

DEVOPS ADVANCED
PROFESSIONAL CERTIFICATION

DAPC

3

Certiprof® es una entidad certificadora fundada en los Estados Unidos en 2015, ubicada actualmente en
Sunrise, Florida.

Nuestra filosofía se basa en la creación de conocimiento en comunidad y para ello su red colaborativa está
conformada por:

• Nuestros Lifelong Learners (LLL) se identifican como Aprendices Continuos, lo que demuestra su
compromiso inquebrantable con el aprendizaje permanente, que es de vital importancia en el mundo
digital en constante cambio y expansión de hoy. Independientemente de si ganan o no el examen.

• Las universidades, centros de formación, y facilitadores en todo el mundo forman parte de nuestra red de
aliados CPLS (Certified Partner For Learning Solutions).

• Los autores (co-creadores) son expertos de la industria o practicantes que, con su conocimiento,
desarrollan contenidos para la creación de nuevas certificaciones que respondan a las necesidades de la
industria.

• Personal Interno: Nuestro equipo distribuido con operaciones en India, Brasil, Colombia y Estados Unidos
está a cargo de superar obstáculos, encontrar soluciones y entregar resultados excepcionales.

¿Quién es Certiprof®?

4

Nuestras Afiliaciones

5

IT Certification Council - ITCC
Certiprof® es un miembro activo de ITCC.
Una de las ventajas de hacer parte del ITCC es como líderes del sector colaboran entre sí en un
formato abierto para explorar maneras nuevas o diferentes formas de hacer negocios que
inspiran y fomentan la innovación, estableciendo y compartiendo buenas prácticas que nos
permiten extender ese conocimiento a nuestra comunidad.

Certiprof ha contribuido a la elaboración de documentos blancos en el Career Path Ways
Taskforce, un grupo de trabajo que se implementó internamente para ofrecer a los estudiantes
la oportunidad de saber qué camino tomar después de una certificación.

Algunos de los miembros del ITCC
• IBM
• CISCO
• ADOBE
• AWS
• SAP
• GOOGLE
• ISACA

6

Agile Alliance

Certiprof® es un miembro corporativo de Agile Alliance.

Al unirnos al programa corporativo Agile Alliance,
continuamos empoderando a las personas ayudándolas a
alcanzar su potencial a través de la educación. Cada día,
brindamos más herramientas y recursos que permiten a
nuestros socios formar profesionales que buscan mejorar su
desarrollo profesional y sus habilidades.

https://www.agilealliance.org/organizations/certiprof/

https://www.agilealliance.org/organizations/certiprof/
https://www.agilealliance.org/organizations/certiprof/
https://www.agilealliance.org/organizations/certiprof/
https://www.agilealliance.org/organizations/certiprof/
https://www.agilealliance.org/organizations/certiprof/
https://www.agilealliance.org/organizations/certiprof/
https://www.agilealliance.org/organizations/certiprof/

7

Credly
Esta alianza permite que las personas y empresas certificadas con
Certiprof® cuenten con una distinción a nivel mundial a través de un
distintivo digital.

Credly es el emisor de insignias más importante del mundo y
empresas líderes en tecnología como IBM, Microsoft, PMI,Nokia, la
Universidad de Stanford, entre otras, emiten sus insignias con
Credly.

Empresas que emiten insignias de validación de conocimiento con
Credly:

• IBM
• Microsoft
• PMI
• Universidad de Stanford
• Certiprof

8

Insignias Digitales

Según el estudio del IT Certification Council (ITCC), años
atrás, la gente sabía muy poco sobre las insignias
digitales. Hoy, grandes empresas e instituciones
educativas de todo el mundo expiden insignias.

Las insignias digitales contienen metadatos detallados
sobre quién las ha obtenido, las competencias
requeridas y la organización que las ha expedido.
Algunas insignias incluso están vinculadas a las
actividades necesarias para obtenerlas.

Para las empresas e instituciones educativas, las
insignias y la información que proporcionan son tan
importantes que muchas decisiones, como las de
contratación o admisión, se basan en los datos que
aportan.

9

Las insignias digitales permiten a los profesionales
mostrar y verificar sus logros de manera
instantánea y global. Según un informe de Credly,
los perfiles de LinkedIn con insignias digitales
reciben un 40% más de atención por parte de
reclutadores y empleadores.

• Facilidad de Compartir y Verificar Logros:

En una encuesta realizada por Pearson y Credly, el
85% de los usuarios que obtuvieron insignias
digitales las compartieron en LinkedIn, y el 75%
reportó que esto mejoró su credibilidad profesional
en sus redes. Además, el 76% de los empleadores
encuestados afirmó que las insignias digitales les
ayudan a identificar rápidamente habilidades
específicas.

• Visibilidad en Plataformas Digitales:

¿Por qué son importantes?

10

¿Por qué son importantes?

Un estudio de la Asociación Internacional de
Gestión de Proyectos (PMI) encontró que los
candidatos que muestran insignias digitales de
gestión de proyectos tienen un 60% más de
probabilidades de ser contratados en comparación
con aquellos que solo mencionan sus habilidades
sin verificación digital.

• Impacto en la Contratación:

11

¿Por qué son importantes?

La visibilidad y verificación instantánea proporcionada
por las insignias digitales permiten a los profesionales no
solo demostrar sus habilidades, sino también construir
una marca personal fuerte. Según un estudio de LinkedIn,
los profesionales que utilizan insignias digitales tienen un
24% más de probabilidades de avanzar en sus carreras.
La certificación y las insignias digitales no son solo una
validación del conocimiento, sino también una
herramienta poderosa para la mejora continua y la
empleabilidad. En un mundo donde el aprendizaje
permanente se ha convertido en la norma, estas
credenciales son clave para el desarrollo profesional y la
competitividad en el mercado laboral global.

