan_status es 0
• Generar datos falsos. Una forma de igualar los 0s y 1s es generar nuevas filas donde loan_status es 0

II.3 Recorrido por el Proyecto de Aprendizaje Automático: Hacer
Predicciones

Por desgracia, ninguna de estas técnicas es fácil. El segundo método que mencionamos antes, decirle al
clasificador que penalice más ciertas filas, es mucho más fácil de implementar usando scikit-learn.

Podemos hacerlo estableciendo el parámetro class_weight como balanced al crear la instancia
LogisticRegression. Esto le dice a scikit-learn que penalice la clasificación errónea de la clase minoritaria
durante el proceso de entrenamiento. La penalización significa que el clasificador de regresión logística presta
más atención a la clasificación correcta de las filas donde loan_status es 0. Esto disminuye la precisión
cuando loan_status es 1, pero aumenta la precisión cuando loan_status es 0.

Al establecer el parámetro class_weight como equilibrado, la penalización se establece como inversamente
proporcional a las frecuencias de las clases. Puede leer más sobre el parámetro aquí.

Esto significaría que para el clasificador, clasificar correctamente una fila donde loan_status es 0 es 6 veces
más importante que clasificar correctamente una fila donde loan_status es 1.

Podemos repetir el procedimiento de validación cruzada que realizamos en la última pantalla, pero con el
parámetro class_weight ajustado a equilibrado.

II.3 Recorrido por el Proyecto de Aprendizaje Automático: Hacer
Predicciones

http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html#sklearn-linear-model-logisticregression

Instrucciones

• Crear una instancia de LogisticRegression
• Recuerde establecer class_weight a balanced
• Asigne la instancia a lr

• Genere predicciones de validación cruzada para las features
Llame cross_val_predict() usando lr, features, y target
• Asigne las predicciones a predictions

• Utilizar la clase de Series para convertir las predictions en Series de Pandas, as we did in the last
screen

• La conversión a objetos Series permite aprovechar el filtrado booleano y las operaciones
aritméticas de pandas

• Calcular la tasa de verdaderos positivos y la tasa de falsos positivos
• Asignar la tasa de verdaderos positivos a tpr
• Asignar la tasa de falsos positivos a fpr

• Imprima fpr y tpr para evaluarlos

II.3 Recorrido por el Proyecto de Aprendizaje Automático: Hacer
Predicciones

http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_val_predict.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html

Soluciones

II.3 Recorrido por el Proyecto de Aprendizaje Automático: Hacer
Predicciones

II.3.8 Penalidades manuales

Hemos mejorado significativamente la tasa de falsos positivos en la última pantalla al equilibrar
las clases, lo que ha reducido la tasa de verdaderos positivos. Nuestra tasa de verdaderos
positivos se sitúa ahora en torno al 66%, y nuestra tasa de falsos positivos en torno al 39% . Desde el
punto de vista de un inversor conservador, es tranquilizador que la tasa de falsos positivos sea
más baja, porque significa que podremos hacer un mejor trabajo para evitar los malos préstamos
que si financiamos todo. Sin embargo, sólo decidiríamos financiar el 66% del total de los préstamos
(tasa de verdaderos positivos), por lo que rechazaríamos inmediatamente una buena cantidad de
préstamos.

Podemos intentar reducir aún más la tasa de falsos positivos asignando una penalización más
dura por clasificar mal la clase negativa. Mientras que al establecer class_weight en balanced se
establecerá automáticamente una penalización basada en el número de 1s y 0s en la columna,
también podemos establecer una penalización manual. En la última pantalla, la penalización que
scikit-learn impuso por clasificar mal un 0 habría sido de alrededor de 5,89 (ya que hay 5,89 veces
más 1s que 0s).

II.3 Recorrido por el Proyecto de Aprendizaje Automático: Hacer
Predicciones

También podemos especificar una penalización manualmente si queremos ajustar más los
índices. Para ello, tenemos que pasar un diccionario de valores de penalización al parámetro
class_weight:

El diccionario anterior impondrá una penalización de 10 por clasificar mal un 0 y una penalización
de 1 por clasificar mal un 1.

II.3 Recorrido por el Proyecto de Aprendizaje Automático: Hacer
Predicciones

Instrucciones

Modifica el código de la última pantalla para cambiar el parámetro class_weight de la cadena
"balanced" al diccionario:

¡Recuerda imprimir los valores fpr y tpr al final!

II.3 Recorrido por el Proyecto de Aprendizaje Automático: Hacer
Predicciones

II. Bosque Aleatorio

Parece que la asignación de penalizaciones manuales redujo la tasa de falsos positivos al 9% y, por tanto,
disminuyó nuestro riesgo. Hay que tener en cuenta que esto se produce a expensas de la tasa de verdaderos
positivos. Aunque tenemos menos falsos positivos, también estamos perdiendo oportunidades de financiar
más préstamos y potencialmente ganar más dinero. Dado que estamos enfocando esto como un inversor
conservador, esta estrategia tiene sentido, pero vale la pena tener en cuenta las compensaciones.

Aunque podríamos ajustar más las penalizaciones, es mejor pasar a probar un modelo diferente ahora mismo,
para obtener mayores ganancias potenciales en la tasa de falsos positivos. Siempre podemos volver atrás e
iterar sobre las penalizaciones más adelante.

Probemos un algoritmo más complejo, el bosque aleatorio. Aprendimos sobre los bosques aleatorios en una
misión anterior y construimos nuestro propio modelo. Los bosques aleatorios son capaces de trabajar con
datos no lineales y aprender condicionales complejos. Las regresiones logísticas sólo pueden trabajar con
datos lineales. El entrenamiento de un algoritmo de bosque aleatorio puede permitir una mayor precisión
debido a las columnas que se correlacionan de forma no lineal con loan_status.

II.3 Recorrido por el Proyecto de Aprendizaje Automático: Hacer
Predicciones

Para ello podemos utilizar la clase RandomForestClassifer de scikit-learn.

Instrucciones

• Modifique el código de la última pantalla y cambie la LogisticRegression por un modelo
RandomForestClassifer

• Establezca el valor del argumento de la palabra clave random_state en 1, para que las
predicciones no varíen debido al azar

• Establezca el valor del argumento de la palabra clave class_weight en balanced, para evitar
problemas con las clases desequilibradas

• Recuerde imprimir los valores fpr y tpr al final

II.3 Recorrido por el Proyecto de Aprendizaje Automático: Hacer
Predicciones

http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

Soluciones

II.3 Recorrido por el Proyecto de Aprendizaje Automático: Hacer
Predicciones

Puntos Clave

Por desgracia, el uso de un clasificador de bosque aleatorio no mejoró nuestra tasa de falsos
positivos. Es probable que el modelo esté demasiado centrado en la clase 1, y que siga prediciendo
mayoritariamente 1s. Podríamos arreglar esto aplicando una penalización más dura para las
clasificaciones erróneas de 0s.

Por último, nuestro mejor modelo tenía una tasa de falsos positivos de casi el 9% y una tasa de
verdaderos positivos de casi el 24%. Para un inversor conservador, esto significa que gana dinero
siempre que el tipo de interés sea lo suficientemente alto como para compensar las pérdidas
derivadas del incumplimiento del 9% de los prestatarios. Además, el grupo del 24% de los
prestatarios debe ser lo suficientemente grande como para ganar suficiente dinero en intereses
para compensar las pérdidas.

Si hubiéramos elegido aleatoriamente los préstamos a financiar, los prestatarios habrían
incumplido el 14,5% de ellos, y nuestro modelo es mejor que eso, aunque estamos excluyendo más
préstamos de lo que haría una estrategia aleatoria. Teniendo en cuenta esto, todavía hay
bastante margen de mejora:

• Podemos ajustar más las penalizaciones
• Podemos probar otros modelos además del bosque aleatorio y la regresión logística
• Podemos utilizar algunas de las columnas que descartamos para generar mejores

características
• Podemos ensamblar varios modelos para obtener predicciones más precisas
• Podemos ajustar los parámetros del algoritmo para conseguir un mayor rendimiento

Puntos Clave

III. Fundamentos de Kaggle

Fundamentos de Kaggle

Aprende cómo empezar y participar en las competiciones de Kaggle con nuestro curso de
Fundamentos de Kaggle. Kaggle es un sitio de competiciones de ciencia de datos donde puedes
inscribirte para competir con otros científicos de datos y equipos de ciencia de datos para
producir el análisis más preciso de un conjunto de datos en particular. La competencia en Kaggle
es fuerte, y quedar entre los primeros clasificados en una competición le dará derecho a presumir.

En este curso, competirás en la competición "Titanic" de Kaggle para construir un modelo simple de
aprendizaje automático y hacer tu primera presentación en Kaggle. También aprenderás a
seleccionar el mejor algoritmo y a ajustar tu modelo para obtener el mejor rendimiento. Trabajarás
con múltiples algoritmos como la regresión logística, los vecinos más cercanos y los bosques
aleatorios para intentar encontrar el modelo que obtenga la mejor puntuación y te otorgue el
mejor rango.

A lo largo de este curso, aprenderás varios consejos y trucos para competir en las competiciones de Kaggle
que te ayudarán a obtener un buen puesto. También aprenderá más sobre los flujos de trabajo de aprendizaje
automático eficaces, y sobre cómo utilizar un cuaderno Jupyter para las competiciones de Kaggle.

Al final del curso, tendrás un proyecto de aprendizaje automático completado y el conocimiento que necesitas
para sumergirte en otras competiciones de Kaggle y demostrar tus habilidades al mundo.

Al final de este curso, usted será capaz de:
• Construir un modelo simple de aprendizaje automático y hacer su primera presentación en Kaggle
• Crear nuevas características y seleccionar las de mejor rendimiento para mejorar su puntuación
• Trabajar con múltiples algoritmos, incluyendo regresión logística, k vecinos más cercanos y bosque

aleatorio
• Cómo seleccionar el mejor algoritmo y ajustar su modelo para obtener el mejor rendimiento

Fundamentos de Kaggle

III.1 Cómo Empezar a Usar Kaggle

III.1.1 Introducción a Kaggle

Kaggle es un sitio en el que la gente crea algoritmos y compite contra profesionales del
aprendizaje automático de todo el mundo. Tu algoritmo gana la competición si es el más preciso
en un conjunto de datos concreto. Kaggle es una forma divertida de practicar tus habilidades de
aprendizaje automático.

En esta misión y en las siguientes, vamos a aprender a competir en las competiciones de Kaggle.
En esta misión introductoria aprenderemos a:
• Acercarse a una competición de Kaggle
• Explorar los datos de la competición y aprender sobre el tema de la competición
• Preparar los datos para el aprendizaje automático
• Entrenar un modelo
• Medir la precisión de tu modelo
• Preparar y hacer su primera presentación en Kaggle

https://www.kaggle.com/?utm_medium=partner&utm_source=dataquest.io&utm_campaign=dataquest+kagglefun

Este curso presupone que tienes conocimientos de Python y de la biblioteca pandas. Si necesita
aprender sobre estos, le recomendamos nuestros cursos sobre Python y pandas.

Kaggle ha creado una serie de concursos diseñados para los principiantes. El más popular de
estos concursos, y el que vamos a ver, trata de predecir qué pasajeros sobrevivieron al
hundimiento del Titanic.

En este concurso, tenemos un conjunto de datos con diferente información sobre los pasajeros a
bordo del Titanic, y queremos ver si podemos utilizar esa información para predecir si esas
personas sobrevivieron o no. Antes de empezar a ver esta competición específica, tomemos un
momento para entender cómo funcionan las competiciones de Kaggle.

III.1 Cómo Empezar a Usar Kaggle

https://www.dataquest.io/course/python-programming-beginner
https://www.dataquest.io/course/data-analysis-intermediate

Cada competición de Kaggle tiene dos archivos de
datos clave con los que trabajarás: un conjunto de
entrenamiento (Training Set) y un conjunto de
pruebas (Testing Set).

El conjunto de entrenamiento contiene datos que
podemos utilizar para entrenar nuestro modelo. Tiene
una serie de columnas de características que
contienen varios datos descriptivos, así como una
columna de los valores objetivo que estamos tratando
de predecir: en este caso, la supervivencia (Survival).

El conjunto de pruebas contiene todas las mismas
columnas de características, pero falta la columna de
valores objetivo. Además, el conjunto de prueba suele
tener menos observaciones (filas) que el conjunto de
entrenamiento.

III.1 Cómo Empezar a Usar Kaggle

Conjunto de
entrenamiento

Datos de
supervivencia

de cada
pasajero

Conjunto de
entrenamiento

No datos de
supervivencia

Esto es útil porque queremos la mayor cantidad de datos posible para entrenar nuestro modelo.
Una vez que hayamos entrenado nuestro modelo en el conjunto de entrenamiento, utilizaremos
ese modelo para hacer predicciones sobre los datos del conjunto de prueba, y enviaremos esas
predicciones a Kaggle.

En esta competición, los dos archivos se llaman test.csv y train.csv. Comenzaremos utilizando la
biblioteca pandas para leer ambos archivos e inspeccionar su tamaño.

Instrucciones

• Usar pandas.read_csv() para importar train.csv y asignarlo a la variable train
• Utilice DataFrame.shape para calcular el número de filas y columnas en train, y asigne el

resultado a train_shape
• Haz clic en Run para ejecutar tu código, y utiliza el inspector de variables para ver las cuatro

variables que acabas de crear

III.1 Cómo Empezar a Usar Kaggle

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.shape.html#pandas.DataFrame.shape

Soluciones

III.1 Cómo Empezar a Usar Kaggle

III.1.2 Exploración de Datos

Los archivos que hemos leído en la pantalla anterior están disponibles en la página de datos del
concurso Titanic en Kaggle. Esa página también tiene un diccionario de datos, que explica las distintas
columnas que componen el conjunto de datos. A continuación se muestran las descripciones
contenidas en ese diccionario de datos:
• PassengerID - Una columna añadida por Kaggle para identificar cada fila y facilitar los envíos
• Survived - Si el pasajero sobrevivió o no y el valor que estamos prediciendo (0=No, 1=Sí)
• Pclass - La clase del billete que compró el pasajero (1=1ª, 2=2ª, 3=3ª)
• Sex - El sexo del pasajero
• Edad - La edad del pasajero en años
• SibSp - El número de hermanos o cónyuges que el pasajero tenía a bordo del Titanic
• Parch - El número de padres o hijos que el pasajero tenía a bordo del Titanic
• Ticket - El número de billete del pasajero
• Fare - La tarifa que pagó el pasajero
• Cabin - El número de cabina del pasajero
• Embarked - El puerto donde embarcó el pasajero (C=Cherbourg, Q=Queenstown, S=Southampton)

III.1 Cómo Empezar a Usar Kaggle

https://www.kaggle.com/c/titanic/data
https://www.kaggle.com/c/titanic/data

La página de datos en Kaggle tiene algunas notas adicionales sobre algunas de las columnas.
Siempre vale la pena explorar esto en detalle para obtener una comprensión completa de los
datos.

Las primeras 2 filas de los datos están abajo:

III.1 Cómo Empezar a Usar Kaggle

El tipo de aprendizaje automático que vamos a realizar se llama clasificación, porque cuando
hacemos predicciones estamos clasificando a cada pasajero como superviviente o no. Más
concretamente, estamos realizando una clasificación binaria, lo que significa que sólo hay dos
estados diferentes que estamos clasificando.

En cualquier ejercicio de aprendizaje automático, es muy importante pensar en el tema que
estamos prediciendo. A este paso lo llamamos adquirir conocimiento del dominio, y es uno de los
determinantes más importantes para el éxito en el aprendizaje automático.

En este caso, es importante comprender la catástrofe del Titanic y, concretamente, qué variables
podrían afectar al resultado de la supervivencia. Cualquiera que haya visto la película Titanic
recordaría que las mujeres y los niños tenían preferencia en los botes salvavidas (al igual que en la
vida real). También recordaría la gran disparidad de clases de los pasajeros.

III.1 Cómo Empezar a Usar Kaggle

https://en.wikipedia.org/wiki/Titanic_%281997_film%29

III.1 Cómo Empezar a Usar Kaggle

Esto indica que la Age (edad), el Sex (sexo) y la
PClass pueden ser buenos predictores de la
supervivencia. Empezaremos por explorar el Sex
y la PClass visualizando los datos.

Como la columna Survived (Sobrevivientes)
contiene 0 si el pasajero no sobrevivió y 1 si lo
hizo, podemos segmentar nuestros datos por
sexo y calcular la media de esta columna.
Podemos utilizar DataFrame.pivot_table() para
hacerlo fácilmente:

El gráfico resultante tendrá el siguiente
aspecto:

Podemos ver inmediatamente que las mujeres sobrevivieron en una proporción mucho mayor que
los hombres. Hagamos lo mismo con la columna Pclass.

Instrucciones

• Utilice DataFrame.pivot_table() para pivotar el marco de datos de train:
• Utilice "Pclass" para el parámetro de índice
• Utilice "Survived" para el parámetro de valores
• Utilice DataFrame.plot.bar() para trazar la tabla pivotante

III.1 Cómo Empezar a Usar Kaggle

III.1.3 Exploración y conversión de la columna de edad

Las columnas Sex y PClass son lo que llamamos características categóricas. Esto significa que los
valores representan algunas opciones distintas (por ejemplo, si el pasajero es hombre o mujer).

Echemos un vistazo a la columna Age utilizando Series.describe().

III.1 Cómo Empezar a Usar Kaggle

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.describe.html

La columna Age contiene números que van de 0,42 a 80,0 (si miras la página de datos de Kaggle,
nos informa de que Age es fraccionaria si el pasajero es menor de uno). La otra cosa a tener en
cuenta aquí es que hay 714 valores en esta columna, menos que las 891 filas que descubrimos que
tenía el conjunto de datos de train anteriormente en esta misión, lo que indica que tenemos
algunos valores perdidos.

Todo esto significa que la columna Age debe ser tratada de forma ligeramente diferente, ya que se
trata de una columna numérica continua. Una forma de ver la distribución de los valores en un
conjunto numérico continuo es utilizar histogramas. Podemos crear dos histogramas para
comparar visualmente los que sobrevivieron frente a los que murieron en diferentes rangos de
edad:

III.1 Cómo Empezar a Usar Kaggle

El gráfico resultante tendrá el siguiente aspecto:

La relación aquí no es sencilla, pero podemos
ver que en algunos rangos de edad
sobrevivieron más pasajeros, donde las barras
rojas son más altas que las azules.

Para que esto sea útil para nuestro modelo de
aprendizaje automático, podemos separar esta
característica continua en una característica
categórica dividiéndola en rangos. Podemos
utilizar la pandas.cut() function para ayudarnos.

III.1 Cómo Empezar a Usar Kaggle

Sobrevivient
e
Muerto
s

Fr
ec

ue
nc

ia

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.cut.html

La función pandas.cut() tiene dos parámetros requeridos - la columna que deseamos cortar, y
una lista de números que definen los límites de nuestros cortes. También vamos a utilizar el
parámetro opcional labels, que toma una lista de etiquetas para los recipientes resultantes. Esto
nos facilitará la comprensión de nuestros resultados.

Antes de modificar esta columna, debemos tener en cuenta dos cosas. En primer lugar, cualquier
cambio que hagamos en los datos de train, debemos aplicarlo también a los datos de prueba, de
lo contrario no podremos utilizar nuestro modelo para hacer predicciones para nuestros envíos. En
segundo lugar, tenemos que acordarnos de gestionar los valores perdidos que hemos observado
anteriormente.

En el ejemplo siguiente, creamos una función que:
• Utiliza el pandas.fillna() method para rellenar todos los valores perdidos con -0.5
• Corta la columna Age en tres segmentos: Missing, Child y Adult usando pandas.cut()

III.1 Cómo Empezar a Usar Kaggle

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.fillna.html

A continuación, utilizamos esa función en
los train and test dataframes.

El siguiente diagrama muestra cómo la función
convierte los datos:

Tenga en cuenta que la lista "cut_points" tiene
un elemento más que la lista "labels_names",
ya que necesita definir el límite superior del
último segmento.

III.1 Cómo Empezar a Usar Kaggle

Rellenar
los

valores
que faltan

Convertir
los

valores
en

categorí
as

Instrucciones

Cree las listas cut_points y label_names para dividir la columna Age en seis categorías:
• Missing, de -1 a 0
• Infant, de 0 a 5
• Child, de 5 a 12
• Teenager, de 12 a 18
• Young Adult, de 18 a 35
• Adult, de 35 a 60
• Senior, de 60 a 100
• Aplicar la función process_age() en el marco de datos(dataframe) train asignando el resultado a train
• Aplicar la función process_age() en el marco de datos(dataframe) test , asignando el resultado a test
• Utilize DataFrame.pivot_table() para hacer pivotar el marco de datos de train por la columna

Age_categories
• Use DataFrame.plot.bar() para trazar la tabla pivotante

III.1 Cómo Empezar a Usar Kaggle

Soluciones

III.1 Cómo Empezar a Usar Kaggle

III.1.4 Preparación de los datos para el aprendizaje automático

Hasta ahora hemos identificado tres columnas que pueden ser útiles para predecir la
supervivencia :
• Sex
• Pclass
• Age, o más concretamente nuestro recién creado Age_categories

Antes de construir nuestro modelo, tenemos que preparar estas columnas para el aprendizaje
automático. La mayoría de los algoritmos de aprendizaje automático no pueden entender las
etiquetas de texto, así que tenemos que convertir nuestros valores en números.

Además, tenemos que tener cuidado de no implicar ninguna relación numérica donde no la hay. Si
pensamos en los valores de la columna Pclass, sabemos que son 1, 2 y 3. Puede confirmarlo
ejecutando el siguiente código:

III.1 Cómo Empezar a Usar Kaggle

Aunque la clase de cada pasajero tiene ciertamente algún tipo de relación ordenada, la relación
entre cada clase no es la misma que la relación entre los números 1, 2 y 3. Por ejemplo, la clase 2
no "vale" el doble que la clase 1, y la clase 3 no "vale" el triple que la clase 1.

Para eliminar esta relación, podemos crear columnas ficticias para cada valor único en Pclass.

III.1 Cómo Empezar a Usar Kaggle

En lugar de hacerlo manualmente, podemos utilizar la pandas.get_dummies() function que
generará las columnas que se muestran en el diagrama anterior.

El siguiente código crea una función para crear las columnas ficticias para la columna Pclass y las
añade al marco de datos original. A continuación, aplica esa función a los marcos de datos de
train y de test.

Utilicemos esa función para crear columnas ficticias tanto para el Sex como para
el Age_categories columns.

III.1 Cómo Empezar a Usar Kaggle

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.get_dummies.html

Instrucciones

• Utilice la función create_dummies() para crear variables ficticias para la columna Sex:
• En el marco de datos de train
• En el marco de datos de test

• Utilice la función create_dummies() para crear variables ficticias para la columna
Age_categories:
• En el marco de datos de train
• En el marco de datos de test

Soluciones

III.1 Cómo Empezar a Usar Kaggle

III.1.5 Su primer aprendizaje automático

Ahora que nuestros datos han sido preparados, estamos listos para entrenar nuestro primer
modelo. El primer modelo que utilizaremos se llama Regresión Logística, que suele ser el primer
modelo que se entrena al realizar la clasificación.

Utilizaremos la biblioteca scikit-learn, ya que tiene muchas herramientas que facilitan el
aprendizaje automático. El flujo de trabajo de scikit-learn consiste en cuatro pasos principales:
• Instanciar (o crear) el modelo de aprendizaje automático específico que desea utilizar
• Ajustar el modelo a los datos de entrenamiento
• Utilizar el modelo para hacer predicciones
• Evaluar la precisión de las predicciones

III.1 Cómo Empezar a Usar Kaggle

http://scikit-learn.org/stable/index.html

Cada modelo en scikit-learn se implementa como una clase separada y el primer paso es
identificar la clase de la que queremos crear una instancia. En nuestro caso, queremos utilizar la
LogisticRegression class.

Empezaremos por ver los dos primeros pasos. En primer lugar, tenemos que importar la clase:

A continuación, creamos un objeto LogisticRegression :

III.1 Cómo Empezar a Usar Kaggle

http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html

Por último, utilizamos el LogisticRegression.fit() method para entrenar nuestro modelo. El método
.fit() acepta dos argumentos: X e Y. X debe ser una matriz bidimensional (como un marco de
datos) de las características con las que deseamos entrenar nuestro modelo, e Y debe ser una
matriz unidimensional (como una serie) de nuestro objetivo, o la columna que deseamos predecir.

El código anterior ajusta (o entrena) nuestro modelo LogisticRegression utilizando tres
columnas: Pclass_2, Pclass_3 y Sex_male.

Vamos a entrenar nuestro modelo utilizando todas las columnas que hemos creado en la pantalla
anterior.

III.1 Cómo Empezar a Usar Kaggle

http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html#sklearn.linear_model.LogisticRegression.fit

Instrucciones

• Instanciar un objeto LogisticRegression llamado lr
• Utilice LogisticRegression.fit() para ajustar el modelo en el conjunto de datos de train utilizando:

• Las columnas contenidas en columns como primer parámetro (X)
• La columna Survived como el segundo parámetro (Y)

Soluciones

III.1 Cómo Empezar a Usar Kaggle

III.1.6 Datos divididos

Felicitaciones, ¡has entrenado tu primer modelo de aprendizaje automático! Nuestro siguiente
paso es averiguar la precisión de nuestro modelo, y para ello tendremos que hacer algunas
predicciones.

Si lo recuerdas, tenemos un marco de datos de prueba (test) que podríamos utilizar para hacer
predicciones. Podríamos hacer predicciones en ese conjunto de datos, pero como no tiene la
columna Survived tendríamos que enviarlo a Kaggle para averiguar nuestra precisión. Esto se
convertiría rápidamente en una molestia si tuviéramos que enviarlo para averiguar la precisión
cada vez que optimizáramos nuestro modelo.

También podríamos ajustar y predecir en nuestro marco de datos de entrenamiento (train), sin
embargo, si hacemos esto hay una alta probabilidad de que nuestro modelo se sobreajuste, lo que
significa que se desempeñará bien porque estamos probando en los mismos datos que hemos
entrenado, pero luego se desempeñan mucho peor en los nuevos datos no vistos.

III.1 Cómo Empezar a Usar Kaggle

En cambio, podemos dividir nuestro marco de datos de entrenamiento (train) en dos:
• Una parte para entrenar nuestro modelo (a menudo el 80% de las observaciones)
• Una parte para hacer predicciones y probar nuestro modelo (a menudo el 20% de las

observaciones)

La convención en el aprendizaje automático es llamar a estas dos partes entrenamiento (train) y
prueba (test). Esto puede llegar a ser confuso, ya que ya tenemos nuestro marco de datos de
prueba (test) que eventualmente vamos a utilizar para hacer predicciones para presentar a
Kaggle. Para evitar confusiones, a partir de ahora, vamos a llamar a estos datos de "prueba" de
Kaggle datos retenidos, que es el nombre técnico dado a este tipo de datos utilizados para las
predicciones finales.

III.1 Cómo Empezar a Usar Kaggle

La biblioteca scikit-learn tiene una práctica función
model_selection.train_test_split() function que podemos utilizar para dividir nuestros datos.
train_test_split() acepta dos parámetros, X e Y, que contienen todos los datos que queremos
entrenar y probar, y devuelve cuatro objetos: train_X, train_Y, test_X, test_Y:

III.1 Cómo Empezar a Usar Kaggle

http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html

Esta es la sintaxis para crear estos cuatro objetos:

Verás que hay otros dos parámetros que utilizamos: test_size, que nos permite controlar en qué
proporciones se dividen nuestros datos, y random_state. La función train_test_split() aleatoriza las
observaciones antes de dividirlas, y establecer una semilla aleatoria (random seed) significa que
nuestros resultados serán reproducibles, lo cual es importante si estás colaborando, o necesitas
producir resultados consistentes cada vez (lo cual requiere nuestro verificador de respuestas).

III.1 Cómo Empezar a Usar Kaggle

https://en.wikipedia.org/wiki/Random_seed

Instrucciones

• Utilice la función model_selection.train_test_split() para dividir el marco de datos de
entrenamiento (train) utilizando los siguientes parámetros:
• test_size de 0.2
• random_state de 0
• Asigne los cuatro objetos devueltos a train_X, test_X, train_y y test_y

III.1 Cómo Empezar a Usar Kaggle

Soluciones

III.1 Cómo Empezar a Usar Kaggle

III.1.7 Hacer predicciones y medir su exactitud

Ahora que tenemos los datos divididos en conjuntos de entrenamiento y de prueba, podemos
ajustar nuestro modelo de nuevo en nuestro conjunto de entrenamiento y, a continuación, utilizar
ese modelo para hacer predicciones en nuestro conjunto de prueba.

Una vez que hemos ajustado nuestro modelo, podemos utilizar el método
LogisticRegression.predict() method para hacer predicciones.

El método predict() toma un único parámetro X, una matriz bidimensional de características para
las observaciones que deseamos predecir. X debe tener exactamente las mismas características
que la matriz que hemos utilizado para ajustar nuestro modelo. El método devuelve una matriz
unidimensional de predicciones.

III.1 Cómo Empezar a Usar Kaggle

http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html#sklearn.linear_model.LogisticRegression.predict

Hay varias formas de medir la precisión de los
modelos de aprendizaje automático, pero cuando se
compite en las competiciones de Kaggle, hay que
asegurarse de utilizar el mismo método que Kaggle
utiliza para calcular la precisión para esa competición
específica.

En este caso, la sección de evaluación para la
competición Titanic en Kaggle nos dice que nuestra
puntuación calculada como "el porcentaje de
pasajeros predichos correctamente". Esta es, con
mucho, la forma más común de precisión para la
clasificación binaria.

Como ejemplo, imaginemos que estamos prediciendo
un pequeño conjunto de datos de cinco
observaciones.

III.1 Cómo Empezar a Usar Kaggle

https://www.kaggle.com/c/titanic#evaluation
https://www.kaggle.com/c/titanic#evaluation

En este caso, nuestro modelo predijo correctamente tres de los cinco valores, por lo que la
precisión basada en este conjunto de predicciones sería del 60%.

De nuevo, scikit-learn tiene una función muy útil que podemos utilizar para calcular la precisión:
metrics.accuracy_score(). La función acepta dos parámetros, y_true e y_pred, que son los valores
reales y nuestros valores predichos respectivamente, y devuelve nuestra puntuación de precisión.

Instrucciones

• Instanciar un nuevo objeto LogisticRegression(), lr
• Ajuste el modelo utilizando train_X y train_y
• Realice predicciones con test_X y asigne los resultados a las predicciones (predictions)
• Utilice accuracy_score() para comparar test_y y predicciones, asignando el resultado a

accuracy
• Imprimir la variable de accuracy

III.1 Cómo Empezar a Usar Kaggle

http://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html

III.1 Cómo Empezar a Usar Kaggle

Soluciones

III.1 Cómo Empezar a Usar Kaggle

III.1.8 Uso de la validación cruzada para una
medición más precisa de los errores

Nuestro modelo tiene una puntuación de
precisión del 81,0% cuando se prueba con
nuestro conjunto de pruebas del 20%. Dado que
este conjunto de datos es bastante pequeño,
hay muchas posibilidades de que nuestro
modelo esté sobreajustado y no funcione tan
bien con datos totalmente desconocidos.

Para comprender mejor el rendimiento real de
nuestro modelo, podemos utilizar una técnica
llamada validación cruzada para entrenar y
probar nuestro modelo en diferentes partes de
nuestros datos, y luego promediar las
puntuaciones de precisión.

La forma más común de validación cruzada, y la que utilizaremos, se llama validación cruzada de
k Fold (k-pliegues). El término "pliegue" se refiere a cada iteración diferente en la que entrenamos
nuestro modelo, y "k" sólo se refiere al número de pliegues. En el diagrama anterior, hemos
ilustrado la validación de k pliegues donde k es 5.

Utilizaremos la model_selection.cross_val_score() function de scikit-learn para automatizar el
proceso. La sintaxis básica de cross_val_score() es:

• estimator es un objeto estimador de scikit-learn, como los objetos LogisticRegression() que
hemos estado creando

• X son todas las características de nuestro conjunto de datos
• y es la variable objetivo
• cv especifica el número de pliegues

III.1 Cómo Empezar a Usar Kaggle

http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_val_score.html#sklearn.model_selection.cross_val_score

La función devuelve un ndarray numpy de las puntuaciones de precisión de cada pliegue.

Cabe destacar que la función cross_val_score() puede utilizar una variedad de técnicas de validación
cruzada y tipos de puntuación, pero por defecto utiliza la validación k-fold y las puntuaciones de
precisión para nuestros tipos de entrada.

Instrucciones

• Instanciar un nuevo objeto LogisticRegression(), lr
• Utilice model_selection.cross_val_score() para realizar la validación cruzada de nuestros datos y

asignar los resultados a las puntuaciones (scores):
• Utilizar el lr recién creado como estimador
• Utilizar all_X y all_y como datos de entrada
• Especificar 10 pliegues (folds) a utilizar

• Utilizar la función numpy.mean() function para calcular la media de las puntuaciones (scores) y
asignar el resultado a la precisión (accuracy)

• Imprime las variables puntuaciones(scores) y precisión (accuracy)

III.1 Cómo Empezar a Usar Kaggle

https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.mean.html

Soluciones

III.1 Cómo Empezar a Usar Kaggle

III.1.9 Hacer predicciones con datos no vistos

A partir de los resultados de nuestra validación de k pliegues, se puede ver que el número de
precisión varía con cada pliegue, oscilando entre el 76,4% y el 87,6%. Esto demuestra la importancia
de la validación cruzada.

En realidad, nuestra puntuación media de precisión fue del 80,2%, lo que no está lejos del 81,0% que
obtuvimos de nuestra simple división de entrenamiento/prueba, sin embargo, este no siempre
será el caso, y siempre debe utilizar la validación cruzada para asegurarse de que las métricas de
error que está obteniendo de su modelo son precisas.

Ahora estamos listos para utilizar el modelo que hemos construido para entrenar nuestro modelo
final y luego hacer predicciones en nuestros datos no vistos, o lo que Kaggle llama el conjunto de
datos de “prueba”.

III.1 Cómo Empezar a Usar Kaggle

Instrucciones
• Instanciar un nuevo objeto LogisticRegression(), lr
• Utilice el método fit() para entrenar el modelo lr utilizando todos los datos de entrenamiento de

Kaggle: all_X y all_y
• Haga predicciones utilizando los datos retenidos (holdout) y asigne el resultado a

holdout_predictions

Soluciones

III.1 Cómo Empezar a Usar Kaggle

III.1.10 Fichero de presentación de la creación

Lo último que tenemos que hacer es crear un archivo de presentación. Cada competición de
Kaggle puede tener requisitos ligeramente diferentes para el archivo de presentación. Esto es lo
que se especifica en la página de evaluación del concurso Titanic.

Debes enviar un archivo csv con exactamente 418 entradas más una fila de cabecera. Su
presentación mostrará un error si tiene columnas adicionales (más allá de PassengerId y
Survived) o filas.

El archivo debe tener exactamente 2 columnas:
• PassengerId (clasificado en cualquier orden)
• Survived (contiene sus predicciones binarias: 1 para sobrevivido, 0 para fallecido)

III.1 Cómo Empezar a Usar Kaggle

https://www.kaggle.com/c/titanic#evaluation

La siguiente tabla muestra esto en un formato
un poco más fácil de entender, para que
podamos visualizar lo que pretendemos.

Tendremos que crear un nuevo marco de datos
que contenga el holdout_predictions que
creamos en la pantalla anterior y la columna
PassengerId del marco de datos holdout. No
tenemos que preocuparnos de hacer coincidir
los datos, ya que ambos permanecen en su
orden original.

Para ello, podemos pasar un diccionario a la
pandas.DataFrame() function:

III.1 Cómo Empezar a Usar Kaggle

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html

Finalmente, utilizaremos el pandas.DataFrame() function para guardar el dataframe en un archivo
CSV. Tenemos que asegurarnos de que el parámetro de index(índice) se establece en False, de lo
contrario vamos a añadir una columna extra a nuestro CSV.

Instrucciones

• Cree una submission (presentación) de marco de datos que coincida con la especificación de
Kaggle

• Utilice el método to_csv() para guardar el marco de datos de submission (presentación)
utilizando el nombre de archivo submission.csv, utilizando la documentación para buscar la
sintaxis correcta

Soluciones

III.1 Cómo Empezar a Usar Kaggle

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_csv.html

III.1.11 Cómo hacer nuestro primer envío a Kaggle

Puedes descargar el archivo de envío que acabas de crear (si trabajas localmente, estará en el
mismo directorio que tu cuaderno).

Ahora que tenemos nuestro archivo de envío, podemos empezar nuestro envío a Kaggle haciendo
clic en el botón azul "Submit Predictions" en la página del concurso .

III.1 Cómo Empezar a Usar Kaggle

https://www.kaggle.com/c/titanic

A continuación, se le pedirá que cargue su archivo CSV y que añada una breve descripción de su
presentación. Cuando hagas tu envío, Kaggle procesará tus predicciones y te dará tu precisión
para los datos retenidos y tu clasificación.

Cuando termine de procesar, verás que nuestro primer envío obtiene una puntuación de precisión
de 0,75598, es decir, un 75,6%.

III.1 Cómo Empezar a Usar Kaggle

El hecho de que nuestra precisión en los datos retenidos sea del 75,6%, en comparación con la
precisión del 80,2% que obtuvimos con la validación cruzada, indica que nuestro modelo se está
sobreajustando ligeramente a nuestros datos de entrenamiento.

En el momento de escribir este artículo, la precisión del 75,6% da un rango de 6.663 de 7.954. Es
fácil mirar las tablas de clasificación de Kaggle después de su primera presentación y
desanimarse, pero tenga en cuenta que esto es sólo un punto de partida.

También es muy común ver un pequeño número de puntuaciones del 100% en la parte superior de
la tabla de clasificación del Titanic y pensar que tienes un largo camino por recorrer. En realidad,
cualquiera que obtenga una puntuación de alrededor del 90% en esta competición
probablemente esté haciendo trampas (es fácil buscar los nombres de los pasajeros en el
conjunto de espera en Internet y ver si sobrevivieron).

III.1 Cómo Empezar a Usar Kaggle

Hay un gran análisis en Kaggle, How am I doing with my score, que utiliza algunas estrategias
diferentes y sugiere que la puntuación mínima para esta competición es del 62,7% (que se
consigue suponiendo que todos los pasajeros murieron) y una máxima de alrededor del 82%.
Estamos a poco más de la mitad del camino entre el mínimo y el máximo, lo cual es un gran punto
de partida.

Hay muchas cosas que podemos hacer para mejorar la precisión de nuestro modelo. Éstas son
algunas de las que cubriremos en las dos próximas misiones de este curso:

• Mejorar las características:
• Ingeniería de rasgos: Crear nuevas características a partir de los datos existentes
• Selección de características: Seleccionar las características más relevantes para reducir el

ruido y el sobreajuste
• Mejora del modelo:

• Selección de modelos: Probar una variedad de modelos para mejorar el rendimiento
• Optimización de hiperparámetros: Optimizar los ajustes dentro de cada modelo de

aprendizaje automático en particular

III.1 Cómo Empezar a Usar Kaggle

https://www.kaggle.com/pliptor/how-am-i-doing-with-my-score/notebook

III.2 Preparación, Selección e Ingeniería de las Características

En la última misión, hicimos nuestro primer envío a Kaggle, obteniendo una puntuación de
precisión del 75,6%. Aunque este es un buen comienzo, sin duda hay margen de mejora. Hay dos
áreas principales en las que podemos centrarnos para aumentar la precisión de nuestras
predicciones:
• Mejorar las características con las que entrenamos nuestro modelo
• Mejorar el propio modelo

En esta misión, vamos a centrarnos en trabajar con las características utilizadas en nuestro
modelo.

Empezaremos por analizar la selección de características. La selección de características es
importante porque ayuda a excluir características que no son buenos predictores, o
características que están estrechamente relacionadas entre sí. Ambas cosas harán que nuestro
modelo sea menos preciso, sobre todo en datos no vistos anteriormente.

El siguiente diagrama lo ilustra. Los puntos rojos representan los datos que intentamos predecir, y
cada una de las líneas azules representa un modelo diferente.

III.2 Preparación, Selección e Ingeniería de las Características

Un modelo
sobreajustado

Un modelo bien
ajustado

El modelo de la izquierda está sobreajustado, lo que significa que el modelo representa los datos
de entrenamiento con demasiada exactitud, y es poco probable que prediga bien en datos no
vistos, como los datos retenidos para nuestra competición Kaggle.

El modelo de la derecha está bien ajustado. Captura el patrón subyacente en los datos sin el ruido
detallado que se encuentra sólo en el conjunto de entrenamiento. Un modelo bien ajustado es
probable que haga predicciones precisas sobre datos no vistos anteriormente. La clave para crear
un modelo bien ajustado es seleccionar el equilibrio adecuado de características y crear nuevas
características para entrenar el modelo.

En la misión anterior, entrenamos nuestro modelo utilizando datos sobre la edad, el sexo y la clase
de los pasajeros del Titanic. Empecemos por utilizar las funciones que creamos en esa misión para
añadir las columnas que teníamos al final de la primera misión.

Recuerda que cualquier modificación que hagamos en nuestros datos de entrenamiento
(train.csv) también tenemos que hacerla en nuestros datos de retención (test.csv).

III.2 Preparación, Selección e Ingeniería de las Características

Instrucciones

• Utilice la función process_age():
• Para convertir la columna Age en train, asignando el resultado a train
• Para convertir la columna Age en holdout, asignando el resultado a holdout

• Crear un bucle for que itere sobre los nombres de columna "Age_categories", "Pclass" y "Sex” en
cada iteración
• Utiliza la función create_dummies() para procesar el marco de datos de train para la

columna dada, asignando el resultado a train
• Utilice la función create_dummies() para procesar el marco de datos holdout para la

columna dada, asignando el resultado a holdout
• Utilice la función print() para mostrar las columnas de train utilizando train.columns

III.2 Preparación, Selección e Ingeniería de las Características

Soluciones

III.2 Preparación, Selección e Ingeniería de las Características

III.2.1 Preparar más características

Nuestro modelo en la misión anterior se basaba en tres columnas de los datos originales: Age, Sex
y PClass. Como ha visto al imprimir los nombres de las columnas en la pantalla anterior, hay otras
columnas que aún no hemos utilizado. Para facilitar la referencia, la salida de la pantalla anterior
se copia a continuación:

III.2 Preparación, Selección e Ingeniería de las Características

Las últimas nueve filas de la salida son columnas ficticias que hemos creado, pero en las tres
primeras filas podemos ver que hay una serie de características que aún no hemos utilizado.
Podemos ignorar PassengerId, ya que esto es sólo una columna que Kaggle ha añadido para
identificar a cada pasajero y calcular las puntuaciones. También podemos ignorar Survived, ya
que esto es lo que estamos prediciendo, así como las tres columnas que ya hemos utilizado.

A continuación se muestra una lista de las columnas restantes (con una breve descripción),
seguida de 10 pasajeros seleccionados al azar y sus datos de esas columnas, para que podamos
volver a familiarizarnos con los datos.
• SibSp - El número de hermanos o cónyuges que el pasajero tenía a bordo del Titanic
• Parch - El número de padres o hijos que el pasajero tenía a bordo del Titanic
• Ticket - Número de billete del pasajero
• Fare - La tarifa que el pasajero ha pagado
• Cabin - El número de cabina del pasajero
• Embarked - El puerto en el que embarcó el pasajero (C=Cherbourg, Q=Queenstown,

S=Southampton)

III.2 Preparación, Selección e Ingeniería de las Características

III.2 Preparación, Selección e Ingeniería de las Características

Name SibSp Parch Ticket Fare Cabin Embarked

680 Peters, Miss.
Katie 0 0 330935 8.1375 NaN Q

333
Vander Planke,

Mr. Leo
Edmondus

2 0 345764 18.0000 NaN S

816 Heininen, Miss.
Wendla Maria 0 0 STON/O2.

3101290 7.9250 NaN S

310
Hays, Miss.
Margaret
Bechstein

0 0 11767 83.1583 C54 C

291
Bishop, Mrs.
Dickinson H

(Helen Walton)
1 0 11967 91.0792 B49 C

33 Wheadon, Mr.
Edward H 0 0 C.A. 24579 10.5000 NaN S

761
Nirva, Mr.

Iisakki Antino
Aijo

0 0 SOTON/O2
3101272 7.1250 NaN S

305 Allison, Master.
Hudson Trevor 1 2 113781 151.5500 C22 C26 S

210 Ali, Mr. Ahmed 0 0 SOTON/O.Q.
3101311 7.0500 NaN S

272

Mellinger, Mrs.
(Elizabeth

Anne
Maidment)

0 1 250644 19.5000 NaN S

A primera vista, las columnas Name y Ticket parecen ser únicas para cada pasajero. Volveremos a
hablar de estas columnas más adelante, pero por ahora nos centraremos en las demás columnas.

Podemos utilizar el Dataframe.describe() method para obtener más información sobre los valores
de las demás columnas.

III.2 Preparación, Selección e Ingeniería de las Características

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.describe.html

De ellas, SibSp, Parch y Fare parecen ser columnas numéricas estándar sin valores perdidos. Cabin
tiene valores para sólo 204 de las 891 filas, e incluso entonces la mayoría de los valores son únicos,
así que por ahora dejaremos esta columna también. Embarked (Embarcado) parece ser una
columna categórica estándar con 3 valores únicos, al igual que PClass, excepto que hay dos
valores que faltan. Podemos rellenar fácilmente estos dos valores que faltan con el valor más
común, "S", que aparece 644 veces.

Mirando nuestras columnas numéricas, podemos ver una gran diferencia entre el rango de cada
una. SibSp tiene valores entre 0-8, Parch entre 0-6, y Fare está en una escala dramáticamente
diferente, con valores que van de 0-512. Para asegurarnos de que estos valores tienen la misma
ponderación en nuestro modelo, tendremos que reescalar los datos.

El reescalado simplemente estira o encoge los datos según sea necesario para que estén en la
misma escala, en nuestro caso entre 0 y 1.

III.2 Preparación, Selección e Ingeniería de las Características

En el diagrama anterior, las tres columnas tienen
valores mínimos y máximos diferentes antes del
reescalado.

Después de reescalar, los valores de cada
característica se han comprimido o estirado para que
todos estén en la misma escala - tienen el mismo
mínimo y máximo, y la relación entre cada punto
sigue siendo la misma en relación con otros puntos de
esa característica. Ahora puede ver fácilmente que los
datos representados en cada columna son idénticos.

Dentro de scikit-learn, la función (function)
preprocessing.minmax_scale() nos permite reescalar
rápida y fácilmente nuestros datos:

III.2 Preparación, Selección e Ingeniería de las Características

Datos antes de
reescalar

Datos después de
reescalar

http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.minmax_scale.html

Procesemos las columnas Embarked, SibSp, Parch y Fare en nuestros marcos de datos de train y
holdouts.

Instrucciones

• Para los marcos de datos de train y de holdout (retención):
• Utilice Series.fillna() method para sustituir cualquier valor que falte en la columna Embarked

por "S"
• Utilice nuestra función create_dummies() para crear columnas ficticias para la columna

Embarked
• Utilice minmax_scale() para reescalar las columnas SibSp, Parch y Fare, asignando los

resultados a las nuevas columnas SibSp_scaled, Parch_scaled y Fare_scaled
respectivamente

III.2 Preparación, Selección e Ingeniería de las Características

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.fillna.html

Soluciones

III.2 Preparación, Selección e Ingeniería de las Características

III.2.2 Determinación de las características más relevantes

Para seleccionar las características con mejor rendimiento, necesitamos una forma de medir
cuáles de nuestras características son relevantes para nuestro resultado, en este caso, la
supervivencia de cada pasajero. Una forma eficaz es entrenar un modelo de regresión logística
utilizando todas nuestras características y, a continuación, observar los coeficientes de cada
característica.

LogisticRegression class de scikit-learn tiene un atributo en el que se almacenan los coeficientes
después de ajustar el modelo, LogisticRegression.coef_. Primero tenemos que entrenar nuestro
modelo, después podemos acceder a este atributo.

III.2 Preparación, Selección e Ingeniería de las Características

http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html

El método coef() devuelve una matriz NumPy de coeficientes, en el mismo orden que las
características que se utilizaron para ajustar el modelo. Para facilitar su interpretación, podemos
convertir los coeficientes en una serie de pandas, añadiendo los nombres de las columnas como
índice:

Ahora ajustaremos un modelo y trazaremos los coeficientes de cada característica.

III.2 Preparación, Selección e Ingeniería de las Características

Instrucciones

• Instanciar un objeto LogisticRegression()
• Ajuste el objeto LogisticRegression utilizando las columnas de la lista de columnas del marco de

datos de entrenamiento (train) y la columna objetivo Survived
• Utilice el atributo coef_ para recuperar los coeficientes de las características y asigne los

resultados a los coefficients (coeficientes)
• Cree un objeto de serie utilizando los (coefficients)coeficientes, con los nombres de las

columnas de las características como índice y asígnelo a feature_importance
• Utilice el método Series.plot.barh() method para trazar la serie feature_importance

III.2 Preparación, Selección e Ingeniería de las Características

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.plot.barh.html

Soluciones

III.2 Preparación, Selección e Ingeniería de las Características

III.2.3 Entrenamiento de un modelo con características relevantes

El gráfico que generamos en la última pantalla mostraba un rango de valores positivos y
negativos. Que el valor sea positivo o negativo no es tan importante en este caso, en relación con
la magnitud del valor. Si lo piensas, esto tiene sentido. Una característica que indica con fuerza si
un pasajero murió es tan útil como una característica que indica con fuerza que un pasajero
sobrevivió, dado que son resultados mutuamente excluyentes.

Para facilitar la interpretación, modificaremos el gráfico para que muestre todos los valores
positivos, y hemos ordenado las barras por orden de tamaño:

III.2 Preparación, Selección e Ingeniería de las Características

Entrenaremos un nuevo modelo con las 8 mejores puntuaciones y comprobaremos nuestra
precisión utilizando la validación cruzada.

III.2 Preparación, Selección e Ingeniería de las Características

Instruciones

• Instanciar un objeto LogisticRegression()
• Utilice la función model_selection.cross_val_score() function y asigne el objeto devuelto a las

puntuaciones, utilizando
• Las columnas especificadas en columns y todas las filas del marco de datos de train
• Un parámetro cv de 10
• Calcule la media de las puntuaciones de validación cruzada y asigne los resultados a accuracy

(precisión)
• Utilice la función print() para mostrar la variable accuracy

Soluciones

III.2 Preparación, Selección e Ingeniería de las Características

http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_val_score.html#sklearn.model_selection.cross_val_score

III.2.4 Envío de nuestro modelo mejorado a Kaggle

La puntuación de validación cruzada del 81,48% es ligeramente superior a la del modelo que
creamos en la misión anterior, que tenía una puntuación del 80,2%.

Es de esperar que esta mejora se traduzca en datos no vistos anteriormente. Entrenemos un
modelo utilizando las columnas del paso anterior, hagamos algunas predicciones sobre los datos
retenidos y enviémoslo a Kaggle para su puntuación.

III.2 Preparación, Selección e Ingeniería de las Características

Instrucciones

• Instanciar un objeto LogisticRegression() y ajustarlo utilizando all_X y all_y
• Utilice el método predict() para realizar predicciones utilizando las mismas columnas del marco

de datos holdout, y asigne el resultado a holdout_predictions
• Cree un submission (envío) de marco de datos con dos columnas:

• PassengerId, con los valores de la columna PassengerId del marco de datos holdout
• Survived, con los valores de holdout_predictions

• Utilice el método DataFrame.to_csv para guardar el marco de datos de presentación en el
archivo submission_1.csv

III.2 Preparación, Selección e Ingeniería de las Características

Soluciones

III.2 Preparación, Selección e Ingeniería de las Características

III.2.5 Ingeniería de una nueva característica utilizando Binning

Puedes descargar el CSV del paso anterior aquí. Cuando lo envíes a Kaggle, verás que la
puntuación es del 77,0%, lo que en el momento de escribir este artículo equivale a subir unos 1.500
puestos en la tabla de clasificación (esto variará, ya que la tabla de clasificación siempre cambia).
Es sólo una pequeña mejora, pero vamos en la dirección correcta.

Gran parte de las ganancias de precisión en el aprendizaje automático provienen de la Ingeniería
de Características. La ingeniería de características es la práctica de crear nuevas características
a partir de los datos existentes.

Una forma común de diseñar una característica es utilizar una técnica llamada binning. El binning
consiste en tomar una característica continua, como la tarifa que un pasajero ha pagado por su
billete, y separarla en varios rangos (o "bins"), convirtiéndola en una variable categórica.

III.2 Preparación, Selección e Ingeniería de las Características

https://s3.amazonaws.com/dq-content/186/submission_1.csv

Esto puede ser útil cuando hay patrones en los
datos que no son lineales y usted está utilizando un
modelo lineal (como la regresión logística). En
realidad utilizamos el binning en la misión anterior
cuando tratamos la columna Age, aunque no
utilizamos el término.

Veamos los histogramas de la columna Fare para
los pasajeros que murieron y sobrevivieron, y
veamos si hay patrones que podamos utilizar al
crear nuestros bins.

Si observamos los valores, parece que podemos
separar la característica en cuatro franjas para
capturar algunos patrones de los datos:
• 0-12
• 12-50
• 50-100
• 100+

Al igual que en la misión anterior, podemos utilizar
la función pandas.cut() para crear nuestros bins.