• Empoderamiento de la Marca Personal:

12

• No todas las insignias son iguales, y en Certiprof, estamos

comprometidos con ofrecerte más que un simple

reconocimiento digital. Al obtener una insignia emitida por

certiprof, estarás recibiendo una validación de tu

conocimiento respaldada por una de las entidades líderes

en certificación profesional a nivel mundial.

• Da el siguiente paso y obtén la insignia que te abrirá

puertas y te posicionará como un experto en tu campo.

13

¿Por qué es importante obtener su certificado?

• Prueba de experiencia: Su certificado es un reconocimiento
formal de las habilidades y conocimientos que ha adquirido.
Sirve como prueba verificable de sus cualificaciones y
demuestra su compromiso con la excelencia en su campo.

• Credibilidad y reconocimiento: En el competitivo mercado
laboral actual, las empresas y los compañeros valoran las
credenciales que le distinguen de los demás. Un certificado de
una institución reconocida, como Certiprof, proporciona
credibilidad instantánea e impulsa su reputación profesional.

• Avance profesional: Tener tu certificado puede abrirte las
puertas a nuevas oportunidades. Ya se trate de un ascenso, un
aumento de sueldo o un nuevo puesto de trabajo, las
certificaciones son un factor diferenciador clave que los
empleadores tienen en cuenta a la hora de evaluar a los
candidatos.

14

¿Por qué es importante obtener su certificado?

• Oportunidades de establecer contactos: Poseer un certificado
le conecta con una red de profesionales certificados. Muchas
organizaciones cuentan con grupos de antiguos alumnos o de
trabajo en red en los que puede compartir experiencias,
intercambiar ideas y ampliar su círculo profesional.

• Logro personal: Obtener una certificación es un logro
importante, y su certificado es un recordatorio tangible del
trabajo duro, la dedicación y el progreso que ha realizado. Es
algo de lo que puede sentirse orgulloso y mostrar a los demás.

15

Insignia

https://www.credly.com/org/certiprof/badge/devops-advanced-professional-certification-dapc.1

https://www.credly.com/org/certiprof/badge/software-project-leader-professional-certification-.1
https://www.credly.com/org/certiprof/badge/devops-advanced-professional-certification-dapc.1
https://www.credly.com/org/certiprof/badge/devops-advanced-professional-certification-dapc.1
https://www.credly.com/org/certiprof/badge/devops-advanced-professional-certification-dapc.1
https://www.credly.com/org/certiprof/badge/devops-advanced-professional-certification-dapc.1
https://www.credly.com/org/certiprof/badge/devops-advanced-professional-certification-dapc.1
https://www.credly.com/org/certiprof/badge/devops-advanced-professional-certification-dapc.1
https://www.credly.com/org/certiprof/badge/devops-advanced-professional-certification-dapc.1
https://www.credly.com/org/certiprof/badge/devops-advanced-professional-certification-dapc.1
https://www.credly.com/org/certiprof/badge/devops-advanced-professional-certification-dapc.1

16

Aprendizaje Permanente
• Certiprof ha creado una insignia especial para reconocer a

los aprendices constantes.
• Para el 2024, se han emitido más de 1,000,000 de estas

insignias en más de 11 idiomas.
Propósito y Filosofía
• Esta insignia está destinada a personas que creen

firmemente en que la educación puede cambiar vidas y
transformar el mundo.

• La filosofía detrás de la insignia es promover el compromiso
con el aprendizaje continuo a lo largo de la vida.

Acceso y Obtención de la Insignia
• La insignia de Lifelong Learning se entrega sin costo a

aquellos que se identifican con este enfoque de aprendizaje.
• Cualquier persona que se considere un aprendiz constante

puede reclamar su insignia visitando:

https://certiprof.com/pages/certiprof-lifelong-learning

https://certiprof.com/pages/certiprof-lifelong-learning
https://certiprof.com/pages/certiprof-lifelong-learning
https://certiprof.com/pages/certiprof-lifelong-learning
https://certiprof.com/pages/certiprof-lifelong-learning
https://certiprof.com/pages/certiprof-lifelong-learning
https://certiprof.com/pages/certiprof-lifelong-learning
https://certiprof.com/pages/certiprof-lifelong-learning
https://certiprof.com/pages/certiprof-lifelong-learning
https://certiprof.com/pages/certiprof-lifelong-learning

Parte 1: Introducción

19

Agenda

1. Surgimiento
2. Antecedentes
3. Conceptos Base de Devops

• Definiciones base
• Pilares y Principios de DevOps
• Organización - Team Topologies
• Integrando Ops en Dev

20

Objetivos:
Entrega de nuevas

funcionalidades
(idealmente de calidad)

Cultura de Producto
(Software Development)

Quiere entregar nuevas
funcionalidades

Objetivos:
Garantizar la "ejecución" de

las aplicaciones
(estabilidad)

Cultura de Servicio
(Deployment, Monitoring,

Support)

Quiere mantener la estabilidad y
los servicios disponibles

...Nació el Muro de la Confusión

21

2007: Patrick Debois 2008: Andrew
Shafer

2009: John Allspaw 2009: DevOpsDays,

Gante, Bélgica.

Patrick Debois

Introducción

22

DevOps es un movimiento originado en 2007, cuando Patrick Debois, un consultor
freelance, estuvo analizando el sector IT. Su objetivo principal era ganar experiencia en
todas las perspectivas en la cadena de valor IT. Tiene un blog bastante interesante.

En 2007 mientras Debois estaba en un proyecto de consultoría para el gobierno de
Bélgica para la migración de un data center se frustra debido a los conflictos que se
producían entre desarrolladores y administradores de sistemas. Debido a esto él decide
proponer una solución.