III.2 Preparación, Selección e Ingeniería de las Características

Fr
ec

ue
nc

ia

Sobrevivient
e
Muerto
s

Instrucciones

• Utilizar la función process_age() como modelo, crear una función process_fare() que utilice el
método pandas cut() para crear bins para la columna Fare y asignar los resultados a una
nueva columna llamada Fare_categories
• Ya hemos tratado los valores que faltan en la columna Fare, así que no necesitará la línea

que utiliza fillna()
• Utilice la función process_fare() en los marcos de datos del train y de la holdout, creando las

cuatro "bins" o "franjas":
• 0-12, para valores entre 0 y 12
• 12-50, para valores entre 12 y 50
• 50-100, para valores entre 50 y 100
• 100+, para valores entre 100 y 1000

• Utilice la función create_dummies() que creamos anteriormente en la misión, tanto en los
marcos de datos de train como en los de holdout, para crear columnas ficticias basadas en
nuestros nuevos intervalos de tarifas

III.2 Preparación, Selección e Ingeniería de las Características

Soluciones

III.2 Preparación, Selección e Ingeniería de las Características

III.2.6 Características de ingeniería de las
columnas de texto

Otra forma de diseñar características es
extrayendo datos de las columnas de texto.
Anteriormente, decidimos que las columnas
Name y Cabin no eran útiles por sí mismas, pero
¿y si hay algún dato que podamos extraer?
Veamos una muestra aleatoria de filas de esas
dos columnas:

III.2 Preparación, Selección e Ingeniería de las Características

Aunque aisladamente el número de cabina de cada pasajero será razonablemente único para
cada uno, podemos ver que el formato de los números de cabina es una letra seguida de dos
números. Parece que la letra es representativa del tipo de cabina, lo que podría ser un dato útil
para nosotros. Podemos usar el accesorio Series.str accessor de pandas y luego subsumir el
primer carácter usando paréntesis:

III.2 Preparación, Selección e Ingeniería de las Características

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.str.html

Si nos fijamos en la columna de Name, en cada
uno de ellos hay un título como "señor" o
"señora", así como algunos títulos menos
comunes, como el de "condesa" de la última fila
de nuestra tabla anterior. Si dedicamos algún
tiempo a investigar los diferentes títulos,
podemos clasificarlos en seis tipos:
• Mr
• Mrs
• Master
• Miss
• Officer
• Royalty

Podemos utilizar el Series.str.extract method y
una regular expression para extraer el título de
cada nombre y luego utilizar el Series.map()
method y un diccionario predefinido para
simplificar los títulos.

III.2 Preparación, Selección e Ingeniería de las Características

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.str.extract.html
https://en.wikipedia.org/wiki/Regular_expression
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.map.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.map.html

Instrucciones

• Utilice extract(), map() y el diccionario de títles (titulos) para categorizar los títulos del marco de
datos holdout y asigne los resultados a una nueva columna Títle (Titulo)

• Para los marcos de datos de train y de holdout:
• Utilice el accesorio str() para extraer la primera letra de la columna Cabin y asigne el

resultado a una nueva columna Cabin_type
• Utilice el método fillna() para rellenar cualquier valor que falte en Cabin_type con "Unknown"

• Para las columnas recién creadas Title y Cabin_type, utilice create_dummies() para crear
columnas ficticias para los marcos de datos del train y de holdout

III.2 Preparación, Selección e Ingeniería de las Características

Soluciones

III.2 Preparación, Selección e Ingeniería de las Características

III.2.7 Búsqueda de características correlacionadas

Ahora tenemos 34 posibles columnas de características que podemos utilizar para entrenar
nuestro modelo. Una cosa que hay que tener en cuenta al empezar a añadir más características
es un concepto llamado colinealidad. La colinealidad ocurre cuando más de una característica
contiene datos que son similares.

El efecto de la colinealidad es que su modelo se sobreajustará: puede obtener grandes resultados
en su conjunto de datos de prueba, pero luego el modelo se desempeña peor en los datos no
vistos (como el conjunto de retención).

Una forma fácil de entender la colinealidad es con una simple variable binaria como la columna
Sex en nuestro conjunto de datos. Cada pasajero de nuestros datos está clasificado como male o
female, por lo que "no male" es exactamente lo mismo que "female".

III.2 Preparación, Selección e Ingeniería de las Características

Como resultado, cuando creamos nuestras dos
columnas ficticias a partir de la columna
categórica Sex, en realidad hemos creado dos
columnas con datos idénticos en ellas. Esto
ocurrirá siempre que creemos columnas
ficticias, y se llama la trampa de la variable
ficticia (dummy variable trap). La solución fácil
es elegir una columna para eliminarla cada vez
que cree columnas ficticias.

La colinealidad también puede ocurrir en otros
lugares. Una forma común de detectar la
colinealidad es trazar correlaciones entre cada
par de variables en un mapa de calor. Un
ejemplo de este estilo de gráfico es el siguiente:

III.2 Preparación, Selección e Ingeniería de las Características

http://www.algosome.com/articles/dummy-variable-trap-regression.html

Los cuadrados más oscuros, ya sea el rojo más oscuro o el azul más oscuro, indican pares de
columnas que tienen una mayor correlación y que pueden dar lugar a colinealidad. La forma más
fácil de producir este gráfico es utilizar el DataFrame.corr() method para producir una matriz de
correlación, y luego utilizar la seaborn.heatmap() function de la biblioteca Seaborn para trazar los
valores:

El ejemplo de gráfico de arriba fue producido usando un ejemplo de código de la documentación
de seaborn que produce un mapa de calor de correlación que es más fácil de interpretar que la
salida por defecto de heatmap(). Hemos creado una función que contiene ese código para
facilitarle el trazado de las correlaciones entre las características de nuestros datos.

III.2 Preparación, Selección e Ingeniería de las Características

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.corr.html
https://seaborn.pydata.org/generated/seaborn.heatmap.html
http://seaborn.pydata.org/examples/many_pairwise_correlations.html
http://seaborn.pydata.org/examples/many_pairwise_correlations.html

Instrucciones

Utilice la función plot_correlation_heatmap() para producir un heatmap (mapa de calor) para el
marco de datos de train, utilizando sólo las características de las columnas de la lista.

Soluciones

III.2 Preparación, Selección e Ingeniería de las Características

III.2.8 Selección final de características
mediante la RFECV

A continuación reproducimos el gráfico que
hemos creado en la pantalla anterior:

III.2 Preparación, Selección e Ingeniería de las
Características

Podemos ver que hay una alta correlación entre Sex_female/Sex_male y Title_Mr/Title_Mrs.
Eliminaremos las columnas Sex_female y Sex_male ya que los datos de los títulos pueden ser más
matizados.

Aparte de eso, deberíamos eliminar una de cada una de nuestras variables ficticias para reducir la
colinealidad en cada una. Eliminaremos:
• Pclass_2
• Age_categories_Teenager
• Fare_categories_12-50
• Title_Master
• Cabin_type_A

III.2 Preparación, Selección e Ingeniería de las Características

En un paso anterior, utilizamos manualmente los coeficientes logit para seleccionar las características más
relevantes. Un método alternativo es utilizar una de las clases de selección de características incorporadas en
scikit-learn. Utilizaremos la feature_selection.RFECV class que realiza la eliminación recursiva de
características con validación cruzada.

La clase RFECV comienza entrenando un modelo utilizando todas sus características y lo puntúa utilizando la
validación cruzada. A continuación, utiliza los coeficientes logit para eliminar la característica menos
importante, y entrena y puntúa un nuevo modelo. Al final, la clase mira todas las puntuaciones y selecciona el
conjunto de características que han obtenido la mayor puntuación.

Al igual que la clase LogisticRegression, la RFECV debe instanciarse primero y luego ajustarse. El primer
parámetro al crear el objeto RFECV debe ser un estimador, y necesitamos utilizar el parámetro cv para
especificar el número de pliegues para la validación cruzada.

III.2 Preparación, Selección e Ingeniería de las Características

http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html

Una vez ajustado el objeto RFECV, podemos utilizar el atributo RFECV.support para acceder a una
máscara booleana de valores True y False que podemos utilizar para generar una lista de
columnas optimizadas:

Instrucciones

• Instanciar un objeto LogisticRegression(), lr
• Instanciar un objeto selector RFECV() utilizando el objeto lr recién creado y cv=10 como

parámetros
• Utilice el método fit() para ajustar el selector utilizando all_X y all_y
• Utilice el selector de atributos de support (soporte) para subconjuntar all_X.columns, y asigne el

resultado a optimized_columns

Debido al cálculo que implica este ejercicio, la ejecución del código puede llevar más tiempo que
otras pantallas.

III.2 Preparación, Selección e Ingeniería de las Características

Soluciones

III.2 Preparación, Selección e Ingeniería de las Características

III.2.9 Entrenamiento de un modelo con nuestras columnas optimizadas

El selector RFECV() sólo devuelve cuatro columnas:

Vamos a entrenar un modelo mediante validación cruzada utilizando estas columnas y comprobar la
puntuación.

Instrucciones

• Instanciar el objeto LogisticRegression()
• Utilice la función model_selection.cross_val_score() function y asigne los resultados a las

puntuaciones, utilizando
• all_X y all_y

• Un parámetro cv de 10
• Calcule la media de las puntuaciones de validación cruzada y asigne los resultados a accuracy (precisión)

III.2 Preparación, Selección e Ingeniería de las Características

http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_val_score.html#sklearn.model_selection.cross_val_score

Soluciones

III.2 Preparación, Selección e Ingeniería de las Características

III.2.10 Envío de nuestro modelo a Kaggle

Este modelo de cuatro características obtiene una puntuación del 82,3%, una modesta mejora en
comparación con el 81,5% de nuestro modelo anterior. Vamos a entrenar estas columnas en el
conjunto de retención, guardar un archivo de presentación y ver qué puntuación obtenemos de
Kaggle.

Instrucciones
• Instanciar un objeto LogisticRegression() y ajustarlo usando all_X y all_y
• Utiliza el método predict() para hacer predicciones utilizando las mismas columnas en el marco

de datos holdout, y asigna el resultado a holdout_predictions
• Cree un submission (envío)de marco de datos con dos columnas:
• PassengerId, con los valores de la columna PassengerId del marco de datos holdout
• Survived, con los valores de holdout_predictions
• Utilice el método DataFrame.to_csv para guardar el marco de datos de submission en el

archivo submission_2.csv

III.2 Preparación, Selección e Ingeniería de las Características

Soluciones

Puedes descargar el archivo de presentación que acabamos de crear y enviarlo a Kaggle. La
puntuación que obtiene este envío es del 78,0%, lo que equivale a un salto de aproximadamente
1.000 puestos (de nuevo, esto variará, ya que los envíos se realizan constantemente a la tabla de
clasificación).

III.2 Preparación, Selección e Ingeniería de las Características

Mediante la preparación, ingeniería y selección de
características, hemos aumentado nuestra precisión en
un-2,4%. Cuando se trabaja en las competiciones de
Kaggle, hay que dedicar mucho tiempo a experimentar
con las características, sobre todo con la ingeniería de
características. Aquí hay algunas ideas que puedes usar
para trabajar con características para esta competición:
• Utilizar SibSp y Parch para explorar el total de parientes

a bordo
• Crear combinaciones de varias columnas, por ejemplo

Pclass + Sex
• Vea si puede extraer datos útiles de la columna Ticket
• Prueba diferentes combinaciones de características

para ver si puedes identificar las características que se
ajustan menos que otras

En la próxima misión de este curso, veremos cómo
seleccionar y optimizar diferentes modelos para mejorar
nuestra puntuación.

III.2 Preparación, Selección e Ingeniería de las Características

III.3 Selección y Ajuste del Modelo

III.3.1 Selección del modelo

En la misión anterior, trabajamos para optimizar nuestras predicciones creando y seleccionando
las características utilizadas para entrenar nuestro modelo. La otra mitad del rompecabezas de la
optimización consiste en optimizar el modelo en sí, o más concretamente, el algoritmo utilizado
para entrenar nuestro modelo.

Hasta ahora, hemos utilizado el algoritmo de regresión logística para entrenar nuestros modelos,
pero hay cientos de algoritmos de aprendizaje automático diferentes entre los que podemos
elegir. Cada algoritmo tiene diferentes puntos fuertes y débiles, por lo que tenemos que
seleccionar el algoritmo que mejor funcione con nuestros datos específicos, en este caso nuestra
competición de Kaggle.

El proceso de selección del algoritmo que ofrece las mejores predicciones para sus datos se
denomina selección del modelo.

En esta misión, vamos a trabajar con dos nuevos algoritmos: k- vecinos más cercanos y bosques
aleatorios.

Antes de empezar, tendremos que importar los datos. Para ahorrar tiempo, hemos guardado las
características que creamos en la misión anterior como archivos CSV, train_modified.csv y
holdout_modified.csv

Instrucciones

• Importe train_modified.csv en un grupo de datos pandas y asigne el resultado a train
• Importe holdout_modified.csv en un grupo de datos pandas y asigne el resultado a holdout

III.3 Selección y Ajuste del Modelo

Soluciones

III.3 Selección y Ajuste del Modelo

III.3.2 Entrenamiento de un modelo de referencia

Vamos a entrenar nuestros modelos utilizando todas las columnas del marco de datos de
entrenamiento. Esto causará una pequeña cantidad de sobreajuste debido a la colinealidad
(como discutimos en la misión anterior), pero tener más características nos permitirá comparar
más a fondo los algoritmos.

Para tener algo con lo que comparar, vamos a entrenar un modelo de regresión logística como en
las dos misiones anteriores. Utilizaremos la validación cruzada para obtener una puntuación de
referencia.

III.3 Selección y Ajuste del Modelo

Instrucciones

• Instanciar un linear_model.LogisticRegression class
• Utilice el model_selection.cross_val_score() function para entrenar y probar un modelo

asignando los resultados a score, usando:
• El objeto LogisticRegression que acabas de crear
• all_X y all_y como parámetros X e y
• 10 folds (pliegues)

• Calcule la media de los scores (puntuaciones) y asigne el resultado a accuracy_lr

Soluciones

III.3 Selección y Ajuste del Modelo

http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_val_score.html

III.3.3 Entrenamiento de un modelo mediante K-
Nearest Neighbors

El modelo de referencia de regresión logística de
la pantalla anterior obtuvo el 82,5%.

El algoritmo de regresión logística funciona
calculando las relaciones lineales entre las
características y la variable objetivo y
utilizándolas para hacer predicciones. Veamos
un algoritmo que hace predicciones utilizando
un método diferente.

El algoritmo de k-próximos encuentra las
observaciones de nuestro conjunto de
entrenamiento más similares a la observación
de nuestro conjunto de prueba, y utiliza el
resultado medio de esas observaciones
"vecinas" para hacer una predicción. La "k" es el
número de observaciones vecinas utilizadas
para hacer la predicción.

III.3 Selección y Ajuste del Modelo

Los gráficos siguientes muestran tres modelos simples de vecinos más cercanos donde hay dos
características en cada eje y dos resultados, rojo y verde:

• En el primer gráfico, el valor de k es 1. El punto verde es, por tanto, el vecino más cercano al punto
gris, lo que hace que la predicción sea verde

• En el segundo gráfico, el valor de k es 3. Se utilizan los 3 vecinos más cercanos a nuestro punto
gris (2 rojos frente a 1 verde), lo que hace que la predicción sea roja

• En el tercer gráfico, el valor de k es 5. Se utilizan los 5 vecinos más cercanos a nuestro punto gris
(3 rojos frente a 2 verdes), lo que hace que la predicción sea roja

III.3 Selección y Ajuste del Modelo

Característi
ca uno

Característica dos Característica dos Característica dos

Característi
ca uno

Característi
ca uno

Si quieres aprender más sobre el algoritmo k-nearest neighbors, puede que te guste nuestra
misión gratuita Introduction to K-Nearest Neighbors.

Al igual que para la regresión logística, scikit-learn tiene una clase que facilita el uso de los vecinos
más cercanos para hacer predicciones, neighbors.KNeighborsClassifier.

El uso de Scikit-learn del diseño orientado a objetos hace que sea fácil sustituir un modelo por otro.
La sintaxis para instanciar un KNeighborsClassifier es muy similar a la que utilizamos para la
regresión logística.

El argumento opcional n_vecinos establece el valor de k cuando se hacen las predicciones. El valor
por defecto de n_vecinos es 5, pero vamos a empezar construyendo un modelo simple que utiliza
el vecino más cercano para hacer nuestras predicciones.

III.3 Selección y Ajuste del Modelo

https://www.dataquest.io/m/139/introduction-to-k-nearest-neighbors/
http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html

Instrucciones

• Instanciar un objeto neighbors.KNeighborsClassifier, estableciendo el argumento n_neighbors
en 1

• Utilice la función model_selection.cross_val_score() para entrenar y probar un modelo
asignando el resultado a las scores (puntuaciones), utilizando:
• El objeto KNeighborsClassifier que acaba de crear
• all_X y all_y como los parámetros X e y
• 10 folds(pliegues)

• Calcula la media de las scores(puntuaciones) y asigna el resultado a accuracy_knn

Soluciones

III.3 Selección y Ajuste del Modelo

III.3.4 Exploración de diferentes valores K

The k-nearest neighbors model we trained in the
previous screen had an accuracy score of 78.3%,
worse than our baseline score of 82.5%.

Además de la selección pura del modelo,
podemos variar los ajustes de cada modelo,
por ejemplo, el valor de k en nuestro modelo de
k vecinos más cercanos. Esto se llama
optimización de hiperparámetros.

Podemos utilizar un bucle y la clase range() de
Python (range() class) para iterar a través de
diferentes valores de k y calcular la puntuación
de precisión para cada valor diferente. Sólo
querremos probar los valores impares de k
para evitar los empates, en los que los
resultados de "sobrevivido" y "muerto" tendrían
el mismo número de vecinos.

III.3 Selección y Ajuste del Modelo

https://docs.python.org/3/library/stdtypes.html#range

Esta es la sintaxis que utilizaríamos para obtener los valores impares entre 1-7 de range():

Obsérvese que utilizamos los argumentos (1,8,2) para obtener valores entre 1 y 7, ya que el objeto
range() creado contiene números hasta el 8, pero sin incluirlo.

Utilicemos esta técnica para calcular la precisión de nuestro modelo para valores de k entre 1 y 49,
almacenando los resultados en un diccionario.

Para facilitar la comprensión de los resultados, terminaremos trazando las puntuaciones. Hemos
proporcionado una función de ayuda, plot_dict() que puede utilizar para trazar fácilmente el
diccionario.

III.3 Selección y Ajuste del Modelo

Instrucciones

• Utiliza un bucle for y la clase range para iterar sobre los valores impares de k desde 1-49, y en
cada iteración:
• Instanciar un objeto KNeighborsClassifier con el valor de k para el argumento n_neighbors
• Utilizar cross_val_score para crear una lista de puntuaciones utilizando el objeto

KNeighborsClassifier recién creado, utilizando all_X, all_y, y cv=10 como argumentos
• Calcular la media de la lista de puntuaciones
• Añada la media de las puntuaciones al diccionario knn_scores, utilizando k como clave

• Utilice la función de ayuda plot_dict() para trazar el diccionario knn_scores

III.3 Selección y Ajuste del Modelo

III.3 Selección y Ajuste del Modelo

Mirando nuestro gráfico de la pantalla anterior
podemos ver que un valor k de 19 nos dio nuestra
mejor puntuación, y comprobando el diccionario
knn_scores podemos ver que la puntuación fue del
82,4%, idéntica a nuestra línea de base (si no
redondeáramos los números veríamos que en
realidad es un 0,01% menos precisa).

La técnica que acabamos de utilizar se llama
búsqueda en cuadrícula: entrenamos una serie de
modelos a través de una "cuadrícula" de valores y
luego buscamos el modelo que nos dio la mayor
precisión.

Scikit-learn tiene una clase para realizar la búsqueda
en cuadrícula, model_selection.GridSearchCV(). El
"CV" en el nombre indica que estamos realizando
tanto la búsqueda en la cuadrícula como la
validación cruzada al mismo tiempo.

III.3.5 Automatización de la optimización de hiperparámetros con la búsqueda en
cuadrícula

III.3 Selección y Ajuste del Modelo

http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html

Creando un diccionario de parámetros y posibles valores y pasándolo al objeto GridSearchCV se
puede automatizar el proceso. Este es el aspecto del código de la pantalla anterior, cuando se
implementa utilizando la clase GridSearchCV.

La ejecución de este código producirá el siguiente resultado:

III.3 Selección y Ajuste del Modelo

Nuestro último paso es imprimir los atributos
GridSearchCV.best_params_ y
GridSearchCV.best_score_ para recuperar los
parámetros del modelo de mejor rendimiento y la
puntuación que ha obtenido.

También podemos utilizar GridSearchCV para
probar combinaciones de diferentes
hiperparámetros. Digamos que queremos probar
valores de "ball_tree", "kd_tree" y "brute" para el
parámetro del algoritmo y valores de 1, 3 y 5 para
el parámetro del algoritmo
n_neighbors. GridSearchCV entrenaría y probaría
9 modelos (3 para el primer hiperparámetro y 3
para el segundo), como se muestra en el siguiente
diagrama.

III.3 Selección y Ajuste del Modelo

Utilicemos GridSearchCV para acelerar la búsqueda de los parámetros más eficaces para nuestro
modelo, probando 40 combinaciones de tres hiperparámetros diferentes.

Hemos elegido los hiperparámetros específicos consultando la documentación de la clase
KNeighborsClassifier.

Instrucciones

• Instanciar un objeto KNeighborsClassifier
• Instanciar un objeto GridSearchCV, utilizando:

• El objeto KNeighborsClassifier que acaba de crear como primer argumento (sin nombre)
• El diccionario de hiperparámetros para el param_grid
• Un cv de 10

• Ajuste el objeto GridSearchCV utilizando all_X y all_y
• Asignar los parámetros del modelo con mejor rendimiento a best_params
• Asignar la puntuación del modelo más eficaz a best_score

III.3 Selección y Ajuste del Modelo

Soluciones

III.3 Selección y Ajuste del Modelo

III.3.6 Envío de predicciones de K-Nearest Neighbors a Kaggle

La puntuación de la validación cruzada para el modelo de mejor rendimiento fue del 82,9%, mejor
que nuestro modelo de referencia.

III.3 Selección y Ajuste del Modelo

Podemos utilizar el atributo GridSearchCV.best_estimator_ para recuperar un modelo entrenado
con los hiperparámetros de mejor rendimiento. Este código:

Is equivalent to this code Es equivalente a este código donde especificamos manualmente los
hiperparámetros y entrenamos el modelo:

Utilicemos ese modelo para hacer predicciones en el conjunto de los retenidos y enviemos esas
predicciones a Kaggle para ver si hemos mejorado en general.

III.3 Selección y Ajuste del Modelo

Instrucciones
• Hacer predicciones sobre los datos de holdout_no_id utilizando el modelo best_knn, y asignar

el resultado a holdout_predictions
• Crear un submission (envío) de dataframe con dos columnas:

• PassengerId, con los valores de la columna PassengerId del marco de datos holdout
• Survived, con los valores de holdout_predictions

• Utilice el DataFrame.to_csv method para guardar el marco de datos de submission en el
archivo submission_1.csv

III.3 Selección y Ajuste del Modelo

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_csv.html

Soluciones

III.3 Selección y Ajuste del Modelo

III.3.7 Introducción a los bosques aleatorios

Puedes descargar el archivo de envío de la
pantalla anterior aquí.

Cuando lo envíes a Kaggle, verás que la
puntuación es del 75,6%, menos que nuestra
mejor presentación del 78,0%. Si bien nuestro
modelo podría estar sobreajustado debido a la
inclusión de todas las columnas, también
parece que los vecinos más cercanos no son la
mejor opción de algoritmo.

III.3 Selección y Ajuste del Modelo

https://s3.amazonaws.com/dq-content/187/submission_1.csv

Vamos a probar otro algoritmo llamado
bosques aleatorios. Los bosques aleatorios son
un tipo específico de algoritmo de árbol de
decisión. Es probable que hayas visto antes
árboles de decisión como parte de diagramas
de flujo o infografías. Digamos que queremos
construir un árbol de decisión que nos ayude a
categorizar un objeto como 'hotdog' o 'no
hotdog', podríamos construir un árbol de
decisión como el siguiente:

III.3 Selección y Ajuste del Modelo

https://www.youtube.com/watch?v=ACmydtFDTGs
https://www.youtube.com/watch?v=ACmydtFDTGs

Los algoritmos del árbol de decisión intentan construir el árbol de decisión más efectivo baso en los datos de
entrenamiento, y entonces usa ese árbol para hacer futuras predicciones. Si quiere aprender sobre el árbol de
decisión y bosques aleatorios en detalle, debería revisar el curso de árbol de decisión.

Scikit-learn contiene una clase para clasificar usando el algoritmo de bosque
aleatorio, ensemble.RandomForestClassifier. Asi es como se ajusta el modelo y se hacen predicciones usando
la clase RandomForestClassifier:

Porque el algoritmo incluye randomización, temenos que fijar el parametron random_state para asegurarse
de que los resultados sean reproducibles.

Usemos un objeto RandomForestClassifier con cross_val_score() como lo hicimos anteriormente para ver
como el algoritmo funciona con los hiperparámetros predeterminados.

III.3 Selección y Ajuste del Modelo

https://www.dataquest.io/course/decision-trees
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

Instrucciones

• Instancie un objeto RandomForestClassifier , fijando el parametro random_state a 1
• Use la función cross_val_score() para generar un grupo de puntajes y asignar el resutlado a

scores, usando:
• El objeto RandomForestClassifier que creo como estimador
• all_X y all_y para los datos de entrenamiento y prueba
• Un valor cv de10

• Calcule la media de scores y asigne el resutlado a accuracy_rf

Soluciones

III.3 Selección y Ajuste del Modelo

III.3.8 Ajuste de nuestro modelo de bosques aleatorios con GridSearch

Utilizando la configuración por defecto, nuestro modelo de bosques aleatorios obtuvo una
puntuación de validación cruzada del 82,0%.

III.3 Selección y Ajuste del Modelo

Al igual que hicimos con el modelo de k- vecinos más cercanos, podemos utilizar GridSearchCV
para probar una variedad de hiperparámetros para encontrar el modelo de mejor rendimiento.

La mejor manera de ver una lista de hiperparámetros disponibles es consultando la
documentación del clasificador, en este caso, the documentation for RandomForestClassifier.
Utilicemos la búsqueda en cuadrícula para probar las combinaciones de los siguientes
hiperparámetros:
• criterion: "entropy" o "gini”
• max_depth: 5 o 10
• max_features: "log2" o "sqrt”
• min_samples_leaf: 1 o 5
• min_samples_split: 3 o 5
• n_estimators: 6 o 9

III.3 Selección y Ajuste del Modelo

http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

Instrucciones

• Instanciar un objeto RandomForestClassifier, poniendo el parámetro random_state a 1
• Instanciar un objeto GridSearchCV, utilizando:

• El objeto RandomForestClassifier que acaba de crear como primer argumento (sin nombre)
• Un diccionario de hiperparámetros que coincida con la lista anterior para el argumento

param_grid
• Un cv de 10

• Ajuste el objeto GridSearchCV utilizando all_X o all_y
• Asignar los parámetros del modelo con mejor rendimiento a best_params
• Asignar la puntuación del modelo más eficaz a best_score

III.3 Selección y Ajuste del Modelo

Soluciones

III.3 Selección y Ajuste del Modelo

III.3.9 Envío de predicciones del bosque aleatorio a Kaggle

El puntaje de la validación cruzada para el modelo de mejor desempeño fue 83.8%, haciendola la
mejor puntuación de validación cruzada que hemos obtenido en esta mission.

III.3 Selección y Ajuste del Modelo

¡Entrenémoslo con los datos de reserva y creemos un archivo de envío para ver cómo se
desempeña en la tabla de clasificación de Kaggle!

Instrucciones

• Asignar a best_rf el modelo de mejor rendimiento de la parrilla (grid) de objetos GridSearchCV
• Realizar predicciones sobre los datos de holdout_no_id utilizando el modelo best_rf, y asignar el

resultado a holdout_predictions
• Crear un envío (submission) de dataframe con dos columnas:

• PassengerId, con los valores de la columna PassengerId del dataframe holdout
• Survived, con los valores de holdout_predictions

• Utilice el DataFrame.to_csv method para guardar el marco de datos de presentación
(submission) en el archivo submission_2.csv

III.3 Selección y Ajuste del Modelo

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_csv.html

Soluciones

III.3 Selección y Ajuste del Modelo

III.3.10 Introducción a los bosques aleatorios (Random Forests)

El archivo de presentación que creamos en el paso anterior está disponible.

Si lo envía a Kaggle, consigue una puntuación del 77.1%, considerablemente mejor que nuestra
puntuación de k-nearest neighbors del 75.6% y muy cercana (2 predicciones incorrectas) a
nuestra mejor puntuación de la misión anterior del 78.0%.

III.3 Selección y Ajuste del Modelo

Combinando nuestras estrategias de selección
de características, ingeniería de características,
selección de modelos y ajuste de modelos,
podremos seguir mejorando nuestra
puntuación.

La siguiente y última misión de este curso es un
proyecto guiado, en el que te enseñaremos a
combinar todo lo que has aprendido en un flujo
de trabajo de Kaggle de la vida real, y a seguir
mejorando tu puntuación.

III.3 Selección y Ajuste del Modelo

III.4 Proyecto Guiado: Creación de un Flujo de Trabajo Kaggle

III.4.1 Presentación de los flujos de trabajo de la ciencia de los datos

Hasta ahora en este curso, has estado aprendiendo sobre las competiciones de Kaggle usando
misiones de Dataquest. Las misiones están muy estructuradas y tu trabajo es revisado en cada
paso del camino

Los proyectos guiados, por otro lado, son menos estructurados y se centran más en la exploración.
Los proyectos guiados te ayudan a sintetizar los conceptos aprendidos durante las misiones y a
practicar lo que has aprendido.

Los proyectos guiados son un puente entre el aprendizaje mediante las misiones de Dataquest y la
aplicación de los conocimientos en tu propio ordenador, y tus respuestas no se comprueban como
en las misiones normales, aunque puedes acceder a un cuaderno de soluciones utilizando la parte
superior de la interfaz.

Trabajar con proyectos guiados es una gran oportunidad para practicar algunas de las
habilidades adicionales que necesitarás para hacer ciencia de datos por ti mismo, incluyendo la
práctica de la depuración utilizando todas las herramientas a tu disposición, incluyendo la
búsqueda de respuestas en Google, visitando Stack Overflow y consultando la documentación de
los módulos que estás utilizando.

Este proyecto guiado utiliza el cuaderno Jupyter, una aplicación web que permite combinar texto
y código dentro de un mismo archivo, y que es una de las formas más populares de explorar e
iterar cuando se trabaja con datos. El cuaderno Jupyter te permite compartir fácilmente tu
trabajo, y hace que la exploración de datos sea mucho más fácil.

Si no estás familiarizado con el cuaderno Jupyter, te recomendamos que completes nuestro
proyecto guiado sobre el uso del cuaderno Jupyter para familiarizarte.

III.4 Proyecto Guiado: Creación de un Flujo de Trabajo Kaggle

https://stackoverflow.com/
http://jupyter.org/
https://www.dataquest.io/m/207/guided-project-using-jupyter-notebook

En este proyecto guiado, vamos a reunir todo lo que hemos aprendido en este curso y crear un
flujo de trabajo de ciencia de datos.

La ciencia de los datos, y en particular el aprendizaje automático, contienen muchas dimensiones
de complejidad en comparación con el desarrollo de software estándar. En el desarrollo de
software estándar, el código que no funciona como se espera puede ser causado por una serie de
factores a lo largo de dos dimensiones:
• Errores en la implementación
• Diseño del algoritmo

Los problemas de aprendizaje automático tienen muchas más dimensiones:
• Errores en la implementación
• Diseño del algoritmo
• Problemas con el modelo
• Calidad de los datos

III.4 Proyecto Guiado: Creación de un Flujo de Trabajo Kaggle

El resultado es que hay un número exponencialmente mayor de lugares en los que el aprendizaje
automático puede fallar.

III.4 Proyecto Guiado: Creación de un Flujo de Trabajo Kaggle

Desarrollo de
Software

Aprendizaje
Automático

Este concepto se muestra en el diagrama anterior-tomado del excelente post, ¿Por qué es "difícil"
el aprendizaje automático? El punto verde es una solución "correcta", mientras que los puntos
rojos son soluciones incorrectas. En esta ilustración sólo hay un pequeño número de
combinaciones incorrectas para la ingeniería de software, pero en el aprendizaje automático esto
se vuelve exponencialmente mayor.

Al definir un flujo de trabajo para ti mismo, puedes darte un marco con el que hacer que la
iteración de ideas sea más rápida y fácil, permitiéndote trabajar más eficientemente.

En esta misión, vamos a explorar un flujo de trabajo para hacer más fácil competir en el concurso
Titanic de Kaggle, utilizando una canalización de funciones para reducir el número de dimensiones
en las que hay que centrarse.

Para empezar, leeremos los archivos originales train.csv y test.csv de Kaggle.

III.4 Proyecto Guiado: Creación de un Flujo de Trabajo Kaggle

http://ai.stanford.edu/~zayd/why-is-machine-learning-hard.html
http://ai.stanford.edu/~zayd/why-is-machine-learning-hard.html

Instrucciones

• Importar la biblioteca de pandas
• Utilice pandas para importar el archivo train.csv como train
• Utilice pandas para importar el archivo test.csv como holdout
• Mostrar las primeras líneas del marco de test (datos de prueba)

III.4 Proyecto Guiado: Creación de un Flujo de Trabajo Kaggle

III.4.2 Preprocesamiento de datos

Una de las muchas ventajas de utilizar Jupyter es que (por defecto) utiliza el núcleo de Ipython
(IPython kernel) para ejecutar el código. Esto te da todos los beneficios de IPython, incluyendo la
finalización del código y los comandos "mágicos". (Si quieres leer más sobre el funcionamiento
interno de Jupyter y cómo puede ayudarte a trabajar de forma más eficiente, puedes consultar
nuestra entrada del blog Jupyter Notebook Tips, Tricks and Shortcuts.

Podemos utilizar uno de esos comandos mágicos, the %load command, para cargar un archivo
externo. El comando %load copiará el contenido del archivo en la celda actual del cuaderno. La
sintaxis es sencilla:

III.4 Proyecto Guiado: Creación de un Flujo de Trabajo Kaggle

http://ipython.readthedocs.io/en/stable/
https://www.dataquest.io/blog/jupyter-notebook-tips-tricks-shortcuts/
http://ipython.readthedocs.io/en/stable/interactive/magics.html#magic-load

Para ilustrar, digamos que tenemos un archivo llamado test.py con la siguiente línea de código:

Para utilizar la carga, simplemente escribimos lo siguiente en una celda de Jupyter:

Si ejecutamos la celda una vez más, el código se ejecutará, dándonos la salida Esto es test.py.

Hemos creado un archivo, functions.py que contiene versiones de las funciones que creamos en
las primeras misiones de este curso, lo que te ahorrará volver a construir esas funciones desde
cero.

Vamos a importar ese archivo y a preprocesar nuestros datos de Kaggle.

III.4 Proyecto Guiado: Creación de un Flujo de Trabajo Kaggle

Instrucciones

• Utiliza el comando mágico %load para cargar el contenido de functions.py en una celda del bloc
de notas y lee las funciones que has importado

• Crea una nueva función que:
• Acepte un parámetro de marco de datos
• Aplica las funciones process_missing(), process_age(), process_fare(), process_titles() y

process_cabin() al dataframe
• Aplica la función create_dummies() a las columnas "Age_categories", "Fare_categories",

"Title" y "Sex".
• Devuelve el marco de datos procesado

• Aplica la función recién creada a los marcos de datos de train y de los holdout

III.4 Proyecto Guiado: Creación de un Flujo de Trabajo Kaggle

III.4.3 Exploración de los datos

En las tres primeras misiones de este curso,
hemos realizado diversas actividades, en su
mayoría aisladas: Exploración de los datos,
creación de características, selección de
características, selección y ajuste de diferentes
modelos.

El flujo de trabajo de Kaggle que vamos a
construir combinará todo esto en un proceso.

III.4 Proyecto Guiado: Creación de un Flujo de Trabajo Kaggle

Exploración de
Datos

Ingeniería de
Característica

s

Selección de
Modelos/Ajust

e

Selección de
Característica

s

Enviar a
Kaggel

• Exploración de datos, para encontrar patrones en los datos
• Ingeniería de características, para crear nuevas características a partir de esos patrones o a

través de la pura experimentación
• Selección de características, para seleccionar el mejor subconjunto de nuestro conjunto actual

de características
• Selección/ajuste del modelo, para entrenar una serie de modelos con diferentes

hiperparámetros hasta encontrar el que mejor funcione

Podemos seguir repitiendo este ciclo mientras trabajamos para optimizar nuestras predicciones. Al
final de cualquier ciclo que deseemos, también podemos utilizar nuestro modelo para hacer
predicciones en el conjunto de espera y luego enviarlo a Kaggle para obtener una puntuación en
la tabla de clasificación.

Mientras que los dos primeros pasos de nuestro flujo de trabajo son relativamente libres, más
adelante en este proyecto crearemos algunas funciones que ayudarán a automatizar la
complejidad de los dos últimos pasos para que podamos avanzar más rápido.

III.4 Proyecto Guiado: Creación de un Flujo de Trabajo Kaggle

Por ahora, vamos a practicar la primera etapa, la exploración de los datos. Vamos a examinar las
dos columnas que contienen información sobre los miembros de la familia que cada pasajero
llevaba a bordo: SibSp y Parch.

Si necesitas ayuda con las técnicas de exploración y visualización de datos, quizá quieras
consultar nuestros cursos de Análisis de Datos con Pandas y Visualización Exploratoria de Datos.

III.4 Proyecto Guiado: Creación de un Flujo de Trabajo Kaggle

https://www.dataquest.io/course/data-analysis-intermediate
https://www.dataquest.io/course/exploratory-data-visualization

Instrucciones

• Revisa el diccionario de datos y las notas de las variables de la competición Titanic en la web de
Kaggle para familiarizarte con las columnas SibSp y Parch

• Usa pandas y matplotlib para explorar esas dos columnas. Puede que te guste probar:
• Inspeccionar el tipo de las columnas
• Usar histogramas para ver la distribución de los valores en las columnas
• Usar tablas dinámicas para ver la tasa de supervivencia para diferentes valores de las

columnas
• Encontrar una forma de combinar las columnas y observar la distribución resultante de los

valores y la tasa de supervivencia
• Escribir una celda markdown explicando tus conclusiones

III.4 Proyecto Guiado: Creación de un Flujo de Trabajo Kaggle

http://pandas.pydata.org/pandas-docs/stable/
https://matplotlib.org/api/pyplot_summary.html

III.4.4 Ingeniería de nuevas características

Debería haber descubierto en el paso anterior que, combinando los valores de SibSp y Parch en
una sola columna, sólo sobrevivieron el 30% de los pasajeros que no tenían familiares a bordo.

Si no ha llegado a esta conclusión, puede utilizar el segmento de código siguiente para
comprobarlo por sí mismo:

III.4 Proyecto Guiado: Creación de un Flujo de Trabajo Kaggle

En base a esto, podemos tener una idea para una nueva característica – estaba el pasajero solo.
Esta será una columna binaria que contiene el valor:
• 1 si el pasajero no tiene familiares a bordo
• 0 si el pasajero tiene uno o más miembros de la familia a bordo

Continuemos y creemos esta característica.

Instrucciones

• Cree una función que:
• Acepte un dataframe como entrada
• Agregue una nueva columna, isalone, que tenga un valor de 0 si el pasajero tiene 1 o más

familiars abordo, y 1 si el pasajero no tiene familiars abordo.
• Regrese el nuevo dataframe

• Aplique la nueva función creada a los dataframes train y holdout

III.4 Proyecto Guiado: Creación de un Flujo de Trabajo Kaggle

III.4.5 Selección de las características más eficaces

El siguiente paso en nuestro flujo de trabajo es la selección de características. En la misión de
Preparación, selección e Ingeniería de las Características, utilizamos la clase
feature_selection.RFECV class de scikit-learn para automatizar la selección de las características
de mejor rendimiento mediante la eliminación recursiva de características.

Para acelerar nuestro flujo de trabajo en Kaggle, podemos crear una función que realice este paso
por nosotros, lo que significará que podemos realizar la selección de características llamando a
una función autónoma y centrar nuestros esfuerzos en la parte más creativa: explorar los datos e
ingeniar nuevas características.

III.4 Proyecto Guiado: Creación de un Flujo de Trabajo Kaggle

https://www.dataquest.io/m/186/feature-preparation-selection-and-engineering
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html

Tal vez recuerde que el primer parámetro al instanciar un objeto RFECV() es un estimador. En su
momento utilizamos un estimador de Regresión Logística, pero desde entonces hemos descubierto
en la misión de Selección y Ajuste de Modelos que los Bosques Aleatorios parecen ser un mejor
algoritmo para esta competición de Kaggle.

Vamos a escribir una función que:
• Acepte un marco de datos como entrada
• Realiza la preparación de los datos para el aprendizaje automático
• Utiliza la eliminación recursiva de características y el algoritmo de bosques aleatorios para

encontrar el conjunto de características de mejor rendimiento

III.4 Proyecto Guiado: Creación de un Flujo de Trabajo Kaggle

https://www.dataquest.io/m/187/model-selection-and-tuning

Instrucciones

• Importar feature_selection.RFECV y ensemble.RandomForestClassifier
• Crear una función, select_features(), que:

• Acepte un marco de datos como entrada
• Elimina cualquier columna no numérica o que contenga valores nulos
• Crea las variables all_X y all_y, asegurándose de que all_X no contiene las columnas

PassengerId o Survived
• Utiliza feature_selection.RFECV y ensemble.RandomForestClassifier para realizar la

eliminación recursiva de características utilizando
• all_X y all_y
• Un estado aleatorio de 1
• Validación cruzada de 10 veces

• Imprime una lista de las mejores columnas de la eliminación recursiva de características
• Devuelve una lista de las mejores columnas de la eliminación recursiva de características

• Ejecuta la función recién creada utilizando el marco de datos de entrenamiento (train) como
entrada y asigna el resultado a una variable

III.4 Proyecto Guiado: Creación de un Flujo de Trabajo Kaggle

https://app.dataquest.io/m/188/guided-project%3A-creating-a-kaggle-workflow/5/scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html
https://app.dataquest.io/m/188/guided-project%3A-creating-a-kaggle-workflow/5/scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

III.4.6 Selección y ajuste de diferentes algoritmos

Al igual que hicimos con la selección de características, podemos escribir una función que haga el
trabajo pesado de la selección y ajuste del modelo. La función que crearemos utilizará tres
algoritmos diferentes y utilizará la búsqueda en cuadrícula para entrenar utilizando diferentes
combinaciones de hiperparámetros para encontrar el modelo de mejor rendimiento.

Podemos lograr esto mediante la creación de una lista de diccionarios, es decir, una lista donde
cada elemento de la lista es un diccionario. Cada diccionario debe contener:
• El nombre del modelo particular
• Un objeto estimador para el modelo
• Un diccionario de hiperparámetros que utilizaremos para la búsqueda en la red

III.4 Proyecto Guiado: Creación de un Flujo de Trabajo Kaggle

Este es un ejemplo de cómo será uno de estos diccionarios:

A continuación, podemos utilizar un bucle for para iterar sobre la lista de diccionarios, y para cada
uno podemos utilizar el model_selection.GridSearchCV class de scikit-learn para encontrar el
mejor conjunto de parámetros de rendimiento, y añadir valores para el conjunto de parámetros y
la puntuación al diccionario.

Finalmente, podemos devolver la lista de diccionarios, que tendrá nuestros objetos GridSearchCV
entrenados, así como los resultados para que podamos ver cuál fue el más preciso.

III.4 Proyecto Guiado: Creación de un Flujo de Trabajo Kaggle

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html

Instrucciones

• Importe model_selection.GridSearchCV, neighbors import KNeighborsClassifier, y linear_model
import LogisticRegression

• Cree una función, select_model(), que:
• Acepte un dataframe y una lista de caracteristicas como entrada
• Divide el marco de datos en all_X (que contiene sólo las características del parámetro de

entrada) y all_y
• Contiene una lista de diccionarios, cada uno de los cuales contiene un nombre de modelo, su

estimador y un diccionario de hiperparámetros
• LogisticRegression, utilizando los siguientes hiperparámetros:

• "solver": ["newton-cg", "lbfgs", "liblinear"]
• KNeighborsClassifier, utilizando los siguientes hiperparámetros :

• "n_neighbors": range(1,20,2)
• "weights": ["distance", "uniform"]
• "algorithm": ["ball_tree", "kd_tree", "brute"]
• "p": [1,2]

III.4 Proyecto Guiado: Creación de un Flujo de Trabajo Kaggle

https://app.dataquest.io/m/188/guided-project:-creating-a-kaggle-workflow/6/scikit-learn.org/0.18/modules/generated/sklearn.model_selection.GridSearchCV.html
https://app.dataquest.io/m/188/guided-project:-creating-a-kaggle-workflow/6/scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://app.dataquest.io/m/188/guided-project:-creating-a-kaggle-workflow/6/scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://app.dataquest.io/m/188/guided-project:-creating-a-kaggle-workflow/6/scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html

• RandomForestClassifier, utilizando los siguientes hiperparámetros:
• "n_estimators": [4, 6, 9]
• "criterion": ["entropy", "gini"]
• "max_depth": [2, 5, 10]
• "max_features": ["log2", "sqrt"]
• "min_samples_leaf": [1, 5, 8]
• "min_samples_split": [2, 3, 5]
• Iterar sobre esa lista de diccionarios, y para cada diccionario

• Imprime el nombre del modelo
• Instanciar un objeto GridSearchCV() utilizando el modelo, el diccionario de hiperparámetros

y especificar la validación cruzada de 10 veces
• Ajustar el objeto GridSearchCV() utilizando all_X y all_y
• Asignar los parámetros y la puntuación del mejor modelo al diccionario
• Asignar al diccionario el mejor estimador del mejor modelo
• Imprime los parámetros y la puntuación del mejor modelo

• Devuelve la lista de diccionarios
• Ejecutar la función recién creada utilizando el marco de datos de train (entrenamiento) y la

salida de select_features() como entradas y asignar el resultado a una variable

III.4 Proyecto Guiado: Creación de un Flujo de Trabajo Kaggle

III.4.7 Cómo hacer un envío a Kaggle

Después de ejecutar la función, tendrá tres puntuaciones de tres modelos diferentes. En este punto del flujo de
trabajo tienes que tomar una decisión: ¿Quieres entrenar a tu mejor modelo en el conjunto de retención y
hacer una presentación en Kaggle, o quieres volver a las características de ingeniería.

Es posible que la adición de una característica a su modelo no mejore su precisión. En ese caso, deberías
volver a la exploración de datos y repetir el ciclo de nuevo.

Si vas a estar continuamente enviando a Kaggle, una función te ayudará a hacer esto más fácil. Vamos a
crear una función para automatizar esto.

Ten en cuenta que en nuestro entorno de Jupyter Notebook, el DataFrame.to_csv() method guardará el CSV
en el mismo directorio que tu cuaderno, al igual que lo haría si estás ejecutando Jupyter localmente. Para
descargar el CSV de nuestro entorno, puedes hacer clic en el botón 'download' para descargar todos los
archivos de tu proyecto como un tar file, o hacer clic en el logo de Jupyter en la parte superior de la interfaz, y
navegar hasta el propio CSV para descargar sólo ese archivo.

III.4 Proyecto Guiado: Creación de un Flujo de Trabajo Kaggle

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_csv.html
https://wiki.haskell.org/How_to_unpack_a_tar_file_in_Windows

Instrucciones

• Crear una función, save_submission_file(), que:
• Acepta un modelo entrenado y una lista de columnas como argumentos obligatorios, y un

argumento opcional de nombre de archivo
• Utiliza el modelo para realizar predicciones en el marco de datos de retención (holdout)

utilizando las columnas especificadas
• Transforma las predicciones en un marco de datos de presentación con las columnas

PassengerID y Survived especificadas por Kaggle
• Guarda ese marco de datos en un archivo CSV con un nombre de archivo predeterminado o

el nombre de archivo especificado por el argumento opcional
• Recupera el modelo de mejor rendimiento de la variable devuelta por select_model()
• Utilice save_submission_file() para guardar un archivo CSV de predicciones
• Descargue ese archivo y envíelo a Kaggle

III.4 Proyecto Guiado: Creación de un Flujo de Trabajo Kaggle

https://www.kaggle.com/c/titanic#evaluation

III.4.8 Próxima misión

En este proyecto guiado, hemos creado un flujo
de trabajo reproducible para ayudarnos a iterar
sobre las ideas y seguir mejorando la precisión
de nuestras predicciones. También creamos
funciones de ayuda que harán que la selección
de características, la selección/ajuste del
modelo y la creación de envíos sean mucho
más fáciles mientras seguimos explorando los
datos y creando nuevas características.

III.4 Proyecto Guiado: Creación de un Flujo de Trabajo Kaggle

Exploración de
Datos

Ingeniería de
Característica

s

Selección de
Modelos/Ajust

e

Selección de
Característica

s

Enviar a
Kaggel

Te animamos a que sigas trabajando en esta competición de Kaggle. A continuación, se muestran
algunas sugerencias de los próximos pasos:
• Continúe explorando los datos y creando nuevas funciones, siguiendo el flujo de trabajo y

utilizando las funciones que creamos
• Lea más sobre Titanic y esta competición de Kaggle para obtener más ideas para nuevas

características.
• Use algún algoritmo diferente en la función select_model() , como maquinas de vectores de

apoyo, descenso de gradiente estocástico o modelos lineales perceptron
• Experimente con RandomizedSearchCV en vez de GridSearchCV para acelerar su

función select_features()

Puede continuar trabajando en esta competición dentro de este ambiente de proyecto guiado y
guardar archivos para enviar si lo desea aunque le recomendamos que configure su propio
entorno de Python para que pueda trabajar en su propia computadora. Tenemos la guía de
instalación de Python que lo guiará a través de cómo hacer esto.

III.4 Proyecto Guiado: Creación de un Flujo de Trabajo Kaggle

http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Perceptron.html
http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html
https://www.dataquest.io/m/203/project-python-and-pandas-installation/
https://www.dataquest.io/m/203/project-python-and-pandas-installation/

Por último, aunque la competición Titanic es estupenda para aprender a enfocar tu primera
competición de Kaggle, recomendamos que no pases muchas horas centrado en intentar llegar a
la cima de la tabla de clasificación. Con un conjunto de datos tan pequeño, hay un límite en
cuanto a la calidad de tus predicciones, y tu tiempo estaría mejor invertido en competiciones más
complejas.

Una vez que sientas que tienes una buena comprensión del flujo de trabajo de Kaggle, deberías
mirar otras competiciones - una gran competición es la de Precios de la Vivienda. Tenemos un
gran tutorial para empezar con esta competición en nuestro blog.

¿Tienes curiosidad por ver lo que otros estudiantes han hecho en este proyecto? Dirígete a nuestra
Comunidad para verlos. Mientras estás allí, recuerda mostrar algo de amor y dar tus propios
comentarios.

Y, por supuesto, te invitamos a que compartas tu propio proyecto y muestres tu duro trabajo.
Dirígete a nuestra Comunidad para compartir tu proyecto guiado terminado.

III.4 Proyecto Guiado: Creación de un Flujo de Trabajo Kaggle

https://www.kaggle.com/c/house-prices-advanced-regression-techniques
https://www.dataquest.io/blog/kaggle-getting-started/
https://community.dataquest.io/tags/c/social/share/49/188
https://community.dataquest.io/tags/c/social/share/49/188
https://community.dataquest.io/tags/c/social/share/49/188

IV. Conceptos de TensorFlow

IV.1 Presentación de TensorFlow

TensorFlow es uno de los famosos marcos de
aprendizaje profundo, desarrollado por el equipo de
Google. Es una biblioteca de software libre y de código
abierto y diseñado en lenguaje de programación
Python, este tutorial está diseñado de tal manera que
podemos implementar fácilmente el proyecto de
aprendizaje profundo en TensorFlow de una manera
fácil y eficiente.

La palabra TensorFlow se compone de dos palabras,
es decir, Tensor y Flow:
1. Tensor es una matriz multidimensional
2. Flow se utiliza para definir el flujo de datos en la

operación

TensorFlow se utiliza para definir el flujo de datos en la
operación en una matriz multidimensional o Tensor.

Adición

Multiplicación

https://tensorflow-object-detection-api-tutorial.readthedocs.io/en/latest/install.html
https://tensorflow-object-detection-api-tutorial.readthedocs.io/en/latest/install.html

IV.1.1 Historia de TensorFlow

Hace ya muchos años que el aprendizaje profundo empezó a superar a todos los demás
algoritmos de aprendizaje automático cuando se le facilitan muchos datos. Google ha visto que
podía utilizar estas redes neuronales profundas para mejorar sus servicios:
• El motor de búsqueda de Google
• Gmail
• Fotos

Construyen un marco llamado TensorFlow para permitir a los investigadores y desarrolladores
trabajar juntos en un modelo de IA. Una vez aprobado y escalado, permite que mucha gente lo
utilice. Fue lanzado por primera vez en 2015, mientras que la primera versión estable llegó en 2017.
Es una plataforma de código abierto bajo la licencia Apache Open Source. Podemos utilizarla,
modificarla y reorganizar la versión revisada de forma gratuita sin pagar nada a Google.

IV.1 Presentación de TensorFlow

IV.1.2 Componentes de TensorFlow

El nombre de TensorFlow se deriva de su núcleo,
"Tensor". Un tensor es un vector o una matriz de
n dimensiones que representa todo tipo de
datos. Todos los valores de un tensor tienen un
tipo de datos similar con una forma conocida.
La forma de los datos es la dimensión de la
matriz o de un array.

Un tensor puede ser generado a partir de los
datos de entrada o del resultado de un cálculo.
En TensorFlow, todas las operaciones se realizan
dentro de un grafo. El grupo es un conjunto de
cálculos que se realizan sucesivamente. Cada
operación se llama un nodo op están
conectados.