En Agosto del 2008, en Agile2008 conference, Andrew Clay Shafer y Patrick Debois se
conocen. Shafer habló sobre la “infraestructura Agile” y sólo una persona atiende:
Patrick Debois. Shafer, al ver que no había más que un asistente, piensa que no había
interés en este tema salta esta sesión y más tarde, Debois tiene una larga conversación
con él sobre el tema en el pasillo.

Introducción

https://fr.wikipedia.org/wiki/Patrick_Debois
https://fr.wikipedia.org/wiki/Patrick_Debois
http://www.jedi.be/blog/
http://www.jedi.be/blog/
https://dblp.uni-trier.de/db/conf/agiledc/agile2008.html
https://dblp.uni-trier.de/db/conf/agiledc/agile2008.html
https://dblp.uni-trier.de/db/conf/agiledc/agile2008.html
https://www.youtube.com/watch?v=SrmLySIUvpQ
https://www.youtube.com/watch?v=SrmLySIUvpQ
https://www.youtube.com/watch?v=SrmLySIUvpQ

23

De esta y otras conversaciones surgieron todas las típicas frustraciones y conflictos que
existen entre operaciones y desarrollo, así como sus motivos. Ambos crearon un grupo
en Google denominado “Agile System Administrators” para continuar el debate.

En 2009 John Allspaw y Paul Hammond presentan “10 deploy per Day”en la O’Relly
Velocity 09 Conference. La principal premisa era enfocarse en asegurar que Dev y Ops
trabajaban juntos y de forma crossfunctional a través de las herramientas y procesos
ágiles.

Esto inspiró a Debois creando el evento “DevOpsDays” en Bélgica (DOD). Decide hacer
exactamente lo que indica la charla y toma de aquí el concepto DevOps (Dev and Ops
Cooperation at Flickr). La conferencia de puertas abiertas tiene lugar en Octubre de este
año y se continua la discusión vía Twitter. El movimiento empieza a surgir.

Introducción

https://groups.google.com/forum/#!forum/agile-system-administration
https://groups.google.com/forum/#!forum/agile-system-administration
https://groups.google.com/forum/#!forum/agile-system-administration
https://www.amazon.com/John-Allspaw/e/B002BMN7XW
https://www.amazon.com/John-Allspaw/e/B002BMN7XW
https://www.youtube.com/watch?v=LdOe18KhtT4
https://www.youtube.com/watch?v=LdOe18KhtT4
http://www.slideshare.net/jallspaw/10-deploys-per-day-dev-and-ops-cooperation-at-flickr
http://www.slideshare.net/jallspaw/10-deploys-per-day-dev-and-ops-cooperation-at-flickr
http://www.slideshare.net/jallspaw/10-deploys-per-day-dev-and-ops-cooperation-at-flickr
http://www.slideshare.net/jallspaw/10-deploys-per-day-dev-and-ops-cooperation-at-flickr
http://www.slideshare.net/jallspaw/10-deploys-per-day-dev-and-ops-cooperation-at-flickr
https://devopsdays.org/
https://es.slideshare.net/jallspaw/10-deploys-per-day-dev-and-ops-cooperation-at-flickr
https://es.slideshare.net/jallspaw/10-deploys-per-day-dev-and-ops-cooperation-at-flickr
https://es.slideshare.net/jallspaw/10-deploys-per-day-dev-and-ops-cooperation-at-flickr
https://es.slideshare.net/jallspaw/10-deploys-per-day-dev-and-ops-cooperation-at-flickr
https://es.slideshare.net/jallspaw/10-deploys-per-day-dev-and-ops-cooperation-at-flickr
https://es.slideshare.net/jallspaw/10-deploys-per-day-dev-and-ops-cooperation-at-flickr

24

Al mismo tiempo, la integración continua está en su momento de auge dentro del
espectro Agile. Y había mucho movimiento en cuanto al continuous deployment sobre
todo con la aparición del libro “Continuous delivery”.

Mientras en paralelo la industria IT empiezan a tener fuerza otras metodologías como
Operation Management, Lean e IT service management.

Este movimiento formado por debates, conferencias, twitter y lentamente tomó
atención de la industria. IBM, CA Technologies, HP y BMC empiezan a aplicarlo.

En una entrevista de InfoQ en Abril del 2012, Debois admite que el nombre no fue
intencional, que simplemente el título original era muy largo y escribió “DevOpsDay”
para acortar. De aquí emergió el nombre DevOps.

Fuente: https://danielvillahermosa.wordpress.com/2019/11/27/la-evolucion-de-devops/

Introducción

https://danielvillahermosa.wordpress.com/2016/01/17/la-integracion-continua-netscape-la-nasa-xp-y-dos-mayordomos/
https://danielvillahermosa.wordpress.com/2016/01/17/la-integracion-continua-netscape-la-nasa-xp-y-dos-mayordomos/
https://www.amazon.es/Continuous-Delivery-Deployment-Automation-Addison-Wesley/dp/0321601912
https://www.amazon.es/Continuous-Delivery-Deployment-Automation-Addison-Wesley/dp/0321601912
https://blog.newrelic.com/2014/05/16/devops-name/
https://blog.newrelic.com/2014/05/16/devops-name/
https://danielvillahermosa.wordpress.com/2019/11/27/la-evolucion-de-devops/
https://danielvillahermosa.wordpress.com/2019/11/27/la-evolucion-de-devops/
https://danielvillahermosa.wordpress.com/2019/11/27/la-evolucion-de-devops/
https://danielvillahermosa.wordpress.com/2019/11/27/la-evolucion-de-devops/
https://danielvillahermosa.wordpress.com/2019/11/27/la-evolucion-de-devops/
https://danielvillahermosa.wordpress.com/2019/11/27/la-evolucion-de-devops/
https://danielvillahermosa.wordpress.com/2019/11/27/la-evolucion-de-devops/
https://danielvillahermosa.wordpress.com/2019/11/27/la-evolucion-de-devops/
https://danielvillahermosa.wordpress.com/2019/11/27/la-evolucion-de-devops/
https://danielvillahermosa.wordpress.com/2019/11/27/la-evolucion-de-devops/
https://danielvillahermosa.wordpress.com/2019/11/27/la-evolucion-de-devops/
https://danielvillahermosa.wordpress.com/2019/11/27/la-evolucion-de-devops/
https://danielvillahermosa.wordpress.com/2019/11/27/la-evolucion-de-devops/
https://danielvillahermosa.wordpress.com/2019/11/27/la-evolucion-de-devops/
https://danielvillahermosa.wordpress.com/2019/11/27/la-evolucion-de-devops/
https://danielvillahermosa.wordpress.com/2019/11/27/la-evolucion-de-devops/
https://danielvillahermosa.wordpress.com/2019/11/27/la-evolucion-de-devops/
https://danielvillahermosa.wordpress.com/2019/11/27/la-evolucion-de-devops/
https://danielvillahermosa.wordpress.com/2019/11/27/la-evolucion-de-devops/