TensorFlow hace uso de un marco gráfico. El
gráfico reúne y describe todos los cálculos
realizados durante el entrenamiento.

IV.1 Presentación de TensorFlow

IV .1.3 Ventajas

• Se ha fijado para que funcione en múltiples CPUs o GPUs y sistemas operativos móviles
• La portabilidad del gráfico permite conservar los cálculos para su uso actual o posterior. El grafo

puede guardarse porque puede ejecutarse en el futuro
• Todo el cómputo en el gráfico se realiza conectando tensores

Considere la siguiente expresión a= (b+c)*(c+2). Podemos dividir las funciones en los siguientes
componentes :
d=b+c
e=c+2
a=d*e

Ahora, podemos representar estas operaciones de forma gráfica a continuación:

IV.1 Presentación de TensorFlow

Una sesión puede ejecutar la operación desde el
gráfico. Para alimentar el gráfico con el valor de
un tensor, necesitamos abrir una sesión. Dentro
de una sesión, debemos ejecutar un operador
para crear una salida.

IV.1 Presentación de TensorFlow

IV.1.4 ¿Por qué es popular TensorFlow?

TensorFlow es la mejor biblioteca para todos porque es accesible para todos. La biblioteca
TensorFlow integra diferentes API para crear una arquitectura de aprendizaje profundo a escala
como CNN (Red Neural Convolucional) o RNN (Red Neural Recurrente).

TensorFlow se basa en la computación de grafos; puede permitir al desarrollador crear la
construcción de la red neuronal con Tensorboard. Esta herramienta ayuda a depurar nuestro
programa. Se ejecuta en la CPU (Unidad Central de Procesamiento) y en la GPU (Unidad de
Procesamiento Gráfico).

IV.1 Presentación de TensorFlow

IV .1.5 Casos de uso/aplicaciones de TensorFlow

TensorFlow proporciona funcionalidades y
servicios sorprendentes en comparación con
otros marcos de aprendizaje profundo
populares. TensorFlow se utiliza para crear una
red neuronal a gran escala con muchas capas.

IV.1 Presentación de TensorFlow

IV.1 Presentación de TensorFlow

Comunidad de Interesados

Soporta

Contribuye

Desarrollador
es

Desarrollador
es

CompañíasInvestigadore
s

Usa

Prove
e

Requier
e

Dependencias

Visualiza Se ejecuta en
Plataformas

Continuo

Tensorboard

Jenkins

Se utiliza principalmente para problemas de aprendizaje profundo o aprendizaje automático como
la Clasificación, Percepción, Comprensión, Descubrimiento, Predicción y Creación.

Reconocimiento de voz/sonido

Las aplicaciones de reconocimiento de voz y sonido son los casos de uso más conocidos del
aprendizaje profundo. Si las redes neuronales tienen una alimentación de datos de entrada
adecuada, las redes neuronales son capaces de entender las señales de audio. Por ejemplo:
• El reconocimiento de voz se utiliza en el Internet de las Cosas, la automoción, la seguridad y la

UX/UI
• El análisis de sentimientos se utiliza sobre todo en la gestión de las relaciones con los clientes

(CRM)
• La detección de fallos (ruido del motor) se utiliza sobre todo en la automoción y la aviación
• La búsqueda por voz se utiliza sobre todo en la gestión de las relaciones con los clientes (CRM)

IV.1 Presentación de TensorFlow

Reconocimiento de imágenes

El reconocimiento de imágenes es la primera aplicación que popularizó el aprendizaje profundo y el
aprendizaje automático. Las telecomunicaciones, las redes sociales y los fabricantes de teléfonos móviles
utilizan principalmente el reconocimiento de imágenes. También se utiliza para el reconocimiento facial, la
búsqueda de imágenes, la detección de movimiento, la visión artificial y la agrupación de fotos.

Por ejemplo, el reconocimiento de imágenes se utiliza para reconocer e identificar personas y objetos en las
imágenes. El reconocimiento de imágenes se utiliza para entender el contexto y el contenido de cualquier
imagen.

Para el reconocimiento de objetos, TensorFlow ayuda a clasificar e identificar objetos arbitrarios dentro de
imágenes más grandes. También se utiliza en aplicaciones de ingeniería para identificar la forma con fines de
modelado (reconstrucción 3D a partir de una imagen 2D) y en Facebook para el etiquetado de fotos.

Por ejemplo, el aprendizaje profundo utiliza TensorFlow para analizar miles de fotos de gatos. Así, un algoritmo
de aprendizaje profundo puede aprender a identificar a un gato porque este algoritmo se utiliza para encontrar
características generales de objetos, animales o personas.

IV.1 Presentación de TensorFlow

Series temporales

El aprendizaje profundo utiliza algoritmos de series temporales para examinar los datos de las
series temporales y extraer estadísticas significativas. Por ejemplo, ha utilizado las series
temporales para predecir el mercado de valores.

La recomendación es el caso de uso más común para las series temporales. Amazon, Google,
Facebook y Netflix están utilizando el aprendizaje profundo para la sugerencia. Así, el algoritmo de
aprendizaje profundo se utiliza para analizar la actividad del cliente y compararla con la de
millones de otros usuarios para determinar lo que al cliente le puede gustar comprar o ver.

Por ejemplo, se puede utilizar para recomendarnos programas de televisión o películas que le
gustan a la gente basándose en programas de televisión o películas que ya hemos visto.

IV.1 Presentación de TensorFlow

Detección de vídeo
El algoritmo de aprendizaje profundo se utiliza para la detección de vídeo. Se utiliza para la detección de
movimiento, la detección de amenazas en tiempo real en los juegos, la seguridad, los aeropuertos y el campo
de la interfaz de usuario/UX.

Por ejemplo, la NASA está desarrollando una red de aprendizaje profundo para la agrupación de objetos de
asteroides y la clasificación de órbitas. Así, puede clasificar y predecir NEOs (Near Earth Objects).

Aplicaciones basadas en texto
Las aplicaciones basadas en texto también son un algoritmo de aprendizaje profundo muy popular. El análisis
sentimental, las redes sociales, la detección de amenazas y la detección de fraudes son ejemplos de
aplicaciones basadas en texto.

Por ejemplo, Google Translate soporta más de 100 idiomas.

Algunas empresas que actualmente utilizan TensorFlow son Google, AirBnb, eBay, Intel, DropBox, Deep Mind,
Airbus, CEVA, Snapchat, SAP, Uber, Twitter, Coca-Cola e IBM.

IV.1 Presentación de TensorFlow

IV 1.6 Características de TensorFlow

TensorFlow tiene una interfaz de programación interactiva multiplataforma que es escalable y
fiable en comparación con otras bibliotecas de aprendizaje profundo que están disponibles.

Estas características de TensorFlow nos hablan de la popularidad de TensorFlow.

IV.1 Presentación de TensorFlow

IV.1 Presentación de TensorFlow

Construcción de respuesta

Podemos visualizar cada parte del gráfico, lo que no es una opción al utilizar Numpy o SciKit. Para
desarrollar una aplicación de aprendizaje profundo, en primer lugar, hay dos o tres componentes
que se requieren para crear una aplicación de aprendizaje profundo y necesitan un lenguaje de
programación.

Flexible

Es una de las características esenciales de TensorFlow según su operatividad. Tiene modularidad y
partes que queremos hacer independientes.

Fácilmente Entrenable

Es fácilmente entrenable en CPU y para GPU en computación distribuida.

IV.1 Presentación de TensorFlow

Entrenamiento de redes neuronales en
paralelo

TensorFlow ofrece a la tubería en el sentido de
que podemos entrenar múltiples redes
neuronales y varias GPU, lo que hace que los
modelos sean muy eficientes en sistemas a
gran escala.

IV.1 Presentación de TensorFlow

Gran comunidad

Google lo ha desarrollado, y ya existe un gran equipo de ingenieros de software que trabajan continuamente
en la mejora de la estabilidad.

Código abierto

Lo mejor de la biblioteca de aprendizaje automático es que es de código abierto, por lo que cualquiera puede
utilizarla siempre que tenga conexión a Internet. Así, la gente puede manipular la biblioteca y crear una
fantástica variedad de productos útiles. Además, se ha convertido en otra comunidad de bricolaje que cuenta
con un foro masivo para las personas que se inician en ella y las que tienen dificultades para utilizarla.

Columnas de características

TensorFlow tiene columnas de características que podrían ser consideradas como intermediarias entre los
datos en bruto y los estimadores; en consecuencia, el puente de los datos de entrada con nuestro modelo.

La característica siguiente describe cómo se implementa la columna de características.

IV.1 Presentación de TensorFlow

IV.1 Presentación de TensorFlow

Características

Etiqueta
s

Cómo pasar la
 entrada al modelo

(columna de
características)

Coincidir con los
nombres de las

características de
input_fn

Disponibilidad de distribuciones estadísticas

Esta librería proporciona funciones de distribución como Bernoulli, Beta, Chi2, Uniforme, Gamma,
que son esenciales, especialmente cuando se consideran enfoques probabilísticos como los
modelos bayesianos.

Componentes en capas

TensorFlow produce operaciones en capas de peso y sesgo de la función como tf.contrib.layers y
también proporciona la normalización de lotes, la capa de convolución, y la capa de abandono.
Así que tf.contrib.layers.optimizers tiene optimizadores como Adagrad, SGD, Momentum que se
utilizan a menudo para resolver problemas de optimización para el análisis numérico.

IV.1 Presentación de TensorFlow

Visualizador (Con TensorBoard)

Podemos inspeccionar una representación diferente de un modelo y hacer los cambios necesarios
mientras lo depuramos con la ayuda de TensorBoard.

Registrador de eventos (con TensorBoard)

Es como en UNIX, donde usamos tail - f para monitorear la salida de las tareas en el cmd. Se
comprueba, el registro de eventos y resúmenes de la gráfica y la producción con el TensorBoard.

IV.1 Presentación de TensorFlow

IV.2.1 Perceptrón de una capa en TensorFlow

El perceptrón es una unidad de procesamiento de
cualquier red neuronal. Propuesto por Frank
Rosenblatt por primera vez en 1958, es una neurona
simple que sirve para clasificar su entrada en una o
dos categorías. El perceptrón es un clasificador lineal
y se utiliza en el aprendizaje supervisado. Ayuda a
organizar los datos de entrada dados.

Un perceptrón es una unidad de red neuronal que
realiza un cálculo preciso para detectar
características en los datos de entrada. El perceptrón
se utiliza principalmente para clasificar los datos en
dos partes. Por lo tanto, también se conoce como
clasificador binario lineal.

IV.2 Fundamentos de TensorFlow

El perceptrón utiliza la función de paso que devuelve +1 si la suma ponderada de su entrada es 0 y
-1.

La función de activación se utiliza para mapear la entrada entre el valor requerido como (0, 1) o (-1,
1).

Una red neuronal normal tiene el siguiente aspecto:

IV.2 Fundamentos de TensorFlow

Entradas Pesos
Sumatorias y
desviaciones Activación Salida

El perceptrón consta de 4 partes

1. Valor de entrada o una capa de entrada: La capa de entrada del perceptrón está formada por
neuronas artificiales de entrada y toma los datos iniciales en el sistema para su posterior
procesamiento

2. Pesos y sesgo
• Peso: Representa la dimensión o fuerza de la conexión entre unidades. Si el peso del nodo 1 al

nodo 2 tiene una cantidad mayor, entonces la neurona 1 tiene una influencia más
considerable sobre la neurona

• Sesgo: Es lo mismo que el intercepto añadido en una ecuación lineal. Es un parámetro
adicional cuya tarea es modificar la salida junto con la suma ponderada de la entrada a la
otra neurona

3. Suma neta: Calcula la suma total
4. Función de activación: Una neurona puede ser activada o no, está determinada por una

función de activación La función de activación calcula una suma ponderada y además añade
un sesgo con ella para dar el resultado

IV.2 Fundamentos de TensorFlow

IV.2 Fundamentos de TensorFlow

Suma de
1

Entrada

Función de
Activación

Una red neuronal estándar tiene el aspecto del siguiente diagrama.

IV.2 Fundamentos de TensorFlow

DOG

(FOTOS
ETIQUETADAS)

CAT

SALIDA

DOG

ENTENDIDO

¿Cómo funciona?
El perceptrón funciona según estos sencillos
pasos que se indican a continuación:

A. En el primer paso, todas las entradas x se
multiplican con sus pesos w

B. En este paso, se suman todos los valores
incrementados y se les llama Suma
Ponderada

IV.2 Fundamentos de TensorFlow

Entrada
s

Salid
a

Sigma
para

la suma

K es el índice (Es
como un contador.

Algunos libros
utilizan i,)

El término con el que
empezamos

La fórmula para
el término nth

El término con el que
terminamos

C. En nuestro último paso, aplicar la suma ponderada a una Función de Activación correcta. Por
ejemplo: Una función de activación de pasos unitarios.

IV.2 Fundamentos de TensorFlow

Paso de unidad
(umbral)

Existen dos tipos de arquitectura. Estos tipos se centran en la funcionalidad de las redes
neuronales artificiales como sigue:
• Perceptrón de una capa
• Perceptrón multicapa

El perceptrón de una capa fue el primer modelo de red neuronal, propuesto en 1958 por Frank
Rosenbluth. Es uno de los primeros modelos de aprendizaje. Nuestro objetivo es encontrar una
función de decisión lineal medida por el vector de pesos w y el parámetro de sesgo b.

Para entender la capa del perceptrón, es necesario comprender las redes neuronales artificiales
(RNA). La red neuronal artificial (RNA) es un sistema de procesamiento de información cuyo
mecanismo se inspira en la funcionalidad de los circuitos neuronales biológicos. Una red neuronal
artificial se compone de varias unidades de procesamiento que están interconectadas.

IV.2 Fundamentos de TensorFlow

Esta es la primera propuesta cuando se construye el modelo neuronal. El contenido de la memoria
local de la neurona contiene un vector de pesos.

El perceptrón monovectorial se calcula calculando la suma del vector de entrada multiplicada por
el elemento correspondiente del vector, aumentando cada vez la cantidad del componente
correspondiente del vector por el peso. El valor que aparece en la salida es la entrada de una
función de activación.

Centrémonos en la implementación de un perceptrón de una sola capa para un problema de
clasificación de imágenes utilizando TensorFlow. El mejor ejemplo de dibujar un perceptrón de una
capa es a través de la representación de la "regresión logística".

IV.2 Fundamentos de TensorFlow

IV.2 Fundamentos de TensorFlow

Ahora, tenemos que hacer los siguientes pasos necesarios de entrenamiento de regresión
logística:
• Los pesos se inicializan con los valores aleatorios al inicio de cada entrenamiento
• Para cada elemento del conjunto de entrenamiento, se calcula el error con la diferencia entre la

salida deseada y la salida real. El error calculado se utiliza para ajustar el peso
• El proceso se repite hasta que el error cometido en todo el conjunto de entrenamiento sea

inferior al límite especificado hasta que se haya alcanzado el número máximo de iteraciones

IV.2 Fundamentos de TensorFlow

Código completo del perceptrón de una capa

IV.2 Fundamentos de TensorFlow

IV.2 Fundamentos de TensorFlow

El Resultado del Código:

IV.2 Fundamentos de TensorFlow

La regresión logística se considera un análisis predictivo. La regresión logística se utiliza
principalmente para describir datos y para explicar la relación entre la variable binaria
dependiente y una o varias variables nominales o independientes.

IV.2 Fundamentos de TensorFlow

IV.2.2 Perceptrón de capa oculta en TensorFlow

Una capa oculta es una red neuronal artificial que se encuentra entre las capas de entrada y las
de salida. Las neuronas artificiales reciben un conjunto de entradas ponderadas y producen una
salida mediante una función de activación. Es una parte de casi y neural en la que los ingenieros
simulan los tipos de actividad que se dan en el cerebro humano.

La red neuronal oculta se configura en algunas técnicas. En muchos casos, las entradas
ponderadas se asignan al azar. En otros, se ajustan y calibran mediante un proceso llamado retro
propagación.

La neurona artificial de la capa oculta del perceptrón funciona como una neurona biológica en el
cerebro: toma sus señales de entrada probabilísticas y trabaja con ellas. Y las convierte en una
salida correspondiente al axón de la neurona biológica.

IV.2 Fundamentos de TensorFlow

Las capas posteriores a la de entrada se denominan ocultas porque resuelven directamente la
entrada. La estructura de red más sencilla es tener una sola neurona en la capa oculta que emite
directamente el valor.

El aprendizaje profundo puede referirse a tener muchas capas ocultas en nuestra red neuronal.
Son profundas porque históricamente han sido inimaginablemente lentas de entrenar, pero
pueden tardar segundos o minutos en prepararse utilizando técnicas y hardware modernos.

Una sola capa oculta construirá una red sencilla.

El código de las capas ocultas del perceptrón se muestra a continuación:

IV.2 Fundamentos de TensorFlow

IV.2 Fundamentos de TensorFlow

IV.2 Fundamentos de TensorFlow

IV.2 Fundamentos de TensorFlow

IV.2.3 Redes neuronales artificiales en TensorFlow

Las redes neuronales o redes neuronales artificiales (RNA) se modelan igual que el cerebro
humano. El cerebro humano tiene una mente para pensar y analizar cualquier tarea en una
situación concreta.

Pero, ¿cómo puede una máquina pensar así? Para ello se diseñó un cerebro artificial que se
conoce como red neuronal. La red neuronal está formada por muchos perceptrones.

El perceptrón es una red neuronal de una sola capa. Es un clasificador binario y forma parte del
aprendizaje supervisado. Un modelo simple de la neurona biológica en una red neuronal artificial
se conoce como perceptrón.

La neurona artificial tiene entrada y salida.

IV.2 Fundamentos de TensorFlow

Representación matemática del modelo de
perceptrón.

El cerebro humano tiene neuronas para
transmitir información, y la red neuronal tiene
nodos para realizar la misma tarea. Los nodos
son las funciones matemáticas. Una red
neuronal se basa en la estructura y función de
las redes neuronales biológicas.

Una red neuronal cambia o aprende por sí
misma en función de la entrada y la salida. Los
flujos de información a través del sistema
afectan a la estructura de la red neuronal
artificial debido a su aprendizaje y mejora de la
propiedad.

IV.2 Fundamentos de TensorFlow

Una Red Neuronal también se define como: Un sistema informático formado por varios elementos
de procesamiento simples y altamente interconectados, que procesan la información mediante
su respuesta de estado dinámica a las entradas externas.

Una red neuronal puede estar formada por múltiples perceptrones. En ella hay tres capas:
• Capa de entrada: Las capas de entrada son el valor real de los datos
• Capa oculta: Las capas ocultas están entre las capas de entrada y de salida, donde tres o más

capas son una red profunda
• Capa de salida: Es la estimación final de la salida

IV.2 Fundamentos de TensorFlow

IV.2 Fundamentos de TensorFlow

Red de Perceptrones
Múltiples

Capas de
Entrada Capas

Ocultas

Capas de
Salida

IV.2.4 Tipos de redes neuronales artificiales

Las redes neuronales funcionan igual que el
sistema nervioso humano. Existen varios tipos de
redes neuronales. La implementación de estas
redes se basa en el conjunto de parámetros y
operaciones matemáticas que se requieren
para determinar la salida.

IV.2 Fundamentos de TensorFlow

IV.2.5 Red Neuronal de Avance (Neurona
Artificial)

La FNN es la forma más pura de RNA en la que la
entrada y los datos viajan en una sola dirección.
Los datos fluyen en una sola dirección hacia
adelante; por eso se conoce como Red
Neuronal de Avance. Los datos pasan por los
nodos de entrada y salen por los de salida. Los
nodos no están conectados cíclicamente. No
necesita tener una capa oculta. En la FNN, no es
necesario que haya varias capas. También
puede tener una sola capa.

IV.2 Fundamentos de TensorFlow

Neurone
s

Capas de
Salida

Capas de
Entrada

Tiene una onda de propagación frontal que se consigue utilizando una función de activación
clasificatoria. Todos los demás tipos de redes neuronales utilizan la retropropagación, pero la FNN
no. En la FNN, se calcula la suma de la entrada y el peso del producto, y luego se alimenta a la
salida. Tecnologías como el reconocimiento de caras y la visión por ordenador utilizan FNN.

IV.2.6 Red Neuronal de Función de Base Radial

La RBFNN encuentra la distancia de un punto al centro y se considera que funciona sin problemas.
Hay dos capas en la red neuronal RBF. En la capa interna, las características se combinan con la
función de base radial. Las características proporcionan una salida que se utiliza en la
consideración. También se pueden utilizar otras medidas en lugar de la euclidiana.

IV.2 Fundamentos de TensorFlow

IV.2 Fundamentos de TensorFlow

Función de Base Radial

• Definimos un receptor t
• Se dibujan mapas confrontados alrededor del receptor
• Para el RBF se utilizan generalmente funciones gaussianas. Así podemos definir la distancia

radial r=||X-t||

Función Radial =Φ(r) = exp (- r2/2σ2), donde σ > 0

Esta red neuronal se utiliza en el sistema de restauración de energía. En la era actual, el sistema de
energía ha aumentado en tamaño y complejidad. Ambos factores aumentan el riesgo de que se
produzcan grandes apagones. Es necesario restablecer el suministro eléctrico de la forma más
rápida y fiable posible tras un apagón.

IV.2 Fundamentos de TensorFlow

IV.2 Fundamentos de TensorFlow

Entrada X

Pesos

Función de Base
Radial

Peso Lineal

Salida Y

IV.2.7 Perceptrón Multicapa

Un Perceptrón Multicapa tiene tres o más capas. Los datos que no pueden separarse linealmente
se clasifican con la ayuda de esta red. Esta red es una red totalmente conectada, lo que significa
que cada nodo está conectado con todos los demás nodos que se encuentran en la siguiente
capa. En el perceptrón multicapa se utiliza una función de activación no lineal. Los nodos de la
capa de entrada y salida están conectados como un grafo dirigido. Es un método de aprendizaje
profundo, por lo que para entrenar la red se utiliza la retropropagación. Se aplica ampliamente en
las tecnologías de reconocimiento del habla y de traducción automática.

IV.2 Fundamentos de TensorFlow

IV.2 Fundamentos de TensorFlow

Neuronas

Capas
OcultasEntradas

Salida

x1

x2

x3

x4

IV.2.8 Redes Neuronales Convolucionales

En la clasificación y el reconocimiento de imágenes, las Redes Neuronales Convolucionales
desempeñan un papel fundamental, o podemos decir que son la categoría principal para ellas. El
reconocimiento de caras, la detección de objetos, etc., son algunas de las áreas en las que se
utilizan ampliamente las CNN. Es similar a la FNN, las neuronas tienen pesos y sesgos que se
pueden aprender.

La CNN toma una imagen como entrada que se clasifica y procesa bajo una determinada
categoría como perro, gato, león, tigre, etc. Como sabemos, el ordenador ve una imagen como
píxeles y depende de la resolución de la imagen. Según la resolución de la imagen, verá h * w * d,
donde h= altura w= anchura y d= dimensión. Por ejemplo, una imagen RGB es 6 * 6 * 3 matriz de la
matriz, y la imagen en escala de grises es 4 * 4 * 3 matriz del patrón.

En la CNN, cada imagen de entrada pasará por una secuencia de capas de convolución junto con
la agrupación, las capas totalmente conectadas y los filtros (también conocidos como kernels). Y
aplicar la función Soft-max para clasificar un objeto con valores probabilísticos 0 y 1.

IV.2 Fundamentos de TensorFlow

IV.2 Fundamentos de TensorFlow

Aprendizaje de Características Clasificación

IV.2.9 Red Neuronal Recurrente

La Red Neuronal Recurrente se basa en la predicción. En esta red neuronal, la salida de una capa
concreta se guarda y se devuelve a la entrada. Esto ayudará a predecir el resultado de la capa. En
la red neuronal recurrente, la primera capa se forma de la misma manera que la capa de la FNN, y
en la capa siguiente comienza el proceso de la red neuronal recurrente.

Tanto las entradas como las salidas son independientes entre sí, pero en algunos casos, se
requiere predecir la siguiente palabra de la frase.

Entonces dependerá de la palabra anterior de la frase. La RNN es famosa por su característica
principal y más importante, es decir, el Estado Oculto. El estado oculto recuerda la información
sobre una secuencia.

IV.2 Fundamentos de TensorFlow

La RNN tiene una memoria para almacenar el
resultado después del cálculo. La RNN utiliza los
mismos parámetros en cada entrada para
realizar la misma tarea en todas las capas
ocultas o datos para producir la salida. A
diferencia de otras redes neuronales, la
complejidad de los parámetros de la RNN es
menor.

IV.2 Fundamentos de TensorFlow

Capa de
entrada Capas ocultas Capas de

salida

Retroalimentaci
ón

Neuronal

IV.2.10 Redes Neuronales Modulares

En las Redes Neuronales Modulares, varias redes diferentes son funcionalmente independientes.
En las redes neuronales modulares, la tarea se divide en subtareas y las realizan varios sistemas.
Durante el proceso de cálculo, las redes no se comunican directamente entre sí. Todas las
interfaces trabajan de forma independiente para conseguir el resultado. Las redes combinadas
son más potentes que las planas y sin restricciones. Los intermediarios toman la producción de
cada sistema y la procesan para producir el resultado final.

IV.2 Fundamentos de TensorFlow

IV.2 Fundamentos de TensorFlow

IV.2.11 Red de Secuencia a Secuencia

Consiste en dos redes neuronales recurrentes. Aquí, el codificador procesa la entrada y el decodificador
procesa la salida. El codificador y el decodificador pueden utilizar el mismo parámetro o diferentes.

Los modelos secuencia a secuencia se aplican en los chatbots, la traducción automática y los sistemas de
respuesta a preguntas.

IV.2.12 Componentes de una Red Neuronal Artificial

Neuronas

Las neuronas son similares a las neuronas biológicas. Las neuronas no son más que la función de activación.
Las neuronas artificiales o la función de activación tiene una característica de "encendido" cuando realiza la
tarea de clasificación. Podemos decir que cuando la entrada es mayor que un valor específico, la salida debe
cambiar de estado, es decir, de 0 a 1, de -1 a 1, etc. La función sigmoidea es la función de activación más
utilizada en las Redes Neuronales Artificiales.

F (Z) = 1/1+EXP (-Z)

IV.2 Fundamentos de TensorFlow

Nodos

La neurona biológica se conecta en redes
jerárquicas, en las que la salida de unas
neuronas es la entrada de otras. Estas redes se
representan como una capa conectada de
nodos. Cada nodo toma múltiples entradas
ponderadas y aplica a la neurona la suma de
estas entradas y genera una salida.

IV.2 Fundamentos de TensorFlow

Sesgo

En la red neuronal, predecimos la salida (y) basándonos en la entrada dada (x). Creamos un
modelo, es decir, (mx + c), que nos ayuda a predecir la salida. Cuando entrenamos el modelo, éste
encuentra el valor adecuado de las constantes m y c en sí mismo.