25

Varios movimientos importantes en gestión
y tecnología convergen para preparar el
escenario para el movimiento DevOps.

La aplicación de los principios del Lean al
flujo de valor de la tecnología deriva en
"Tres Formas":

1. Flujo
2. Feedback
3. Aprendizaje y Experimentación

Continuos

1.2 Antecedentes

26

DevOps es el resultado de la aplicación de
los principios más confiables, desde el
dominio de la manufactura , el liderazgo
industrial hasta el flujo de valor de TI.

DevOps cuenta con varios conceptos
provenientes de diferentes fuentes de
conocimiento:

 Lean Manufacturing
 Teoría de las Restricciones
 Sistema de Producción de Toyota
 Ingeniería de resiliencia
 Movimiento de la Entrega Continua
 Organizaciones que aprenden
 Cultura de seguridad
 Factores humanos y muchos otros

1.2 Antecedentes

27

1.3 Conceptos Base de Devops

Conceptos Base de Devops

• Entrega continua
• Infraestructura Ágil
• Lead time
• Kata
• Wip
• Deuda técnica

28

¿Dónde está la diferencia entre Integración y
Entrega Continua?

La entrega continua define la función de una
"pipeline de despliegue" para garantizar que el
código y la infraestructura estén siempre en un
estado implantable y que todo el código
registrado en la rama principal o master pueda
ser implantado con seguridad en producción. La
integración continua forma parte de la entrega
continua y del despliegue continuo.

El despliegue continuo es una extensión de la
entrega continua, excepto por el hecho de que
las liberaciones ocurren automáticamente en
Producción.

La Entrega Continua es una extensión de la integración continua para garantizar que se pueda
liberar nuevos cambios para sus clientes rápidamente de forma sostenible.

1.3 Conceptos Base de Devops

29

DevOps
DevOps complementa a Agile para aumentar la eficiencia del modelo de
entrega desde la gestión de relaciones comerciales hasta el producto
final en producción.

Plan Código Dev SIT UAT Desplegar Funcionar

⮚ DevOps incluye implementación continua (CDep), entrega continua (CDel) e integración continua (CI) enfatiza a las personas (y la cultura) y busca mejorar la colaboración entre las
operaciones y los equipos de desarrollo. Las implementaciones de DevOps utilizan tecnología, especialmente herramientas de automatización que pueden aprovechar una
infraestructura dinámica y cada vez más programable desde una perspectiva de ciclo de vida.

DevOps

⮚ Minimice el tiempo de espera, el tiempo transcurrido entre el desarrollo, escribiendo una nueva línea de código y este nuevo código está siendo utilizado
por los usuarios en vivo, en producción, donde el equipo depende de la infraestructura que automatiza e instrumenta los distintos pasos que conducen a la
implementación, de modo que después de cada integración, cumple con estos criterios de lanzamiento, la aplicación en vivo se actualiza con el nuevo
código.

Capacidad de DevOps:Despliegue continuo

⮚ Es un enfoque de ingeniería de software en el que los equipos producen software en ciclos cortos, asegurando que el software
pueda ser lanzado de manera confiable en cualquier momento. Su objetivo es construir, probar y lanzar software de forma más
rápida y frecuente.

Capacidad de DevOps : Entrega continua

⮚ Proporcionar automatización del proceso de compilación y validación del software de forma continua
mediante la ejecución de una secuencia configurada de operaciones cada vez que se verifica un
cambio de software en el repositorio de administración de código fuente.

Capacidad de DevOps : Integración continua

⮚ Céntrese en mantener el código simple, realizar pruebas a menudo y entregar bits funcionales de la aplicación tan pronto
como estén listos, en lugar de entregar una aplicación grande al final del proyecto.

Desarrollo Ágil

Negocio

30

“Habilita la reconstrucción del negocio a partir
de la nada, además de un repositorio de
código fuente, copia de seguridad de datos
de aplicaciones y recursos físicos crudos” -
Adam Jacob, CTO de Chef.

La infraestructura como código es el enfoque para
definir la infraestructura de computación y red, que
se utiliza de técnicas de administración de código
fuente, siendo tratado como cualquier sistema de
software.