La constante c es el sesgo. El sesgo ayuda a un modelo de tal manera que puede ajustarse mejor
a los datos dados. Podemos decir que el sesgo da libertad para que el modelo funcione mejor.

Algoritmo

Los algoritmos son necesarios en la red neuronal. Las neuronas biológicas tienen capacidad de
autocomprensión y de trabajo, pero ¿cómo va a funcionar una neurona artificial de la misma
manera? Para ello, es necesario entrenar nuestra red neuronal artificial. Para ello, se utilizan
muchos algoritmos. Cada algoritmo tiene una forma diferente de trabajar.

IV.2 Fundamentos de TensorFlow

IV.3 Clasificación de la Red Neuronal en TensorFlow

Las redes neuronales artificiales son modelos computacionales que se inspiran en las redes
neuronales biológicas y están compuestas por un gran número de elementos de procesamiento
altamente interconectados llamados neuronas.

Una RNA (Red Neuronal Artificial) se configura para una aplicación específica, como el
reconocimiento de patrones o la clasificación de datos.

Puede extraer el significado de datos complicados o imprecisos.

Extrae patrones y detecta tendencias que son demasiado complejas para ser percibidas por los
humanos o por otras técnicas informáticas.

IV.3 Clasificación de la Red Neuronal en TensorFlow

Dendrita
s Núcle

o

Cuerp
o

de la
célula

Axón

Terminal
es Axón

Salid
a

Desviació
n

in1

in2

inn

Función de Transferencia

El comportamiento de la RNA (Red Neural Artificial) depende tanto de los pesos como de la función de
entrada-salida, que se especifica para la unidad. Esta función se clasifica en una de estas tres categorías:
• Lineal (o rampa)
• Umbral
• Sigmoide

Unidades lineales: La actividad de salida es proporcional a la salida total ponderada en unidades
lineales.

Umbral: La salida se establece en uno de dos niveles, dependiendo de si la entrada total es mayor o
menor que algún valor de umbral.

Unidades sigmoides: La salida varía de forma continua pero no lineal a medida que cambia la entrada.
Las unidades sigmoides se parecen más a las neuronas reales que las lineales o las de umbral, pero las
tres deben considerarse aproximaciones.

IV.3 Clasificación de la Red Neuronal en TensorFlow

A continuación se muestra el código por el que clasificamos la red neuronal.

En primer lugar, hicimos una función de activación por lo que tenemos que trazar como POPC y
para crear la función sigmoide, que es una función de activación sin esfuerzo toma en Z para
hacer la sigmoide.

IV.3 Clasificación de la Red Neuronal en TensorFlow

IV.3 Clasificación de la Red Neuronal en TensorFlow

Entonces, hacemos la operación que hereda sigmoide. Así que vamos a ver un ejemplo de
clasificación y sikat aprender tiene una función útil y capacidades para crear conjunto de datos
para nosotros. Y entonces vamos a decir que mis datos es igual a hacer blobs. Sólo crea un par de
blobs allí que podemos clasificar. Por lo tanto, tenemos que crear 50 muestras y el número de
características a un estado que va a hacer dos blobs, así que esto es sólo un problema de
clasificación binaria.

IV.3 Clasificación de la Red Neuronal en TensorFlow

IV.3 Clasificación de la Red Neuronal en TensorFlow

IV.3 Clasificación de la Red Neuronal en TensorFlow

Ahora, tenemos que crear el diagrama de
dispersión de las características de todas las
filas en la columna 0 y así si hacemos diagrama
de dispersión de dos manchas distintivas y
capaz de clasificar estas dos clases altamente
separables.

IV.3 Clasificación de la Red Neuronal en TensorFlow

IV.3 Clasificación de la Red Neuronal en TensorFlow

IV.3 Clasificación de la Red Neuronal en TensorFlow

Aquí, vamos a construir una matriz de uno que es una matriz de uno por dos. Y luego, pasamos
que en nuestra función sigmoide decir sigmoide Z porque eso es necesariamente va a la salida es
0 o 1 para nosotros como estamos clasificando sobre la base de si es positivo o negativo.

Cuanto más positiva sea la entrada, más seguro estará nuestro modelo de que pertenece a una
clase.

IV.3 Clasificación de la Red Neuronal en TensorFlow

Así que ahora hemos sido capaces de utilizar
con éxito nuestros objetos grafos variables
funciones de activación a la recesión y capaz de
realizar una clasificación muy simple. Y con
suerte, pronto sabemos cómo hacer esto
manualmente va a hacer el aprendizaje de flujo
tensorial mucho y más fácil en la realización de
todas las funciones esenciales con el
TensorFlow.

IV.3 Clasificación de la Red Neuronal en TensorFlow

IV.4 Regresión Lineal en TensorFlow

La regresión lineal es un algoritmo de aprendizaje automático que se basa en el aprendizaje
supervisado. Realiza una función de regresión. La regresión modela un valor predictivo objetivo
basado en la variable independiente. Se utiliza sobre todo para detectar la relación entre las
variables y las previsiones.

La regresión lineal es un modelo lineal; por ejemplo, un modelo que asume una relación lineal
entre una variable de entrada (x) y una única variable de salida (y). En concreto, y puede
calcularse mediante una combinación lineal de las variables de entrada (x).

La regresión lineal es un método estadístico frecuente que nos permite aprender una función o
relación a partir de un conjunto de datos continuos. Por ejemplo, se nos da un punto de datos de x
y el correspondiente, y necesitamos conocer la relación entre ellos, lo que se llama la hipótesis.

En el caso de la regresión lineal, la hipótesis es una línea recta, es decir: h (x) = wx + b.

Donde w es un vector llamado peso, y b es un escalar llamado sesgo. El peso y el sesgo se
denominan parámetros del modelo.

Necesitamos estimar el valor de w y b a partir del conjunto de datos de forma que la hipótesis
resultante produzca al menos el coste 'j', que ha sido definido por la siguiente función de coste.

Donde m son los puntos de datos en el conjunto de datos.

Esta función de coste se denomina Error Cuadrático Medio.

IV.4 Regresión Lineal en TensorFlow

Para la optimización de los parámetros para los que el valor de j es mínimo, utilizaremos un
algoritmo optimizador comúnmente utilizado, llamado descenso de gradiente. El siguiente es el
pseudocódigo para el descenso de gradiente:

Implementación de la regresión lineal

Empezaremos a importar las librerías necesarias en Tensorflow. Utilizaremos Numpy con
Tensorflow para el cálculo y Matplotlib para el trazado.

En primer lugar, tenemos que importar los paquetes:

IV.4 Regresión Lineal en TensorFlow

Para hacer la predicción de los números aleatorios, tenemos que definir semillas fijas tanto para
Tensorflow como para Numpy.

Ahora, tenemos que generar algunos datos aleatorios para entrenar el Modelo de Regresión Lineal.

IV.4 Regresión Lineal en TensorFlow

Visualicemos los datos de entrenamiento. Salida

IV.4 Regresión Lineal en TensorFlow

Ahora, comenzaremos a construir nuestro modelo definiendo los marcadores de posición x e y, de
modo que alimentemos los ejemplos de entrenamiento x e y en el optimizador durante el proceso
de entrenamiento.

Ahora, podemos declarar dos variables TensorFlow entrenables para el sesgo y los pesos
inicializándolos aleatoriamente usando el método:

Ahora definimos el hiperparámetro del modelo, la tasa de aprendizaje y el número de épocas.

IV.4 Regresión Lineal en TensorFlow

Ahora, construiremos la Hipótesis, la Función de Coste y el Optimizador. No implementaremos
manualmente el Optimizador Gradiente Decente porque está construido dentro de TensorFlow.
Después de eso, vamos a inicializar las variables en el método.

IV.4 Regresión Lineal en TensorFlow

Ahora comenzamos el proceso de entrenamiento dentro de la Sesión TensorFlow.

IV.4 Regresión Lineal en TensorFlow

El resultado es el siguiente:

Epoch: 50 cost = 5.8868037 W = 0.9951241 b = 1.2381057

Epoch: 100 cost = 5.7912708 W = 0.9981236 b = 1.0914398

Epoch: 150 cost = 5.7119676 W = 1.0008028 b = 0.96044315

Epoch: 200 cost = 5.6459414 W = 1.0031956 b = 0.8434396

Epoch: 250 cost = 5.590798 W = 1.0053328 b = 0.7389358

Epoch: 300 cost = 5.544609 W = 1.007242 b = 0.6455922

Epoch: 350 cost = 5.5057884 W = 1.008947 b = 0.56223

Epoch: 400 cost = 5.473068 W = 1.01047 b = 0.46775345

Epoch: 450 cost = 5.453845 W = 1.0118302 b = 0.42124168

Epoch: 500 cost = 5.421907 W = 1.0130452 b = 0.36183489

Epoch: 550 cost = 5.4019218 W = 1.0141305 b = 0.30877414

Epoch: 600 cost = 5.3848578 W = 1.0150996 b = 0.26138115

Epoch: 650 cost = 5.370247 W = 1.0159653 b = 0.21905092

Epoch: 700 cost = 5.3576995 W = 1.0167387 b = 0.18124212

Epoch: 750 cost = 5.3468934 W = 1.0174294 b = 0.14747245

Epoch: 800 cost = 5.3375574 W = 1.0180461 b = 0.11730932

Epoch: 850 cost = 5.3294765 W = 1.0185971 b = 0.090368526

Epoch: 900 cost = 5.322459 W = 1.0190894 b = 0.0663058

Epoch: 950 cost = 5.3163588 W = 1.0195289 b = 0.044813324

Epoch: 1000 cost = 5.3110332 W = 1.0199218 b = 0.02561669

IV.4 Regresión Lineal en TensorFlow

Ahora, observe el resultado.

Resultado

Training cost= 5.3110332 Weight= 1.0199214 bias=0.02561663

Observe que en este caso, tanto el peso como el sesgo son escalares en orden. Esto se debe a que
sólo hemos examinado una variable dependiente en nuestros datos de entrenamiento. Si hay m
variables dependientes en nuestro conjunto de datos de entrenamiento, el peso será un vector
unidimensional mientras que el sesgo será un escalar.

IV.4 Regresión Lineal en TensorFlow

Por último, trazaremos nuestro resultado: Resultado

IV.4 Regresión Lineal en TensorFlow

V. Bases de Keras

V. Bases de Keras

Keras es una librería de redes neuronales de alto nivel de código abierto, que está escrita en
Python y es lo suficientemente capaz de ejecutarse en Theano, TensorFlow o CNTK. Fue
desarrollada por uno de los ingenieros de Google, Francois Chollet. Es fácil de usar, extensible y
modular para facilitar una experimentación más rápida con redes neuronales profundas. No sólo
admite redes convolucionales y redes recurrentes de forma individual, sino también su
combinación.

No puede manejar cálculos de bajo nivel, por lo que hace uso de la biblioteca Backend para
resolverlo. La librería backend actúa como una envoltura de la API de alto nivel para la API de bajo
nivel, lo que permite que se ejecute en TensorFlow, CNTK o Theano.

V.1 Capas de Keras

El enfoque en la experiencia del usuario siempre ha sido una parte importante de Keras.

• Gran adopción en la industria
• Es un multi backend y soporta multiplataforma, lo que ayuda a que todos los codificadores se

unan para codificar
• La comunidad de investigación presente para Keras trabaja de forma increíble con la

comunidad de producción
• Fácil de entender todos los conceptos
• Soporta la creación rápida de prototipos
• Se ejecuta sin problemas tanto en la CPU como en la GPU
• Proporciona la libertad de diseñar cualquier arquitectura, que luego se utiliza como una API para

el proyecto
• Es realmente muy sencillo empezar a utilizarlo
• La facilidad de producción de modelos hace que Keras sea especial

Keras es una biblioteca a nivel de modelo que ayuda a desarrollar modelos de aprendizaje
profundo ofreciendo bloques de construcción de alto nivel. Todos los cálculos de bajo nivel, como
los productos de tensor, las convoluciones, etc., no son manejados por Keras en sí mismo, sino que
dependen de una biblioteca de manipulación de tensor especializada que está bien optimizada
para servir como motor de backend. Keras lo ha manejado tan perfectamente que en lugar de
incorporar una sola librería de tensor y realizar operaciones relacionadas con esa librería en
particular, ofrece la conexión de diferentes motores backend en Keras.

Keras consta de tres motores backend, que son los siguientes:

V.1 Capas de Keras

TensorFlow

TensorFlow es un producto de Google, que es
una de las herramientas de aprendizaje
profundo más famosas y ampliamente
utilizadas en el área de investigación de
aprendizaje automático y redes neuronales
profundas. Salió al mercado el 9 de noviembre
de 2015 bajo la licencia Apache 2.0. Está
construido de tal manera que puede ejecutarse
fácilmente en múltiples CPUs y GPUs, así como
en sistemas operativos móviles. Consta de
varias envolturas en distintos lenguajes como
Java, C++ o Python.

V.1 Capas de Keras

Theano

Theano fue desarrollado en la Universidad de
Montreal, Quebec, Canadá, por el grupo MILA. Es
una biblioteca de código abierto en python que
se utiliza ampliamente para realizar
operaciones matemáticas en matrices
multidimensionales mediante la incorporación
de scipy y numpy. Utiliza las GPUs para un
cálculo más rápido y calcula eficientemente los
gradientes mediante la construcción de grafos
simbólicos de forma automática. Ha resultado
ser muy adecuado para expresiones inestables,
ya que primero las observa numéricamente y
luego las computa con algoritmos más estables.

V.1 Capas de Keras

CNTK

Microsoft Cognitive Toolkit es el marco de
código abierto de aprendizaje profundo. Consta
de todos los componentes básicos necesarios
para formar una red neuronal. Los modelos se
entrenan usando C ++ o Python, pero incorpora
C # o Java para cargar el modelo y hacer
predicciones.

V.1 Capas de Keras

V.1.2 Capas y Funcionamiento de la Red Neuronal de
Convolución Keras

Las redes neuronales de convolución se utilizan
ampliamente para tareas de visión por ordenador y
clasificación de imágenes. La arquitectura de las
redes neuronales de convolución suele constar de dos
partes. La primera parte es el extractor de
características que formamos a partir de una serie de
capas de convolución y agrupación. La segunda parte
incluye capas totalmente conectadas que actúan
como clasificadores.

En esta sección, estudiaremos cómo utilizar las redes
neuronales de convolución para tareas de
clasificación de imágenes. Recorreremos algunos
ejemplos para mostrar el código para la
implementación de las Redes Neuronales de
Convolución en Keras.

V.1 Capas de Keras

El algoritmo de la red neuronal de convolución es el resultado de los continuos avances en la visión
por ordenador con el aprendizaje profundo.CNN es un algoritmo de aprendizaje profundo que es
capaz de asignar importancia a varios objetos en la imagen y capaz de diferenciarlos.

La CNN tiene la capacidad de aprender las características y realizar la clasificación. Una imagen
de entrada tiene muchas dependencias espaciales y temporales, la CNN captura estas
características usando filtros/kernels relevantes.Un Kernel o filtro es un elemento en la CNN que
realiza la convolución alrededor de la imagen en la primera parte. El kernel se mueve hacia la
derecha y se desplaza según el valor de la zancada. Cada vez que se realiza la convolución se
lleva a cabo una operación de multiplicación matricial.

Después de la convolución, obtenemos otra imagen con una altura, anchura y profundidad
diferentes. Obtenemos más canales que el RGB pero menos anchura y altura. Desplazamos cada
filtro a través de la imagen paso a paso, este paso en el forward pass se llama stride.

V.1 Capas de Keras

V.1.3 Capa de Convolución Keras

Es la primera capa para extraer características de la imagen de entrada. Aquí definimos el kernel
como parámetro de la capa. Realizamos operaciones de multiplicación matricial en la imagen de
entrada utilizando el núcleo.

Example:
Suppose a 3*3 image pixel and a 2*2 filter as shown:
pixel : [[1,0,1],
[0,1,0],
[1,0,1]]
filter : [[1,0],
[0,1]]
The restaurant matrix after convolution of filter would be:
[[2,0],
[0,2]]

V.1 Capas de Keras

V.1 Capas de Keras

V.1.4 Capa de Agrupación Keras

Después de la convolución, realizamos un pooling para reducir el número de parámetros y
cálculos. Hay diferentes tipos de operaciones de pooling, las más comunes son el pooling máximo
y el pooling medio.

Example:

Take a sample case of max pooling with 2*2 filter and stride 2.
Image pixels:
[[1,2,3,4],
[5,6,7,8],
[3,4,5,6],
[6,7,8,9]]
The resultant matrix after max-pooling would be:
[[6,8],
[7,9]]

V.1 Capas de Keras

V.1 Capas de Keras

V.1.5 Capa de Abandono de Keras

Se utiliza para evitar que la red se sobreajuste.
En esta capa, una parte de las unidades de la
red se elimina en el entrenamiento, de modo
que el modelo se entrena con todas las
unidades.

Para la extracción de características se utilizan
una serie de capas de convolución y de
agrupación. Después, construimos capas
densamente conectadas para realizar la
clasificación basada en estas características.

V.1 Capas de Keras

Capa de Abandono

V.1.6 Capa de Aplanamiento Keras

Se utiliza para convertir los datos en matrices 1D para crear un único vector de características. Tras
el aplanamiento, enviamos los datos a una capa totalmente conectada para la clasificación final.

V.1 Capas de Keras

V.1.7 Capa Densa Keras

Es una capa totalmente conectada. Cada nodo de esta capa está conectado a la capa anterior,
es decir, densamente conectado. Esta capa se utiliza en la fase final de la CNN para realizar la
clasificación.

V.1 Capas de Keras

V1.8 Implementación de la CNN en el conjunto de datos CIFAR 10

El conjunto de datos CIFAR 10 consta de 10 clases de imágenes. Las clases de imágenes
disponibles son:
• Car - Carro
• Airplane - Avión
• Bird - Pajaro
• Cat - Gato
• Deer - Ciervo
• Dog - Perro
• Frog - Rana
• Horse - Caballo
• Ship - Oveja
• Truck - Camion

Se trata de uno de los conjuntos de datos más populares que permiten a los investigadores
practicar diferentes algoritmos de reconocimiento de objetos. Las redes neuronales de
convolución han mostrado los mejores resultados en la resolución del problema CIFAR-10.

V.1 Capas de Keras

Construyamos nuestro modelo de convolución
para reconocer las clases CIFAR-10.

1. Cargar el conjunto de datos del módulo
keras datasets

2. Para visualizar el conjunto de datos

3. El conjunto de datos tiene el siguiente
aspecto:

V.1 Capas de Keras

4. Normalización de las entradas

5. Una codificación en caliente

6. Construir el modelo

7. Compilación del modelo

V.1 Capas de Keras

8. Análisis de la síntesis del modelo

V.1 Capas de Keras

9. Entrenar el modelo y comprobar su precisión en los datos de
prueba

10. Evaluar el modelo

V.1 Capas de Keras

V.1.9 Implementación de la CNN en la base de datos Fashion MNIST

El conjunto de datos The Fashion MNIST consta de un conjunto de entrenamiento de 60000
imágenes y un conjunto de prueba de 10000 imágenes. Hay 10 clases de imágenes en este
conjunto de datos y cada clase tiene un mapeo correspondiente a las siguientes etiquetas:
1. T-shirt/top – Camiseta/Top
2. Trouser - Pantalones
3. Pullover - Jersey
4. Dress - Vestido
5. Coat - Abrigo
6. Sandals - Sandalias
7. Shirt – Camiisa
8. Sneaker – Zapatillas de deporte
9. Bag - Bolso
10. Ankle boot - Botin

Vamos a construir nuestro modelo CNN en este conjunto de datos.

V.1 Capas de Keras

https://www.kaggle.com/c/digit-recognizer/data

1. Importar los módulos necesarios

2. Cargar el conjunto de datos

3. Reformulación y codificación en caliente

V.1 Capas de Keras

4. Visualizar el conjunto de datos con
matplotlib

5. Normalización de datos

6. Construcción del Modelo

V.1 Capas de Keras

7. Entrenamiento de nuestro modelo 8. Evaluar el rendimiento de nuestro modelo

V.1 Capas de Keras

V.2 Implementación y Ejemplo de Aprendizaje con Aprendizaje
Profundo

En esta sección de Keras, recorreremos el aprendizaje profundo con keras y un importante
algoritmo de aprendizaje profundo utilizado en keras. Estudiaremos las aplicaciones de este
algoritmo y también su implementación en Keras.

El aprendizaje profundo es un subconjunto del aprendizaje automático que se refiere a los
algoritmos inspirados en la arquitectura del cerebro. En la última década ha habido muchos
desarrollos importantes para apoyar la investigación del aprendizaje profundo. Keras es el
resultado de uno de estos desarrollos recientes que nos permiten definir y crear modelos de redes
neuronales en unas pocas líneas de código.

Se ha producido un boom en la investigación de algoritmos de Deep Learning. Keras asegura la
facilidad de los usuarios para crear estos algoritmos.

Pero antes de empezar con el artículo Tensorflow Keras Deep learning, vamos a hacer la keras
installation.

https://data-flair.training/blogs/install-keras-on-linux-windows/
https://data-flair.training/blogs/install-keras-on-linux-windows/

A continuación se mencionan algunos de los algoritmos más populares en el aprendizaje
profundo:
• Auto-Encodificadores
• Redes neuronales de convolución
• Redes neuronales recurrentes
• Redes de memoria a corto plazo
• Máquina profunda de Boltzmann (DBM)
• Redes de creencia profunda (DBN)

Existen implementaciones de redes neuronales de convolución, redes neuronales recurrentes y
LSTM

Aquí haremos un recorrido por el algoritmo de Auto Codificadores del aprendizaje profundo.

V.2 Implementación y Ejemplo de Aprendizaje con Aprendizaje
Profundo

Autocodificadores

Este tipo de redes neuronales son capaces de comprimir los datos de entrada y reconstruirlos de
nuevo. Son algoritmos de aprendizaje profundo muy antiguos. Codifican la entrada hasta una
capa de cuello de botella y luego la decodifican para recuperar la entrada. En la capa cuello de
botella, obtenemos una forma comprimida de la entrada.

La detección de anomalías y la eliminación de ruido de una imagen son algunas de las
principales aplicaciones de los autocodificadores.

V.2 Implementación y Ejemplo de Aprendizaje con Aprendizaje
Profundo

Tipos de autocodificadores

Existen siete tipos de autocodificadores de aprendizaje profundo que se mencionan a
continuación:
• Autocodificadores de eliminación de ruido
• Autocodificadores profundos
• Autocodificadores dispersos
• Autocodificadores contractivos
• Autocodificadores convolucionales
• Autocodificadores variacionales
• Autocodificadores incompletos

Para nuestro estudio, crearemos un autocodificador Denoising.

V.2 Implementación y Ejemplo de Aprendizaje con Aprendizaje
Profundo

Implementación del autocodificador de denostación en Keras

Para su implementación en Keras, trabajaremos sobre el conjunto de datos de dígitos manuscritos
MNIST.

En primer lugar, introduciremos algo de ruido en las imágenes MNIST. A continuación, crearemos
un Auto – Encoder para eliminar el ruido de las imágenes y reconstruir las imágenes originales.

V.2 Implementación y Ejemplo de Aprendizaje con Aprendizaje
Profundo

https://www.deeplearningbook.org/contents/autoencoders.html

1. Importar los módulos necesarios

2. Cargar imágenes MNIST desde el módulo
datasets de keras

3. Convert dataset in range of 0 to 1

4. Introducir ruido en las imágenes
MNIST utilizando una distribución
gaussiana

V.2 Implementación y Ejemplo de Aprendizaje con Aprendizaje
Profundo

5. Visualizar el ruido introducido

V.2 Implementación y Ejemplo de Aprendizaje con Aprendizaje
Profundo

6. Especificar la capa de entrada y crear el
modelo

7. La capa codificada es el cuello de botella y consiste en una forma comprimida de
imágenes

V.2 Implementación y Ejemplo de Aprendizaje con Aprendizaje
Profundo

8. Entrenar el autocodificador

V.2 Implementación y Ejemplo de Aprendizaje con Aprendizaje
Profundo

9. Obtenga una predicción de los datos con
ruido

10. Visualizar de nuevo las imágenes
reconstruidas

V.2 Implementación y Ejemplo de Aprendizaje con Aprendizaje
Profundo

Se puede ver que nuestro codificador automático es capaz de reconstruir las imágenes y eliminar
su ruido. Obtendremos mejor calidad si aumentamos el número de épocas de entrenamiento.

Para concluir, hemos visto la implementación y el ejemplo de Deep learning con Keras. Este artículo
se refiere a la librería Keras y su soporte para implementar los principales algoritmos de deep
learning. También se introduce a los Auto-Encodificadores, sus diferentes tipos, sus aplicaciones y
su implementación. Se explica cómo construir una red neuronal para eliminar el ruido de nuestros
datos.

V.2 Implementación y Ejemplo de Aprendizaje con Aprendizaje
Profundo

Keras y Tensorflow son dos marcos de aprendizaje profundo muy populares. Los profesionales del
aprendizaje profundo utilizan más ampliamente Keras y Tensorflow. Ambos marcos tienen un gran
apoyo de la comunidad. Ambos marcos capturan una fracción importante de la producción de
aprendizaje profundo.

Hay algunas diferencias entre Keras y Tensorflow, que le ayudarán a elegir entre los dos. Le
proporcionaremos una mejor visión de estos dos marcos.

Los siguientes puntos le ayudarán a aprender la comparación entre Tensorflow y Keras para
encontrar cuál es más adecuado para usted.

V.3 Keras Vs TensorFlow - Diferencia entre Keras y Tensorflow

V.3 Keras Vs TensorFlow - Diferencia entre Keras y Tensorflow

Complejidad

Keras permite el desarrollo de modelos sin preocuparse de los detalles del backend. Mientras que
en TensorFlow hay que ocuparse de los detalles computacionales en forma de tensores y gráficos.

Esta característica de Keras proporciona más comodidad y lo hace menos complejo que
TensorFlow.

API fácil de usar Keras es una API de alto nivel.

Keras utiliza Tensorflow, Theano o CNTK como motores de backend.Tensorflow ofrece APIs de alto y
bajo nivel. Tensorflow es una biblioteca matemática que utiliza la programación de flujo de datos
para una amplia variedad de tareas.Si buscas una herramienta de redes neuronales que sea fácil
de usar y tenga una sintaxis sencilla, entonces estarás mejor servido por Keras.

V.3 Keras Vs TensorFlow - Diferencia entre Keras y Tensorflow

Desarrollo rápido

Si quieres desplegar y probar rápidamente tus modelos de aprendizaje profundo, elige Keras.
Usando Keras, puedes crear tus modelos con muy pocas líneas de código y en pocos minutos.
Keras proporciona dos APIs para escribir tu red neuronal. Estas son:
• Modelo (API funcional)
• Secuencial

Con estas APIs, puedes crear fácilmente cualquier red neuronal compleja.