Este código puede ser mantenido en el sistema de
control de versiones para permitir auditabilidad y
construcción reproducible, sujeto a las prácticas
de prueba y a la disciplina total de Entrega
Continua. La infraestructura como código se basa
en algunas prácticas:

• Utilizar archivos de definición
• Sistemas y procesos auto documentados
• Versión de todos los elementos
• Probar continuamente sistemas y procesos
• Pequeños cambios en lugar de grandes lotes
• Mantener los servicios disponibles

continuamente

1.3.1 Conceptos Base: Infraestructura Ágil

Servers

31

Infraestructura
como código

Network como
código

Políticas como
código

Configuración como
código

Seguridad como
código

X como código

1.3.1 Conceptos Base: Infraestructura Ágil

32

Los equipos generalmente no son capaces o no están
dispuestos a mejorar los procesos en que operan. El
resultado no es sólo que continúan sufriendo con sus
problemas actuales, su sufrimiento también empeora
con el tiempo.

En el Toyota Kata que, en ausencia de mejoras, los
procesos no permanecen iguales, debido al caos y a
la entropía, los procesos realmente se degradan con
el tiempo.

Descomponga cada secuencia de trabajo en etapas
específicas, automatícelas y tráigalas de forma
estandarizada, que puede usarse "reflexivamente",
cuando sea necesario.

Se refiere a la forma o estándar que se puede
practicar para desarrollar habilidades personales y la
mentalidad. Kata son rutinas de enseñanza usadas para

preservar y pasar el know-how.

1.3.1 Conceptos Base: Kata

33

WIP: Trabajo que ya está en el proceso de
desarrollo, pero todavía no está terminado y
disponible para un cliente o un usuario.

Se refiere a todos los activos o elementos de un
producto o servicio que actualmente se están
trabajando o esperando para ser trabajados.

Podemos limitar la multitarea cuando usamos un
Tablero Kanban para gestionar nuestro trabajo,
por ejemplo, codificando e imponiendo límites de
WIP (work in progress) para cada columna o
centro de trabajo. Podemos colocar un límite
superior en el número de tarjetas que pueden
estar en una columna.

Trabajo en proceso o progreso, que incluye el
conjunto de grandes cantidades de elementos
inacabados para los productos en un proceso
de producción.

1.3.1 Conceptos Base: Work in Progress (WIP)

34

Tiempo de Entrega

Solicitud
Creada

Trabajo
Iniciado

Trabajo
Completado

Tiempo de Proceso

Tiempo de Entrega vs. tiempo de proceso de una operación de
implementación
Fuente: Manual DevOps, capítulo 1

El Tiempo de Entrega (lead time) es una de las
medidas comúnmente usadas para medir el
rendimiento en los flujos de valor (Lean).

La proporción de tiempo de proceso vs el
tiempo de entrega, sirve como una medida
importante de eficiencia

La medición de tiempo de entrega comienza
cuando la solicitud es creada y termina cuando
es entregada al cliente.

La medición del tiempo de proceso sólo
comienza cuando empezamos a trabajar en la
solicitud del cliente - específicamente, omite el
tiempo que el trabajo está en la cola,
esperando ser procesado.

1.3.1 Conceptos Base: Lead Time

35

El costo implícito del retrabajo adicional
causado por la elección de una solución fácil
ahora en vez de usar un enfoque mejor que
llevaría más tiempo.

1.3.1 Conceptos Base: Deuda Técnica

Fuente: Vincent Déniel on Twitter: https://www.pinterest.es/pin/798192733957711009/?d=t&mt=login

https://www.pinterest.es/pin/798192733957711009/?d=t&mt=login

36

La deuda técnica describe cómo las decisiones que tomamos conducen a problemas
que se vuelven cada vez más difíciles de arreglar con el tiempo, reduciendo
continuamente nuestras opciones disponibles en el futuro, incluso cuando se toman con
prudencia, todavía generamos intereses sobre esa deuda.

El costo implícito del retrabajo adicional causado por la elección de una solución fácil
ahora en vez de usar un enfoque mejor que llevaría más tiempo.

1.3.1 Conceptos Base: Deuda Técnica

• Definición inicial insuficiente
• Presiones de negocios
• Falta de proceso o comprensión
• Componentes fuertemente acoplados
• La falta de un conjunto de pruebas
• Falta de documentación
• Falta de colaboración
• El desarrollo paralelo
• Refactorización retrasada

• Falta de alineación con los estándares
• Falta de conocimiento
• Falta de propiedad
• Liderazgo tecnológico deficiente
• Cambios de especificación a la última

hora

37

Gartner recientemente popularizó la noción de TI bimodal, refiriéndose al amplio
espectro de servicios que las empresas típicas soportan.

Sistemas de
Registros

Sistemas de
Contratación

Los sistemas corporativos que
giran nuestros negocios, donde la
corrección de las transacciones y
de los datos son primordiales

• Cambios con ritmo más lento
• Hacer correctamente

Son sistemas orientados al cliente o
utilizados por los empleados, sistemas
de comercio y aplicaciones de
productividad.

• Ritmo de cambios más rápidos
• Hacer rápido

1.3.1 Conceptos Base: Bimodal SoR y SoC

38

SoR

Los sistemas de registro típicamente tienen un ritmo de cambio más lento y muchas
veces tienen requisitos de conformidad y reglamentación (por ejemplo, SOX).

Gartner reúne estos tipos de sistemas Tipo 1, donde la organización se concentra en
"hacer correctamente”.

SoC

El sistema de contratación generalmente tiene un ritmo de cambio mucho mayor para
soportar ciclos de feedback rápidos que le permiten realizar experimentos para descubrir
cómo satisfacer mejor las necesidades del cliente.

Gartner llama a estos tipos de sistemas Tipo 2, "donde la organización se concentra en
hacer rápidamente”.

1.3.1 Conceptos Base: Bimodal SoR y SoC

39

Para complementar ambos entornos
tecnológicos y alcanzar la eficiencia del
Bimodal IT en el que conviven muchas
empresas, apostamos por arquitecturas
que permitan la integración de datos y la
integración de aplicaciones de forma
adecuada, y recomienda soluciones
basadas en Enterprise APIs que
permiten conectar e integrar la
complejidad del Traditional IT con la
flexibilidad, el dinamismo y la innovación
del Agile IT.

1.3.1 Conceptos Base: Bimodal SoR y SoC

Fuente: https://www.ithinkupc.com/es/blog/como-conseguir-la-eficiencia-en-un-entorno-bimodal-it

https://www.ithinkupc.com/es/blog/como-conseguir-la-eficiencia-en-un-entorno-bimodal-it
https://www.ithinkupc.com/es/blog/como-conseguir-la-eficiencia-en-un-entorno-bimodal-it
https://www.ithinkupc.com/es/blog/como-conseguir-la-eficiencia-en-un-entorno-bimodal-it
https://www.ithinkupc.com/es/blog/como-conseguir-la-eficiencia-en-un-entorno-bimodal-it
https://www.ithinkupc.com/es/blog/como-conseguir-la-eficiencia-en-un-entorno-bimodal-it
https://www.ithinkupc.com/es/blog/como-conseguir-la-eficiencia-en-un-entorno-bimodal-it
https://www.ithinkupc.com/es/blog/como-conseguir-la-eficiencia-en-un-entorno-bimodal-it
https://www.ithinkupc.com/es/blog/como-conseguir-la-eficiencia-en-un-entorno-bimodal-it
https://www.ithinkupc.com/es/blog/como-conseguir-la-eficiencia-en-un-entorno-bimodal-it
https://www.ithinkupc.com/es/blog/como-conseguir-la-eficiencia-en-un-entorno-bimodal-it
https://www.ithinkupc.com/es/blog/como-conseguir-la-eficiencia-en-un-entorno-bimodal-it
https://www.ithinkupc.com/es/blog/como-conseguir-la-eficiencia-en-un-entorno-bimodal-it
https://www.ithinkupc.com/es/blog/como-conseguir-la-eficiencia-en-un-entorno-bimodal-it
https://www.ithinkupc.com/es/blog/como-conseguir-la-eficiencia-en-un-entorno-bimodal-it
https://www.ithinkupc.com/es/blog/como-conseguir-la-eficiencia-en-un-entorno-bimodal-it
https://www.ithinkupc.com/es/blog/como-conseguir-la-eficiencia-en-un-entorno-bimodal-it
https://www.ithinkupc.com/es/blog/como-conseguir-la-eficiencia-en-un-entorno-bimodal-it

40

Discusión en Grupos - Manifiesto Ágil

41

Mantenga la CALMa(S)

1.3.2 Pilares de DevOps

Culture

Automation

Lean

Measurement

Sharing

42

1. Sin un cambio
cultural, la
transformación no
va a funcionar

2. Más que una
metodología, es
una colección de
principios para
romper lo silos

Cultura

1. Debes Medir
todo -
repetidamente

2. Debes adaptarte
y planificar
áreas de mejor
basado en tu
lectura de esas
métricas

Métricas

1. Automatización
ayuda pero no es
una bala de plata

2. Puede habilitar la
mejora en la calidad
y la entrega
continua a través de
la integración
continua

Automatización

1. Uno de los principales
aspectos de DevOps

2. Ayuda a romper los silos
3. Un habilitador fantástico

para ampliar los ciclos
de retroalimentación

Sharing
(Colaboración)

1. Ayuda a reducir
los desperdicios
en el proceso

2. Ayuda a poner
foco en el objetivo
final que quieras
lograr desde el
punto de vista del
negocio

Lean

1.3.2 Pilares de DevOps

43

Discusión en Grupos - Manifiesto Ágil

44

Arquetipos Organizativos
Hay tres tipos principales de Estructuras Organizacionales que informan sobre cómo
proyectamos nuestros flujos de valor DevOps con la Ley Conway en mente:

Orientación Funcional

• Las organizaciones orientadas
a funciones optimizan la
experiencia, la división del
trabajo o reduciendo el costo.

Orientación Matricial

• Las organizaciones orientadas
en matrices combinan
orientación funcional y de
mercado.

Orientación del Mercado

• Las organizaciones orientadas
al mercado optimizan para
responder rápidamente a las
necesidades del cliente.

1.3.3 Organización

45

Regla del “2 pizzas Team”

• Garantiza que el equipo tenga una comprensión clara y compartida del sistema en el
que están trabajando

• Limita la tasa de crecimiento del producto o servicio en el que trabajó
• Descentraliza el poder y permite la autonomía
• Liderar un 2PT es una manera para que los empleados ganen alguna experiencia de

liderazgo en un entorno donde el fracaso no tiene consecuencias catastróficas

1.3.3 Organización

46

Ley de Conway

Melvin Conway observó que la forma en que
las organizaciones estaban estructuradas
tenía un fuerte impacto en los sistemas que
creaban.

Estas observaciones llevaron a lo que ahora
se conoce como Ley de Conway, que afirma
que "las organizaciones que proyectan
sistemas... son constreñidas para producir
dibujos que son copias de las estructuras de
comunicación de esas organizaciones...
Cuanto mayor es la organización, menor es
la flexibilidad y más pronunciado el
fenómeno".

“Cualquier empresa que proyecta un sistema
(definición más amplia aquí que sólo sistemas
de información), inevitablemente produce un
proyecto cuya estructura es una copia de la
estructura de comunicación de la
organización”.

1.3.3 Organización

47

El número de Dunbar

“Según el antropólogo británico Robin Dunbar,
su teoría de que los humanos solo pueden
mantener 150 amistades ha resistido 30 años
de escrutinio. Dunbar se convenció de que
había una relación entre el tamaño del cerebro
y el tamaño de los grupos a través de sus
estudios de primates no humanos. Esta
proporción se trazó utilizando neuroimágenes y
observación del tiempo dedicado al aseo, un
comportamiento social importante de los
primates. Dunbar concluyó que el tamaño, en
relación con el cuerpo, del neocórtex, la parte
del cerebro asociada con la cognición y el
lenguaje, está relacionado con el tamaño de un
grupo social cohesionado. Esta relación limita la
complejidad que puede manejar un sistema
social”.