V.3 Keras Vs TensorFlow - Diferencia entre Keras y Tensorflow

Rendimiento

Dado que Keras no es directamente responsable del cálculo del backend, Keras es más lento.
Keras depende de sus motores de backend para las tareas de computación. Proporciona una
abstracción sobre su backend. Para realizar los cálculos subyacentes y el entrenamiento, Keras
llama a su backend.Por otro lado, Tensorflow es una biblioteca matemática simbólica. Su compleja
arquitectura se centra en reducir la carga cognitiva de los cálculos. Por lo tanto, Tensorflow es
rápido y proporciona un alto rendimiento.

Funcionalidad y flexibilidad

Tensorflow te da más flexibilidad, más control y funciones avanzadas para la creación de
topologías complejas. Proporciona más control sobre su red. Por lo tanto, si quieres definir tu propia
función de coste, métrica o capa, o si quieres realizar operaciones sobre los pesos de entrada o los
gradientes, elige TensorFlow.

V.3 Keras Vs TensorFlow - Diferencia entre Keras y Tensorflow

https://www.tensorflow.org/tutorials/tensorflow_text/intro

Conjunto de Datos

Preferimos Keras si el tamaño del conjunto de datos es relativamente pequeño o mediano.
Mientras que si el conjunto de datos es grande, preferimos TensorFlow porque tiene menos gastos
generales. Además, TensorFlow proporciona un mayor nivel de control, por lo que tenemos más
opciones para manejar grandes conjuntos de datos.

TensorFlow proporciona un mayor número de conjuntos de datos incorporados que Keras.
Contiene todos los conjuntos de datos que están disponibles en Keras y el módulo tf.datasets de
TensorFlow contiene una amplia gama de conjuntos de datos y estos se clasifican en los
siguientes apartados: Audio, imagen, clasificación de imágenes, detección de objetos, respuesta a
preguntas, estructurado, resumen, texto, traducción y vídeo.

Los conjuntos de datos en Keras están presentes en el módulo Keras.datasets.

V.3 Keras Vs TensorFlow - Diferencia entre Keras y Tensorflow

Depuración

La depuración del código TensorFlow es muy difícil. En general, realizamos la depuración en el
depurador de TensorFlow y lo hacemos a través de la línea de comandos. Comenzamos
envolviendo la sesión de TensorFlow con, tf_debug.LocalCLIDebugWrapperSession(session), y
luego ejecutamos el archivo con diferentes banderas de depuración necesarias.

Keras es de alto nivel y no se ocupa de la computación del backend, por lo tanto la depuración es
fácil. También podemos comprobar la salida de cada capa en Keras usando
keras.backend.function().

V.3 Keras Vs TensorFlow - Diferencia entre Keras y Tensorflow

Popularidad

Keras tiene 48,7k estrellas en github y 18,4k forks en github. Mientras que TensorFlow tiene 146k
estrellas y 81.7k forks en github.

Dado que tanto Keras como TensorFlow fueron lanzados en 2015, está claro que TensorFlow tiene
una mayor comunidad de desarrolladores.

Aparte de los factores anteriores, debes saber que Tensorflow también proporciona soporte para
Keras. Tensorflow proporciona el submódulo tf.keras que le permite soltar el código de Tensorflow
directamente en los modelos de Keras. Puedes obtener características tanto de Keras como de
Tensorflow usando tf.keras, es decir, puedes obtener lo mejor de ambos mundos.

V.3 Keras Vs TensorFlow - Diferencia entre Keras y Tensorflow

El siguiente código describe cómo utilizar tf.keras para crear sus modelos:

V.3 Keras Vs TensorFlow - Diferencia entre Keras y Tensorflow

Documentos

[1] L. Xu, F. Cai, Y. Hu, Z. Lin, and Q. Liu, “Using deep learning algorithms to perform accurate
spectral classification,” Optik, vol. 231, p. 166423, Apr. 2021, doi: 10.1016/j.ijleo.2021.166423.

[2] J. Gordon and J. M. Hernández-Lobato, “Combining deep generative and discriminative
models for Bayesian semi-supervised learning,” Pattern Recognit., vol. 100, p. 107156, Apr. 2020, doi:
10.1016/j.patcog.2019.107156.

[3] L. Zeng et al., “Deep learning trained algorithm maintains the quality of half-dose contrast-
enhanced liver computed tomography images: Comparison with hybrid iterative reconstruction:
Study for the application of deep learning noise reduction technology in low dose,” Eur. J. Radiol.,
vol. 135, p. 109487, Feb. 2021, doi: 10.1016/j.ejrad.2020.109487.

[4] S. Khan, N. Islam, Z. Jan, I. Ud Din, and J. J. P. C. Rodrigues, “A novel deep learning based
framework for the detection and classification of breast cancer using transfer learning,” Pattern
Recognit. Lett., vol. 125, pp. 1–6, Jul. 2019, doi: 10.1016/j.patrec.2019.03.022.

VI. Referencias

[5] Y. He, P. Wu, Y. Li, Y. Wang, F. Tao, and Y. Wang, “A generic energy prediction model of
machine tools using deep learning algorithms,” Appl. Energy, vol. 275, p. 115402, Oct. 2020, doi:
10.1016/j.apenergy.2020.115402.

[6] M. Jiang, J. Liu, L. Zhang, and C. Liu, “An improved Stacking framework for stock index
prediction by leveraging tree-based ensemble models and deep learning algorithms,” Phys. Stat.
Mech. Its Appl., vol. 541, p. 122272, Mar. 2020, doi: 10.1016/j.physa.2019.122272.

[7] D. Kißkalt, A. Mayr, B. Lutz, A. Rögele, and J. Franke, “Streamlining the development of data-
driven industrial applications by automated machine learning,” Procedia CIRP, vol. 93, pp. 401–406,
Jan. 2020, doi: 10.1016/j.procir.2020.04.009.

[8] Y. Chen, X. Zou, K. Li, K. Li, X. Yang, and C. Chen, “Multiple local 3D CNNs for region-based
prediction in smart cities,” Inf. Sci., vol. 542, pp. 476–491, Jan. 2021, doi: 10.1016/j.ins.2020.06.026.

VI. Referencias

[9] T. D. Akinosho et al., “Deep learning in the construction industry: A review of present status
and future innovations,” J. Build. Eng., vol. 32, p. 101827, Nov. 2020, doi: 10.1016/j.jobe.2020.101827.

[10] M.-A. Zamora-Hernández, J. A. Castro-Vargas, J. Azorin-Lopez, and J. Garcia-Rodriguez,
“Deep learning-based visual control assistant for assembly in Industry 4.0,” Comput. Ind., vol. 131, p.
103485, Oct. 2021, doi: 10.1016/j.compind.2021.103485.

[11] R. Espinosa, H. Ponce, and S. Gutiérrez, “Click-event sound detection in automotive industry
using machine/deep learning,” Appl. Soft Comput., vol. 108, p. 107465, Sep. 2021, doi:
10.1016/j.asoc.2021.107465.

[12] J. Leng et al., “A loosely-coupled deep reinforcement learning approach for order
acceptance decision of mass-individualized printed circuit board manufacturing in industry 4.0,” J.
Clean. Prod., vol. 280, p. 124405, Jan. 2021, doi: 10.1016/j.jclepro.2020.124405.

VI. Referencias

[13] M. Mishra, J. Nayak, B. Naik, and A. Abraham, “Deep learning in electrical utility industry: A
comprehensive review of a decade of research,” Eng. Appl. Artif. Intell., vol. 96, p. 104000, Nov. 2020,
doi: 10.1016/j.engappai.2020.104000.

[14] P. Tripicchio and S. D’Avella, “Is Deep Learning ready to satisfy Industry needs?,” Procedia
Manuf., vol. 51, pp. 1192–1199, Jan. 2020, doi: 10.1016/j.promfg.2020.10.167.

[15] R. Oberleitner and J. Schwartz, “5.29 Integrating Deep Learning With Behavior Imaging to
Accelerate Industry Learning of Autism Core Deficits,” J. Am. Acad. Child Adolesc. Psychiatry, vol. 56,
no. 10, Supplement, p. S263, Oct. 2017, doi: 10.1016/j.jaac.2017.09.312.

[16] T. Kotsiopoulos, P. Sarigiannidis, D. Ioannidis, and D. Tzovaras, “Machine Learning and Deep
Learning in smart manufacturing: The Smart Grid paradigm,” Comput. Sci. Rev., vol. 40, p. 100341,
May 2021, doi: 10.1016/j.cosrev.2020.100341.

VI. Referencias

[17] C. Yang, H. Lan, F. Gao, and F. Gao, “Review of deep learning for photoacoustic imaging,”
Photoacoustics, vol. 21, p. 100215, Mar. 2021, doi: 10.1016/j.pacs.2020.100215.

[18] L. Zhu, P. Spachos, E. Pensini, and K. N. Plataniotis, “Deep learning and machine vision for
food processing: A survey,” Curr. Res. Food Sci., vol. 4, pp. 233–249, Jan. 2021, doi:
10.1016/j.crfs.2021.03.009.

[19] X. Xu, J. Wang, B. Zhong, W. Ming, and M. Chen, “Deep learning-based tool wear prediction
and its application for machining process using multi-scale feature fusion and channel attention
mechanism,” Measurement, vol. 177, p. 109254, Jun. 2021, doi: 10.1016/j.measurement.2021.109254.

[20] S. Shajun Nisha, M. Mohamed Sathik, and M. Nagoor Meeral, “3 - Application, algorithm, tools
directly related to deep learning,” in Handbook of Deep Learning in Biomedical Engineering, V. E.
Balas, B. K. Mishra, and R. Kumar, Eds. Academic Press, 2021, pp. 61–84. doi: 10.1016/B978-0-12-
823014-5.00007-7.

VI. Referencias

Libros

• https://www.pdfdrive.com/introduction-to-deep-learning-using-r-a-step-by-step-guide-to-learning-
and-implementing-deep-learning-models-using-r-e158252417.html

• https://www.pdfdrive.com/learn-keras-for-deep-neural-networks-a-fast-track-approach-to-modern-
deep-learning-with-python-e185770502.html

• https://www.pdfdrive.com/applied-deep-learning-a-case-based-approach-to-understanding-deep-
neural-networks-e176380114.html

• https://www.pdfdrive.com/deep-learning-adaptive-computation-and-machine-learning-e176370174.html
• https://www.pdfdrive.com/deep-learning-in-python-master-data-science-and-machine-learning-with-

modern-neural-networks-written-in-python-theano-and-tensorflow-e196480537.html
• https://www.pdfdrive.com/deep-learning-with-python-e54511249.html
• https://www.pdfdrive.com/learning-tensorflow-a-guide-to-building-deep-learning-systems-

e158557113.html
• https://www.pdfdrive.com/deep-learning-with-applications-using-python-chatbots-and-face-object-

and-speech-recognition-with-tensorflow-and-keras-e184016771.html
• https://www.pdfdrive.com/mastering-machine-learning-with-python-in-six-steps-a-practical-

implementation-guide-to-predictive-data-analytics-using-python-e168776616.html
• https://hackr.io/blog/artificial-intelligence-books

VI. Referencias

https://www.pdfdrive.com/introduction-to-deep-learning-using-r-a-step-by-step-guide-to-learning-and-implementing-deep-learning-models-using-r-e158252417.html
https://www.pdfdrive.com/introduction-to-deep-learning-using-r-a-step-by-step-guide-to-learning-and-implementing-deep-learning-models-using-r-e158252417.html
https://www.pdfdrive.com/learn-keras-for-deep-neural-networks-a-fast-track-approach-to-modern-deep-learning-with-python-e185770502.html
https://www.pdfdrive.com/learn-keras-for-deep-neural-networks-a-fast-track-approach-to-modern-deep-learning-with-python-e185770502.html
https://www.pdfdrive.com/applied-deep-learning-a-case-based-approach-to-understanding-deep-neural-networks-e176380114.html
https://www.pdfdrive.com/applied-deep-learning-a-case-based-approach-to-understanding-deep-neural-networks-e176380114.html
https://www.pdfdrive.com/deep-learning-adaptive-computation-and-machine-learning-e176370174.html
https://www.pdfdrive.com/deep-learning-in-python-master-data-science-and-machine-learning-with-modern-neural-networks-written-in-python-theano-and-tensorflow-e196480537.html
https://www.pdfdrive.com/deep-learning-in-python-master-data-science-and-machine-learning-with-modern-neural-networks-written-in-python-theano-and-tensorflow-e196480537.html
https://www.pdfdrive.com/deep-learning-with-python-e54511249.html
https://www.pdfdrive.com/learning-tensorflow-a-guide-to-building-deep-learning-systems-e158557113.html
https://www.pdfdrive.com/learning-tensorflow-a-guide-to-building-deep-learning-systems-e158557113.html
https://www.pdfdrive.com/deep-learning-with-applications-using-python-chatbots-and-face-object-and-speech-recognition-with-tensorflow-and-keras-e184016771.html
https://www.pdfdrive.com/deep-learning-with-applications-using-python-chatbots-and-face-object-and-speech-recognition-with-tensorflow-and-keras-e184016771.html
https://www.pdfdrive.com/mastering-machine-learning-with-python-in-six-steps-a-practical-implementation-guide-to-predictive-data-analytics-using-python-e168776616.html
https://www.pdfdrive.com/mastering-machine-learning-with-python-in-six-steps-a-practical-implementation-guide-to-predictive-data-analytics-using-python-e168776616.html
https://hackr.io/blog/artificial-intelligence-books

Tutoriales
• https://www.fast.ai
• https://www.coursera.org/learn/machine-learning
• https://www.coursera.org/specializations/deep-learning
• https://www.udemy.com/course/machinelearning/
• https://www.edx.org/professional-certificate/harvardx-data-science
• https://www.udacity.com/course/intro-to-machine-learning-nanodegree--nd229
• https://online.stanford.edu/courses/cs229-machine-learning
• https://www.edx.org/learn/machine-learning
• https://learn.datacamp.com/courses/introduction-to-machine-learning-with-r

VI. Referencias

https://www.fast.ai/
https://www.coursera.org/learn/machine-learning
https://www.coursera.org/specializations/deep-learning
https://www.udemy.com/course/machinelearning/
https://www.edx.org/professional-certificate/harvardx-data-science
https://www.udacity.com/course/intro-to-machine-learning-nanodegree--nd229
https://online.stanford.edu/courses/cs229-machine-learning
https://www.edx.org/learn/machine-learning
https://learn.datacamp.com/courses/introduction-to-machine-learning-with-r

Charlas y Webinars

• https://www.brighttalk.com/topic/deep-learning/
• https://www.dataiku.com/webinars/

VI. Referencias

https://www.brighttalk.com/topic/deep-learning/

¡Síguenos, ponte en contacto!

https://www.linkedin.com/company/certiprof
http://facebook.com/certiprof
https://www.instagram.com/certiprof_llc/
https://twitter.com/certiprof
https://www.youtube.com/channel/UCjNbrARuWdns7aPrpo0og5g