El círculo más íntimo son solo cinco seres queridos, llegando a un
máximo de 1500 personas que puedes reconocer (Crédito:
Emmanuel Lafont).

1.3.3 Organización

48

Team Topologies –
Organizing business and
technology teams for fast
flow

Autores:
Matthew Skelton
Manuel Pais

Team Topologies

49

Cuatro topologías fundamentales

A continuación detallaremos las cuatro
topologías fundamentales del equipo,
incluido el comportamiento y las
capacidades esperados. Estas son:

• Equipo alineado al flujo del producto o
servicio

• Equipo de plataforma
• Equipo habilitador
• Equipo de subsistema complicado

1.3.3 Organización

50

• Equipo alineado al flujo del producto o
servicio: un equipo alineado con el flujo
principal del producto o servicio, con una
combinación de habilidades
multifuncionales y la capacidad de ofrecer
incrementos significativos sin esperar a
otro equipo (algunos llamarían a estos
equipos "equipos de productos o funciones"
pero hablar de flujos tiene más sentido)

• Equipo de la plataforma: un equipo que
trabaja en la plataforma subyacente y da
soporte a los equipos alineados con el flujo
en la entrega. La plataforma simplifica la
tecnología que de otro modo sería
compleja y reduce la carga cognitiva para
los equipos que la utilizan (una buena
plataforma es "lo suficientemente grande")

1.3.3 Organización

51

• Equipo habilitador: un equipo que ayuda
a otros equipos a adoptar y modificar
software como parte de un período de
transición o aprendizaje

• Equipo de subsistemas complicados: un
equipo con un mandato especial para un
subsistema que es demasiado
complicado para ser tratado por un
equipo normal alineado con el flujo o un
equipo de plataforma. Opcional y solo se
usa cuando es realmente necesario

1.3.3 Organización

52

Tres modos de interacción

Modos de interacción en equipo. Los modos
de interacción principales para las 4
topologías de equipo fundamentales son:

• Colaboración: trabajar en estrecha
colaboración con otro equipo

• X-as-a Service: consumir o proporcionar
algo con una colaboración mínima

• Facilitar: ayudar (o ser ayudado por) otro
equipo para eliminar los impedimentos

1.3.3 Organización

53

Equipo alineado al flujo del producto o servicio

Colaboración

Equipo
habilitador

Equipo del
subsistema
complicado

Equipo de plataforma

Xaas

Facilitar

Tipos de equipos
fundamentales

Modos de interacción en
equipo

54

1.3.3 Organización: Equipos Auto Gestionados

Forma I, Forma T y Forma E

Cuando los departamentos se especializan
demasiado, causan trabajos orientados en
silos. Cualquier actividad operativa compleja,
a continuación, requiere múltiples
transferencias y fugas entre las diferentes
áreas de la infraestructura, llevando a plazos
más largos.

A través de la capacitación cruzada y de las
crecientes habilidades de ingeniería, los
generalistas pueden tener una mayor
magnitud de órdenes de trabajo que sus
contrapartes especializadas, y también
mejora el flujo general de trabajo,
removiendo colas y tiempo de espera.

55

Forma I: Expertos

• Especialización profunda en un área
• Pocas habilidades o experiencia en otras

áreas
• Crea cuellos de botellas rápidamente
• Insensible a los residuos y al impacto en

el flujo
• Evita la planificación de flexibilidad o

absorción de variabilidad

1.3.3 Organización: Equipos Auto Gestionados

56

Una amplia gama de conocimientos básicos a través de muchas habilidades
superpuestas

co
m

pr
en

si
ón

 p
ro

fu
nd

a
(p

ro
fu

nd
id

ad
 d

e
co

no
ci

m
ie

nt
o)

Forma T: Generalistas

• Especialización profunda en un área
• Excelentes habilidades en muchas áreas
• Puede intensificar para quitar los cuellos

de botella
• Sensible a los residuos y al impacto del

flujo
• Ayuda a tornar la planificación flexible y

absorbe la variabilidad

1.3.3 Organización: Equipos Auto Gestionados

57

Forma E

• Especialización profunda en pocas áreas
• Experiencia cruzada en varias áreas
• Presentan habilidades de ejecución
• Siempre está innovando
• Potencial casi sin límites

Cuanto mayor sea el conocimiento general
y las habilidades especiales más
necesarias dentro de una persona, mejor.

1.3.3 Organización: Equipos Auto Gestionados

58

Integrando Ops en Dev

El objetivo es tener resultados orientados al
mercado, donde muchos pequeños equipos
pueden proporcionar un valor para el cliente
de manera rápida e inmediata.

Podemos crear resultados más orientados al
mercado, integrando mejor las capacidades
Ops en equipos Dev, haciéndolas más
eficientes y productivas.

Ops puede mejorar significativamente la
productividad de los equipos de Dev en toda
la organización, además de permitir una
mayor colaboración y resultados
organizativos.

1.3.4 Integrando Ops en Dev

59

Podemos usar tres estrategias:

• Creando habilidades de autoservicio que
permita su activación por los
desarrolladores

• Incorporando a los ingenieros de Ops en
los equipos de servicio

• Desarrollando vínculos entre Ops y los
equipos de servicio

1.3.4 Integrando Ops en Dev

60

Cree capacidades de autoservicio para uso de los
desarrolladores

Habilitamos a los equipos de Dev a pasar más tiempo
creando funcionalidades para sus clientes... Al hacer
esto, habilitamos a los equipos de productos a obtener
lo que necesitan, cuando lo necesitan, además de
reducir la necesidad de comunicación y coordinación.