	Diapositiva 1
	Diapositiva 2: ARTIFICIAL INTELLIGENCE EXPERT CERTIFICATE CAIEC®
	Diapositiva 3: ¿Quién es Certiprof®?
	Diapositiva 4: Nuestras Afiliaciones
	Diapositiva 5: IT Certification Council - ITCC
	Diapositiva 6: Agile Alliance
	Diapositiva 7: Credly
	Diapositiva 8: Insignias Digitales
	Diapositiva 9: ¿Por qué son importantes?
	Diapositiva 10: ¿Por qué son importantes?
	Diapositiva 11: ¿Por qué son importantes?
	Diapositiva 12
	Diapositiva 13: ¿Por qué es importante obtener su certificado?
	Diapositiva 14: ¿Por qué es importante obtener su certificado?
	Diapositiva 15: Insignia
	Diapositiva 16: Aprendizaje Permanente
	Diapositiva 17
	Diapositiva 18: I. Fundamentos del Aprendizaje Profundo
	Diapositiva 19: I.1 Representación de Redes Neuronales
	Diapositiva 20: I.1 Representación de Redes Neuronales
	Diapositiva 21: I.1 Representación de Redes Neuronales
	Diapositiva 22: I.1 Representación de Redes Neuronales
	Diapositiva 23: I.1 Representación de Redes Neuronales
	Diapositiva 24: I.1 Representación de Redes Neuronales
	Diapositiva 25: I.1 Representación de Redes Neuronales
	Diapositiva 26: I.1 Representación de Redes Neuronales
	Diapositiva 27: I.1 Representación de Redes Neuronales
	Diapositiva 28: I.1 Representación de Redes Neuronales
	Diapositiva 29: I.1 Representación de Redes Neuronales
	Diapositiva 30: I.1 Representación de Redes Neuronales
	Diapositiva 31: I.1 Representación de Redes Neuronales
	Diapositiva 32: I.1 Representación de Redes Neuronales
	Diapositiva 33: I.1 Representación de Redes Neuronales
	Diapositiva 34: I.1 Representación de Redes Neuronales
	Diapositiva 35: I.1 Representación de Redes Neuronales
	Diapositiva 36: I.1 Representación de Redes Neuronales
	Diapositiva 37: I.1 Representación de Redes Neuronales
	Diapositiva 38: I.1 Representación de Redes Neuronales
	Diapositiva 39: I.1 Representación de Redes Neuronales
	Diapositiva 40: I.1 Representación de Redes Neuronales
	Diapositiva 41: I.1 Representación de Redes Neuronales
	Diapositiva 42: I.1 Representación de Redes Neuronales
	Diapositiva 43: I.1 Representación de Redes Neuronales
	Diapositiva 44: I.1 Representación de Redes Neuronales
	Diapositiva 45: I.1 Representación de Redes Neuronales
	Diapositiva 46: I.1 Representación de Redes Neuronales
	Diapositiva 47: I.1 Representación de Redes Neuronales
	Diapositiva 48: I.1 Representación de Redes Neuronales
	Diapositiva 49: I.2 Funciones de Activación no Lineal
	Diapositiva 50: I.2 Funciones de Activación no Lineal
	Diapositiva 51: I.2 Funciones de Activación no Lineal
	Diapositiva 52: I.2 Funciones de Activación no Lineal
	Diapositiva 53: I.2 Funciones de Activación no Lineal
	Diapositiva 54: I.2 Funciones de Activación no Lineal
	Diapositiva 55: I.2 Funciones de Activación no Lineal
	Diapositiva 56: I.2 Funciones de Activación no Lineal
	Diapositiva 57: I.2 Funciones de Activación no Lineal
	Diapositiva 58: I.2 Funciones de Activación no Lineal
	Diapositiva 59: I.2 Funciones de Activación no Lineal
	Diapositiva 60: I.2 Funciones de Activación no Lineal
	Diapositiva 61: I.2 Funciones de Activación no Lineal
	Diapositiva 62: I.2 Funciones de Activación no Lineal
	Diapositiva 63: I.2 Funciones de Activación no Lineal
	Diapositiva 64: I.2 Funciones de Activación no Lineal
	Diapositiva 65: I.2 Funciones de Activación no Lineal
	Diapositiva 66: I.3 Capas Ocultas
	Diapositiva 67: I.3 Capas Ocultas
	Diapositiva 68: I.3 Capas Ocultas
	Diapositiva 69: I.3 Capas Ocultas
	Diapositiva 70: I.3 Capas Ocultas
	Diapositiva 71: I.3 Capas Ocultas
	Diapositiva 72: I.3 Capas Ocultas
	Diapositiva 73: I.3 Capas Ocultas
	Diapositiva 74: I.3 Capas Ocultas
	Diapositiva 75: I.3 Capas Ocultas
	Diapositiva 76: I.3 Capas Ocultas
	Diapositiva 77: I.3 Capas Ocultas
	Diapositiva 78: I.3 Capas Ocultas
	Diapositiva 79: I.3 Capas Ocultas
	Diapositiva 80: I.3 Capas Ocultas
	Diapositiva 81: I.3 Capas Ocultas
	Diapositiva 82: I.3 Capas Ocultas
	Diapositiva 83: I.3 Capas Ocultas
	Diapositiva 84: I.3 Capas Ocultas
	Diapositiva 85: I.3 Capas Ocultas
	Diapositiva 86: I.3 Capas Ocultas
	Diapositiva 87: I.3 Capas Ocultas
	Diapositiva 88: I.3 Capas Ocultas
	Diapositiva 89: I.3 Capas Ocultas
	Diapositiva 90: I.3 Capas Ocultas
	Diapositiva 91: I.3 Capas Ocultas
	Diapositiva 92: I.3 Hidden Layers
	Diapositiva 93: I.3 Capas Ocultas
	Diapositiva 94: I.3 Capas Ocultas
	Diapositiva 95: I.3 Capas Ocultas
	Diapositiva 96: I.3 Capas Ocultas
	Diapositiva 97: I.3 Capas Ocultas
	Diapositiva 98: I.4 Proyecto Guiado: Construcción de un Clasificador de Dígitos Escritos a Mano
	Diapositiva 99: I.4 Proyecto Guiado: Construcción de un Clasificador de Dígitos Escritos a Mano
	Diapositiva 100: I.4 Proyecto Guiado: Construcción de un Clasificador de Dígitos Escritos a Mano
	Diapositiva 101: I.4 Proyecto Guiado: Construcción de un Clasificador de Dígitos Escritos a Mano
	Diapositiva 102: I.4 Proyecto Guiado: Construcción de un Clasificador de Dígitos Escritos a Mano
	Diapositiva 103: I.4 Proyecto Guiado: Construcción de un Clasificador de Dígitos Escritos a Mano
	Diapositiva 104: I.4 Proyecto Guiado: Construcción de un Clasificador de Dígitos Escritos a Mano
	Diapositiva 105: I.4 Proyecto Guiado: Construcción de un Clasificador de Dígitos Escritos a Mano
	Diapositiva 106: II. Proyecto de Aprendizaje Automático
	Diapositiva 107: II.1 Recorrido por el Proyecto de Aprendizaje Automático: Depuración de Datos
	Diapositiva 108: II.1 Recorrido por el Proyecto de Aprendizaje Automático: Depuración de Datos
	Diapositiva 109: II.1 Recorrido por el Proyecto de Aprendizaje Automático: Depuración de Datos
	Diapositiva 110: II.1 Recorrido por el Proyecto de Aprendizaje Automático: Depuración de Datos
	Diapositiva 111: II.1 Recorrido por el Proyecto de Aprendizaje Automático: Depuración de Datos
	Diapositiva 112: II.1 Recorrido por el Proyecto de Aprendizaje Automático: Depuración de Datos
	Diapositiva 113: II.1 Recorrido por el Proyecto de Aprendizaje Automático: Depuración de Datos
	Diapositiva 114: II.1 Recorrido por el Proyecto de Aprendizaje Automático: Depuración de Datos
	Diapositiva 115: II.1 Recorrido por el Proyecto de Aprendizaje Automático: Depuración de Datos
	Diapositiva 116: II.1 Recorrido por el Proyecto de Aprendizaje Automático: Depuración de Datos
	Diapositiva 117: II.1 Recorrido por el Proyecto de Aprendizaje Automático: Depuración de Datos
	Diapositiva 118: II.1 Recorrido por el Proyecto de Aprendizaje Automático: Depuración de Datos
	Diapositiva 119: II.1 Recorrido por el Proyecto de Aprendizaje Automático: Depuración de Datos
	Diapositiva 120: II.1 Recorrido por el Proyecto de Aprendizaje Automático: Depuración de Datos
	Diapositiva 121: II.1 Recorrido por el Proyecto de Aprendizaje Automático: Depuración de Datos
	Diapositiva 122: II.1 Recorrido por el Proyecto de Aprendizaje Automático: Depuración de Datos
	Diapositiva 123: II.1 Recorrido por el Proyecto de Aprendizaje Automático: Depuración de Datos
	Diapositiva 124: II.1 Recorrido por el Proyecto de Aprendizaje Automático: Depuración de Datos
	Diapositiva 125: II.1 Recorrido por el Proyecto de Aprendizaje Automático: Depuración de Datos
	Diapositiva 126: II.1 Recorrido por el Proyecto de Aprendizaje Automático: Depuración de Datos
	Diapositiva 127: II.1 Recorrido por el Proyecto de Aprendizaje Automático: Depuración de Datos
	Diapositiva 128: II.1 Recorrido por el Proyecto de Aprendizaje Automático: Depuración de Datos
	Diapositiva 129: II.1 Recorrido por el Proyecto de Aprendizaje Automático: Depuración de Datos
	Diapositiva 130: II.1 Recorrido por el Proyecto de Aprendizaje Automático: Depuración de Datos
	Diapositiva 131: II.1 Recorrido por el Proyecto de Aprendizaje Automático: Depuración de Datos
	Diapositiva 132: II.1 Recorrido por el Proyecto de Aprendizaje Automático: Depuración de Datos
	Diapositiva 133: II.1 Recorrido por el Proyecto de Aprendizaje Automático: Depuración de Datos
	Diapositiva 134: II.2 Recorrido por el Proyecto de Aprendizaje Automático: Preparación de las Características
	Diapositiva 135: II.2 Recorrido por el Proyecto de Aprendizaje Automático: Preparación de las Características
	Diapositiva 136: II.2 Recorrido por el Proyecto de Aprendizaje Automático: Preparación de las Características
	Diapositiva 137: II.2 Recorrido por el Proyecto de Aprendizaje Automático: Preparación de las Características
	Diapositiva 138: II.2 Recorrido por el Proyecto de Aprendizaje Automático: Preparación de las Características
	Diapositiva 139: II.2 Recorrido por el Proyecto de Aprendizaje Automático: Preparación de las Características
	Diapositiva 140: II.2 Recorrido por el Proyecto de Aprendizaje Automático: Preparación de las Características
	Diapositiva 141: II.2 Recorrido por el Proyecto de Aprendizaje Automático: Preparación de las Características
	Diapositiva 142: II.2 Recorrido por el Proyecto de Aprendizaje Automático: Preparación de las Características
	Diapositiva 143: II.2 Recorrido por el Proyecto de Aprendizaje Automático: Preparación de las Características
	Diapositiva 144: II.2 Recorrido por el Proyecto de Aprendizaje Automático: Preparación de las Características
	Diapositiva 145: II.2 Recorrido por el Proyecto de Aprendizaje Automático: Preparación de las Características
	Diapositiva 146: II.2 Recorrido por el Proyecto de Aprendizaje Automático: Preparación de las Características
	Diapositiva 147: II.2 Recorrido por el Proyecto de Aprendizaje Automático: Preparación de las Características
	Diapositiva 148: II.2 Recorrido por el Proyecto de Aprendizaje Automático: Preparación de las Características
	Diapositiva 149: II.2 Recorrido por el Proyecto de Aprendizaje Automático: Preparación de las Características
	Diapositiva 150: II.2 Recorrido por el Proyecto de Aprendizaje Automático: Preparación de las Características
	Diapositiva 151: II.2 Recorrido por el Proyecto de Aprendizaje Automático: Preparación de las Características
	Diapositiva 152: II.2 Recorrido por el Proyecto de Aprendizaje Automático: Preparación de las Características
	Diapositiva 153: II.2 Recorrido por el Proyecto de Aprendizaje Automático: Preparación de las Características
	Diapositiva 154: II.3 Recorrido por el Proyecto de Aprendizaje Automático: Hacer Predicciones
	Diapositiva 155: II.3 Recorrido por el Proyecto de Aprendizaje Automático: Hacer Predicciones
	Diapositiva 156: II.3 Recorrido por el Proyecto de Aprendizaje Automático: Hacer Predicciones
	Diapositiva 157: II.3 Recorrido por el Proyecto de Aprendizaje Automático: Hacer Predicciones
	Diapositiva 158: II.3 Recorrido por el Proyecto de Aprendizaje Automático: Hacer Predicciones
	Diapositiva 159: II.3 Recorrido por el Proyecto de Aprendizaje Automático: Hacer Predicciones
	Diapositiva 160: II.3 Recorrido por el Proyecto de Aprendizaje Automático: Hacer Predicciones
	Diapositiva 161: II.3 Recorrido por el Proyecto de Aprendizaje Automático: Hacer Predicciones
	Diapositiva 162: II.3 Recorrido por el Proyecto de Aprendizaje Automático: Hacer Predicciones
	Diapositiva 163: II.3 Recorrido por el Proyecto de Aprendizaje Automático: Hacer Predicciones
	Diapositiva 164: II.3 Recorrido por el Proyecto de Aprendizaje Automático: Hacer Predicciones
	Diapositiva 165: II.3 Recorrido por el Proyecto de Aprendizaje Automático: Hacer Predicciones
	Diapositiva 166: II.3 Recorrido por el Proyecto de Aprendizaje Automático: Hacer Predicciones
	Diapositiva 167: II.3 Recorrido por el Proyecto de Aprendizaje Automático: Hacer Predicciones
	Diapositiva 168: II.3 Recorrido por el Proyecto de Aprendizaje Automático: Hacer Predicciones
	Diapositiva 169: II.3 Recorrido por el Proyecto de Aprendizaje Automático: Hacer Predicciones
	Diapositiva 170: II.3 Recorrido por el Proyecto de Aprendizaje Automático: Hacer Predicciones
	Diapositiva 171: II.3 Recorrido por el Proyecto de Aprendizaje Automático: Hacer Predicciones
	Diapositiva 172: II.3 Recorrido por el Proyecto de Aprendizaje Automático: Hacer Predicciones
	Diapositiva 173: II.3 Recorrido por el Proyecto de Aprendizaje Automático: Hacer Predicciones
	Diapositiva 174: II.3 Recorrido por el Proyecto de Aprendizaje Automático: Hacer Predicciones
	Diapositiva 175: II.3 Recorrido por el Proyecto de Aprendizaje Automático: Hacer Predicciones
	Diapositiva 176: II.3 Recorrido por el Proyecto de Aprendizaje Automático: Hacer Predicciones
	Diapositiva 177: II.3 Recorrido por el Proyecto de Aprendizaje Automático: Hacer Predicciones
	Diapositiva 178: II.3 Recorrido por el Proyecto de Aprendizaje Automático: Hacer Predicciones
	Diapositiva 179: II.3 Recorrido por el Proyecto de Aprendizaje Automático: Hacer Predicciones
	Diapositiva 180: II.3 Recorrido por el Proyecto de Aprendizaje Automático: Hacer Predicciones
	Diapositiva 181: II.3 Recorrido por el Proyecto de Aprendizaje Automático: Hacer Predicciones
	Diapositiva 182: II.3 Recorrido por el Proyecto de Aprendizaje Automático: Hacer Predicciones
	Diapositiva 183: II.3 Recorrido por el Proyecto de Aprendizaje Automático: Hacer Predicciones
	Diapositiva 184: II.3 Recorrido por el Proyecto de Aprendizaje Automático: Hacer Predicciones
	Diapositiva 185: II.3 Recorrido por el Proyecto de Aprendizaje Automático: Hacer Predicciones
	Diapositiva 186: II.3 Recorrido por el Proyecto de Aprendizaje Automático: Hacer Predicciones
	Diapositiva 187: Puntos Clave
	Diapositiva 188: Puntos Clave
	Diapositiva 189: III. Fundamentos de Kaggle
	Diapositiva 190: Fundamentos de Kaggle
	Diapositiva 191: Fundamentos de Kaggle
	Diapositiva 192: III.1 Cómo Empezar a Usar Kaggle
	Diapositiva 193: III.1 Cómo Empezar a Usar Kaggle
	Diapositiva 194: III.1 Cómo Empezar a Usar Kaggle
	Diapositiva 195: III.1 Cómo Empezar a Usar Kaggle
	Diapositiva 196: III.1 Cómo Empezar a Usar Kaggle
	Diapositiva 197: III.1 Cómo Empezar a Usar Kaggle
	Diapositiva 198: III.1 Cómo Empezar a Usar Kaggle
	Diapositiva 199: III.1 Cómo Empezar a Usar Kaggle
	Diapositiva 200: III.1 Cómo Empezar a Usar Kaggle
	Diapositiva 201: III.1 Cómo Empezar a Usar Kaggle
	Diapositiva 202: III.1 Cómo Empezar a Usar Kaggle
	Diapositiva 203: III.1 Cómo Empezar a Usar Kaggle
	Diapositiva 204: III.1 Cómo Empezar a Usar Kaggle
	Diapositiva 205: III.1 Cómo Empezar a Usar Kaggle
	Diapositiva 206: III.1 Cómo Empezar a Usar Kaggle
	Diapositiva 207: III.1 Cómo Empezar a Usar Kaggle
	Diapositiva 208: III.1 Cómo Empezar a Usar Kaggle
	Diapositiva 209: III.1 Cómo Empezar a Usar Kaggle
	Diapositiva 210: III.1 Cómo Empezar a Usar Kaggle
	Diapositiva 211: III.1 Cómo Empezar a Usar Kaggle
	Diapositiva 212: III.1 Cómo Empezar a Usar Kaggle
	Diapositiva 213: III.1 Cómo Empezar a Usar Kaggle
	Diapositiva 214: III.1 Cómo Empezar a Usar Kaggle
	Diapositiva 215: III.1 Cómo Empezar a Usar Kaggle
	Diapositiva 216: III.1 Cómo Empezar a Usar Kaggle
	Diapositiva 217: III.1 Cómo Empezar a Usar Kaggle
	Diapositiva 218: III.1 Cómo Empezar a Usar Kaggle
	Diapositiva 219: III.1 Cómo Empezar a Usar Kaggle
	Diapositiva 220: III.1 Cómo Empezar a Usar Kaggle
	Diapositiva 221: III.1 Cómo Empezar a Usar Kaggle
	Diapositiva 222: III.1 Cómo Empezar a Usar Kaggle
	Diapositiva 223: III.1 Cómo Empezar a Usar Kaggle
	Diapositiva 224: III.1 Cómo Empezar a Usar Kaggle
	Diapositiva 225: III.1 Cómo Empezar a Usar Kaggle
	Diapositiva 226: III.1 Cómo Empezar a Usar Kaggle
	Diapositiva 227: III.1 Cómo Empezar a Usar Kaggle
	Diapositiva 228: III.1 Cómo Empezar a Usar Kaggle
	Diapositiva 229: III.1 Cómo Empezar a Usar Kaggle
	Diapositiva 230: III.1 Cómo Empezar a Usar Kaggle
	Diapositiva 231: III.1 Cómo Empezar a Usar Kaggle
	Diapositiva 232: III.1 Cómo Empezar a Usar Kaggle
	Diapositiva 233: III.1 Cómo Empezar a Usar Kaggle
	Diapositiva 234: III.1 Cómo Empezar a Usar Kaggle
	Diapositiva 235: III.1 Cómo Empezar a Usar Kaggle
	Diapositiva 236: III.1 Cómo Empezar a Usar Kaggle
	Diapositiva 237: III.1 Cómo Empezar a Usar Kaggle
	Diapositiva 238: III.1 Cómo Empezar a Usar Kaggle
	Diapositiva 239: III.1 Cómo Empezar a Usar Kaggle
	Diapositiva 240: III.2 Preparación, Selección e Ingeniería de las Características
	Diapositiva 241: III.2 Preparación, Selección e Ingeniería de las Características
	Diapositiva 242: III.2 Preparación, Selección e Ingeniería de las Características
	Diapositiva 243: III.2 Preparación, Selección e Ingeniería de las Características
	Diapositiva 244: III.2 Preparación, Selección e Ingeniería de las Características
	Diapositiva 245: III.2 Preparación, Selección e Ingeniería de las Características
	Diapositiva 246: III.2 Preparación, Selección e Ingeniería de las Características
	Diapositiva 247: III.2 Preparación, Selección e Ingeniería de las Características
	Diapositiva 248: III.2 Preparación, Selección e Ingeniería de las Características
	Diapositiva 249: III.2 Preparación, Selección e Ingeniería de las Características
	Diapositiva 250: III.2 Preparación, Selección e Ingeniería de las Características
	Diapositiva 251: III.2 Preparación, Selección e Ingeniería de las Características
	Diapositiva 252: III.2 Preparación, Selección e Ingeniería de las Características
	Diapositiva 253: III.2 Preparación, Selección e Ingeniería de las Características
	Diapositiva 254: III.2 Preparación, Selección e Ingeniería de las Características
	Diapositiva 255: III.2 Preparación, Selección e Ingeniería de las Características
	Diapositiva 256: III.2 Preparación, Selección e Ingeniería de las Características
	Diapositiva 257: III.2 Preparación, Selección e Ingeniería de las Características
	Diapositiva 258: III.2 Preparación, Selección e Ingeniería de las Características
	Diapositiva 259: III.2 Preparación, Selección e Ingeniería de las Características
	Diapositiva 260: III.2 Preparación, Selección e Ingeniería de las Características
	Diapositiva 261: III.2 Preparación, Selección e Ingeniería de las Características
	Diapositiva 262: III.2 Preparación, Selección e Ingeniería de las Características
	Diapositiva 263: III.2 Preparación, Selección e Ingeniería de las Características
	Diapositiva 264: III.2 Preparación, Selección e Ingeniería de las Características
	Diapositiva 265: III.2 Preparación, Selección e Ingeniería de las Características
	Diapositiva 266: III.2 Preparación, Selección e Ingeniería de las Características
	Diapositiva 267: III.2 Preparación, Selección e Ingeniería de las Características
	Diapositiva 268: III.2 Preparación, Selección e Ingeniería de las Características
	Diapositiva 269: III.2 Preparación, Selección e Ingeniería de las Características
	Diapositiva 270: III.2 Preparación, Selección e Ingeniería de las Características
	Diapositiva 271: III.2 Preparación, Selección e Ingeniería de las Características
	Diapositiva 272: III.2 Preparación, Selección e Ingeniería de las Características
	Diapositiva 273: III.2 Preparación, Selección e Ingeniería de las Características
	Diapositiva 274: III.2 Preparación, Selección e Ingeniería de las Características
	Diapositiva 275: III.2 Preparación, Selección e Ingeniería de las Características
	Diapositiva 276: III.2 Preparación, Selección e Ingeniería de las Características
	Diapositiva 277: III.2 Preparación, Selección e Ingeniería de las Características
	Diapositiva 278: III.2 Preparación, Selección e Ingeniería de las Características
	Diapositiva 279: III.2 Preparación, Selección e Ingeniería de las Características
	Diapositiva 280: III.2 Preparación, Selección e Ingeniería de las Características
	Diapositiva 281: III.2 Preparación, Selección e Ingeniería de las Características
	Diapositiva 282: III.2 Preparación, Selección e Ingeniería de las Características
	Diapositiva 283: III.2 Preparación, Selección e Ingeniería de las Características
	Diapositiva 284: III.2 Preparación, Selección e Ingeniería de las Características
	Diapositiva 285: III.2 Preparación, Selección e Ingeniería de las Características
	Diapositiva 286: III.3 Selección y Ajuste del Modelo
	Diapositiva 287: III.3 Selección y Ajuste del Modelo
	Diapositiva 288: III.3 Selección y Ajuste del Modelo
	Diapositiva 289: III.3 Selección y Ajuste del Modelo
	Diapositiva 290: III.3 Selección y Ajuste del Modelo
	Diapositiva 291: III.3 Selección y Ajuste del Modelo
	Diapositiva 292: III.3 Selección y Ajuste del Modelo
	Diapositiva 293: III.3 Selección y Ajuste del Modelo
	Diapositiva 294: III.3 Selección y Ajuste del Modelo
	Diapositiva 295: III.3 Selección y Ajuste del Modelo
	Diapositiva 296: III.3 Selección y Ajuste del Modelo
	Diapositiva 297: III.3 Selección y Ajuste del Modelo
	Diapositiva 298: III.3 Selección y Ajuste del Modelo
	Diapositiva 299: III.3 Selección y Ajuste del Modelo
	Diapositiva 300: III.3 Selección y Ajuste del Modelo
	Diapositiva 301: III.3 Selección y Ajuste del Modelo
	Diapositiva 302: III.3 Selección y Ajuste del Modelo
	Diapositiva 303: III.3 Selección y Ajuste del Modelo
	Diapositiva 304: III.3 Selección y Ajuste del Modelo
	Diapositiva 305: III.3 Selección y Ajuste del Modelo
	Diapositiva 306: III.3 Selección y Ajuste del Modelo
	Diapositiva 307: III.3 Selección y Ajuste del Modelo
	Diapositiva 308: III.3 Selección y Ajuste del Modelo
	Diapositiva 309: III.3 Selección y Ajuste del Modelo
	Diapositiva 310: III.3 Selección y Ajuste del Modelo
	Diapositiva 311: III.3 Selección y Ajuste del Modelo
	Diapositiva 312: III.3 Selección y Ajuste del Modelo
	Diapositiva 313: III.3 Selección y Ajuste del Modelo
	Diapositiva 314: III.3 Selección y Ajuste del Modelo
	Diapositiva 315: III.3 Selección y Ajuste del Modelo
	Diapositiva 316: III.3 Selección y Ajuste del Modelo
	Diapositiva 317: III.3 Selección y Ajuste del Modelo
	Diapositiva 318: III.3 Selección y Ajuste del Modelo
	Diapositiva 319: III.3 Selección y Ajuste del Modelo
	Diapositiva 320: III.3 Selección y Ajuste del Modelo
	Diapositiva 321: III.4 Proyecto Guiado: Creación de un Flujo de Trabajo Kaggle
	Diapositiva 322: III.4 Proyecto Guiado: Creación de un Flujo de Trabajo Kaggle
	Diapositiva 323: III.4 Proyecto Guiado: Creación de un Flujo de Trabajo Kaggle
	Diapositiva 324: III.4 Proyecto Guiado: Creación de un Flujo de Trabajo Kaggle
	Diapositiva 325: III.4 Proyecto Guiado: Creación de un Flujo de Trabajo Kaggle
	Diapositiva 326: III.4 Proyecto Guiado: Creación de un Flujo de Trabajo Kaggle
	Diapositiva 327: III.4 Proyecto Guiado: Creación de un Flujo de Trabajo Kaggle
	Diapositiva 328: III.4 Proyecto Guiado: Creación de un Flujo de Trabajo Kaggle
	Diapositiva 329: III.4 Proyecto Guiado: Creación de un Flujo de Trabajo Kaggle
	Diapositiva 330: III.4 Proyecto Guiado: Creación de un Flujo de Trabajo Kaggle
	Diapositiva 331: III.4 Proyecto Guiado: Creación de un Flujo de Trabajo Kaggle
	Diapositiva 332: III.4 Proyecto Guiado: Creación de un Flujo de Trabajo Kaggle
	Diapositiva 333: III.4 Proyecto Guiado: Creación de un Flujo de Trabajo Kaggle
	Diapositiva 334: III.4 Proyecto Guiado: Creación de un Flujo de Trabajo Kaggle
	Diapositiva 335: III.4 Proyecto Guiado: Creación de un Flujo de Trabajo Kaggle
	Diapositiva 336: III.4 Proyecto Guiado: Creación de un Flujo de Trabajo Kaggle
	Diapositiva 337: III.4 Proyecto Guiado: Creación de un Flujo de Trabajo Kaggle
	Diapositiva 338: III.4 Proyecto Guiado: Creación de un Flujo de Trabajo Kaggle
	Diapositiva 339: III.4 Proyecto Guiado: Creación de un Flujo de Trabajo Kaggle
	Diapositiva 340: III.4 Proyecto Guiado: Creación de un Flujo de Trabajo Kaggle
	Diapositiva 341: III.4 Proyecto Guiado: Creación de un Flujo de Trabajo Kaggle
	Diapositiva 342: III.4 Proyecto Guiado: Creación de un Flujo de Trabajo Kaggle
	Diapositiva 343: III.4 Proyecto Guiado: Creación de un Flujo de Trabajo Kaggle
	Diapositiva 344: III.4 Proyecto Guiado: Creación de un Flujo de Trabajo Kaggle
	Diapositiva 345: III.4 Proyecto Guiado: Creación de un Flujo de Trabajo Kaggle
	Diapositiva 346: III.4 Proyecto Guiado: Creación de un Flujo de Trabajo Kaggle
	Diapositiva 347: III.4 Proyecto Guiado: Creación de un Flujo de Trabajo Kaggle
	Diapositiva 348: IV. Conceptos de TensorFlow
	Diapositiva 349: IV.1 Presentación de TensorFlow
	Diapositiva 350: IV.1 Presentación de TensorFlow
	Diapositiva 351: IV.1 Presentación de TensorFlow
	Diapositiva 352: IV.1 Presentación de TensorFlow
	Diapositiva 353: IV.1 Presentación de TensorFlow
	Diapositiva 354: IV.1 Presentación de TensorFlow
	Diapositiva 355: IV.1 Presentación de TensorFlow
	Diapositiva 356: IV.1 Presentación de TensorFlow
	Diapositiva 357: IV.1 Presentación de TensorFlow
	Diapositiva 358: IV.1 Presentación de TensorFlow
	Diapositiva 359: IV.1 Presentación de TensorFlow
	Diapositiva 360: IV.1 Presentación de TensorFlow
	Diapositiva 361: IV.1 Presentación de TensorFlow
	Diapositiva 362: IV.1 Presentación de TensorFlow
	Diapositiva 363: IV.1 Presentación de TensorFlow
	Diapositiva 364: IV.1 Presentación de TensorFlow
	Diapositiva 365: IV.1 Presentación de TensorFlow
	Diapositiva 366: IV.1 Presentación de TensorFlow
	Diapositiva 367: IV.1 Presentación de TensorFlow
	Diapositiva 368: IV.1 Presentación de TensorFlow
	Diapositiva 369: IV.2 Fundamentos de TensorFlow
	Diapositiva 370: IV.2 Fundamentos de TensorFlow
	Diapositiva 371: IV.2 Fundamentos de TensorFlow
	Diapositiva 372: IV.2 Fundamentos de TensorFlow
	Diapositiva 373: IV.2 Fundamentos de TensorFlow
	Diapositiva 374: IV.2 Fundamentos de TensorFlow
	Diapositiva 375: IV.2 Fundamentos de TensorFlow
	Diapositiva 376: IV.2 Fundamentos de TensorFlow
	Diapositiva 377: IV.2 Fundamentos de TensorFlow
	Diapositiva 378: IV.2 Fundamentos de TensorFlow
	Diapositiva 379: IV.2 Fundamentos de TensorFlow
	Diapositiva 380: IV.2 Fundamentos de TensorFlow
	Diapositiva 381: IV.2 Fundamentos de TensorFlow
	Diapositiva 382: IV.2 Fundamentos de TensorFlow
	Diapositiva 383: IV.2 Fundamentos de TensorFlow
	Diapositiva 384: IV.2 Fundamentos de TensorFlow
	Diapositiva 385: IV.2 Fundamentos de TensorFlow
	Diapositiva 386: IV.2 Fundamentos de TensorFlow
	Diapositiva 387: IV.2 Fundamentos de TensorFlow
	Diapositiva 388: IV.2 Fundamentos de TensorFlow
	Diapositiva 389: IV.2 Fundamentos de TensorFlow
	Diapositiva 390: IV.2 Fundamentos de TensorFlow
	Diapositiva 391: IV.2 Fundamentos de TensorFlow
	Diapositiva 392: IV.2 Fundamentos de TensorFlow
	Diapositiva 393: IV.2 Fundamentos de TensorFlow
	Diapositiva 394: IV.2 Fundamentos de TensorFlow
	Diapositiva 395: IV.2 Fundamentos de TensorFlow
	Diapositiva 396: IV.2 Fundamentos de TensorFlow
	Diapositiva 397: IV.2 Fundamentos de TensorFlow
	Diapositiva 398: IV.2 Fundamentos de TensorFlow
	Diapositiva 399: IV.2 Fundamentos de TensorFlow
	Diapositiva 400: IV.2 Fundamentos de TensorFlow
	Diapositiva 401: IV.2 Fundamentos de TensorFlow
	Diapositiva 402: IV.2 Fundamentos de TensorFlow
	Diapositiva 403: IV.2 Fundamentos de TensorFlow
	Diapositiva 404: IV.2 Fundamentos de TensorFlow
	Diapositiva 405: IV.2 Fundamentos de TensorFlow
	Diapositiva 406: IV.2 Fundamentos de TensorFlow
	Diapositiva 407: IV.2 Fundamentos de TensorFlow
	Diapositiva 408: IV.2 Fundamentos de TensorFlow
	Diapositiva 409: IV.2 Fundamentos de TensorFlow
	Diapositiva 410: IV.3 Clasificación de la Red Neuronal en TensorFlow
	Diapositiva 411: IV.3 Clasificación de la Red Neuronal en TensorFlow
	Diapositiva 412: IV.3 Clasificación de la Red Neuronal en TensorFlow
	Diapositiva 413: IV.3 Clasificación de la Red Neuronal en TensorFlow
	Diapositiva 414: IV.3 Clasificación de la Red Neuronal en TensorFlow
	Diapositiva 415: IV.3 Clasificación de la Red Neuronal en TensorFlow
	Diapositiva 416: IV.3 Clasificación de la Red Neuronal en TensorFlow
	Diapositiva 417: IV.3 Clasificación de la Red Neuronal en TensorFlow
	Diapositiva 418: IV.3 Clasificación de la Red Neuronal en TensorFlow
	Diapositiva 419: IV.3 Clasificación de la Red Neuronal en TensorFlow
	Diapositiva 420: IV.3 Clasificación de la Red Neuronal en TensorFlow
	Diapositiva 421: IV.3 Clasificación de la Red Neuronal en TensorFlow
	Diapositiva 422: IV.3 Clasificación de la Red Neuronal en TensorFlow
	Diapositiva 423: IV.4 Regresión Lineal en TensorFlow
	Diapositiva 424: IV.4 Regresión Lineal en TensorFlow
	Diapositiva 425: IV.4 Regresión Lineal en TensorFlow
	Diapositiva 426: IV.4 Regresión Lineal en TensorFlow
	Diapositiva 427: IV.4 Regresión Lineal en TensorFlow
	Diapositiva 428: IV.4 Regresión Lineal en TensorFlow
	Diapositiva 429: IV.4 Regresión Lineal en TensorFlow
	Diapositiva 430: IV.4 Regresión Lineal en TensorFlow
	Diapositiva 431: IV.4 Regresión Lineal en TensorFlow
	Diapositiva 432: IV.4 Regresión Lineal en TensorFlow
	Diapositiva 433: IV.4 Regresión Lineal en TensorFlow
	Diapositiva 434: V. Bases de Keras
	Diapositiva 435: V. Bases de Keras
	Diapositiva 436: V.1 Capas de Keras
	Diapositiva 437: V.1 Capas de Keras
	Diapositiva 438: V.1 Capas de Keras
	Diapositiva 439: V.1 Capas de Keras
	Diapositiva 440: V.1 Capas de Keras
	Diapositiva 441: V.1 Capas de Keras
	Diapositiva 442: V.1 Capas de Keras
	Diapositiva 443: V.1 Capas de Keras
	Diapositiva 444: V.1 Capas de Keras
	Diapositiva 445: V.1 Capas de Keras
	Diapositiva 446: V.1 Capas de Keras
	Diapositiva 447: V.1 Capas de Keras
	Diapositiva 448: V.1 Capas de Keras
	Diapositiva 449: V.1 Capas de Keras
	Diapositiva 450: V.1 Capas de Keras
	Diapositiva 451: V.1 Capas de Keras
	Diapositiva 452: V.1 Capas de Keras
	Diapositiva 453: V.1 Capas de Keras
	Diapositiva 454: V.1 Capas de Keras
	Diapositiva 455: V.1 Capas de Keras
	Diapositiva 456: V.1 Capas de Keras
	Diapositiva 457: V.1 Capas de Keras
	Diapositiva 458: V.1 Capas de Keras
	Diapositiva 459: V.2 Implementación y Ejemplo de Aprendizaje con Aprendizaje Profundo
	Diapositiva 460: V.2 Implementación y Ejemplo de Aprendizaje con Aprendizaje Profundo
	Diapositiva 461: V.2 Implementación y Ejemplo de Aprendizaje con Aprendizaje Profundo
	Diapositiva 462: V.2 Implementación y Ejemplo de Aprendizaje con Aprendizaje Profundo
	Diapositiva 463: V.2 Implementación y Ejemplo de Aprendizaje con Aprendizaje Profundo
	Diapositiva 464: V.2 Implementación y Ejemplo de Aprendizaje con Aprendizaje Profundo
	Diapositiva 465: V.2 Implementación y Ejemplo de Aprendizaje con Aprendizaje Profundo
	Diapositiva 466: V.2 Implementación y Ejemplo de Aprendizaje con Aprendizaje Profundo
	Diapositiva 467: V.2 Implementación y Ejemplo de Aprendizaje con Aprendizaje Profundo
	Diapositiva 468: V.2 Implementación y Ejemplo de Aprendizaje con Aprendizaje Profundo
	Diapositiva 469: V.2 Implementación y Ejemplo de Aprendizaje con Aprendizaje Profundo
	Diapositiva 470: V.3 Keras Vs TensorFlow - Diferencia entre Keras y Tensorflow
	Diapositiva 471: V.3 Keras Vs TensorFlow - Diferencia entre Keras y Tensorflow
	Diapositiva 472: V.3 Keras Vs TensorFlow - Diferencia entre Keras y Tensorflow
	Diapositiva 473: V.3 Keras Vs TensorFlow - Diferencia entre Keras y Tensorflow
	Diapositiva 474: V.3 Keras Vs TensorFlow - Diferencia entre Keras y Tensorflow
	Diapositiva 475: V.3 Keras Vs TensorFlow - Diferencia entre Keras y Tensorflow
	Diapositiva 476: V.3 Keras Vs TensorFlow - Diferencia entre Keras y Tensorflow
	Diapositiva 477: V.3 Keras Vs TensorFlow - Diferencia entre Keras y Tensorflow
	Diapositiva 478: V.3 Keras Vs TensorFlow - Diferencia entre Keras y Tensorflow
	Diapositiva 479: VI. Referencias
	Diapositiva 480: VI. Referencias
	Diapositiva 481: VI. Referencias
	Diapositiva 482: VI. Referencias
	Diapositiva 483: VI. Referencias
	Diapositiva 484: VI. Referencias
	Diapositiva 485: VI. Referencias
	Diapositiva 486: VI. Referencias
	Diapositiva 487
	Diapositiva 488