Una manera de proporcionar resultados orientados al
mercado es que las Operaciones creen un conjunto de
plataformas centralizadas y herramientas de servicios,
las que cualquier equipo de Dev pueda usar para
volverse más productivo:
• Obtener entornos de producción
• Pipelines de despliegue
• Herramientas de prueba automatizadas
• Paneles de producción de telemetría
• Entre otros

Desarrollo Operaciones

DevOps

Dev DBA y DBA

https://web.devopstopologies.com/

1.3.4 Integrando Ops en Dev

https://web.devopstopologies.com/

61

Incorpore los ingenieros de Ops en los equipos
de servicio

Habilitando equipos de productos para llegar a
ser más autosuficientes incorporando
ingenieros de operaciones dentro de ellos,
reduciendo así su dependencia de operaciones
centralizadas.

Las prioridades de los ingenieros de operaciones
se dirigen casi enteramente a los objetivos de
los equipos de productos, cuando se integran en
los equipos del Dev.

Como resultado, los ingenieros de Ops están
más conectados a sus clientes internos y
externos.

Desarrollo

Operaciones

https://web.devopstopologies.com/

1.3.4 Integrando Ops en Dev

https://web.devopstopologies.com/

62

Desarrolle conexiones entre Ops y otros
equipos cuando la incorporación de Ops
no sea posible

Por una variedad de razones, como costo y
falta de recursos, tal vez no podamos
integrar ingenieros OPS en cada equipo de
productos.

Desarrollo Operaciones

DevOps

https://web.devopstopologies.com/

1.3.4 Integrando Ops en Dev

https://web.devopstopologies.com/

63

Discusión en Equipos - DevOps
Topologies

Parte 2: Principios de DevOps - 3
Ways of DevOps

65

1. Las “3 ways of DevOps”
• La primera vía y las competencias necesarias
• La segunda vía y las competencias necesarias
• La tercera vía y las competencias necesarias

Agenda

66

The Phoenix Project (A
Novel About IT, DevOps,
and Helping Your Business
Win)

Autores:
Gene Kim
Kevin Behr
George Spafford

Bibliografía

The DevOps Handbook:
How to Create World-
Class Agility, Reliability,
and Security in
Technology
Organizations

Autores:
Gene Kim
Jez Humble
Patrick Debois
John Wills

67

Gene Kim es un CTO, investigador y autor
galardonado en múltiples ocasiones de
The Phoenix Project: A Novel About IT,
DevOps y Helping Your Business Win y The
Visible Ops Handbook. Es fundador de IT
Revolution y es anfitrión de las
conferencias DevOps Enteprise Summit.

Jez Humble es coautor de Continuous
Delivery, ganador del premio Jolt, y del
innovador Lean Enterprise. Su enfoque es
ayudar a las organizaciones a entregar
software valioso y de alta calidad de
manera frecuente y confiable mediante la
implementación de prácticas de
ingeniería efectivas.

Patrick Debois es un consultor de TI
independiente que está reduciendo la
brecha entre proyectos y operaciones
mediante el uso de técnicas ágiles, en
desarrollo, gestión de proyectos y
administración de sistemas.

John Willis ha trabajado en la industria
de la gestión de TI durante más de
treinta y cinco años. Es autor de seis IBM
Redbooks y fue el fundador y arquitecto
jefe de Chain Bridge Systems.
Actualmente es evangelista en Docker,
Inc.

Los Autores

68

“DevOps no se trata de una tecnología, DevOps
se trata de un problema de negocios” - Patrick
Debois.

La mejor manera de entender DevOps es
destilarlo en 3 principios popularizados por
el Proyecto Phoenix y explicados en detalle
en el Devops Handbook: Pensamiento
sistémico, retroalimentación y
experimentación y aprendizaje continuo.

Principios de DevOps

69

Customer

Dev Ops

Business

The First Way: Los Principios de Flujo

“La primera forma enfatiza el rendimiento de todo el sistema, a diferencia del
rendimiento de un silo específico de trabajo o departamento. DevOps trasciende los
departamentos y muestra el valor general para el cliente” - Gene Kim.

La Primera Forma

70

3.4 Integración Continua

Suspected
Need

Ready to
Prepare

Ready to
Commit

Ready to
Start

Work in
Progress

Ready to
Accept

Ready to
Deliver

Ready to
Validate

Need
Satisfied

System Kanban
System Lead Time

End-to-End Flow

Iteration

Upstrea
m

Downstrea
m

71

Identificar las
cadenas de valor

02 Hacer visible nuestro
trabajo

Limitar el trabajo en
procesos (WIP)

Reducir el
número de
transferencias
(HANDOFFS)

Eliminar obstáculos
y desperdicios en la
cadena de valor

Identificar
continuamente y
elevar nuestras
restricciones

Reducir el tamaño
de los lotes de
trabajo

01

03

04

05
06

07

Competencias Necesarias - Capabilities

72

The Second Way: Los principios del Feedback

"El objetivo de casi cualquier iniciativa de mejora de procesos es acortar y simplificar los
bucles de retroalimentación para que se puedan hacer las correcciones necesarias de
manera continua”.

Dev Ops

La Segunda Forma

73

0
2

01

03

04

05

Ver los
problemas
a medida
que ocurren

Trabajar de
manera
segura con
sistemas
complejos

“Swarm”
para resolver
problemas y
construir
nuevos
conocimiento
s

Habilitar la
optimización
para centros
de trabajo
downstream

Seguir
presionando
la calidad
más cerca de
la fuente

Competencias Necesarias -
Capabilities

74

The Third Way: Experimentación y Aprendizaje Continuos

“Crear una cultura que fomente dos cosas: la experimentación continua, que requiere
tomar riesgos y aprender del éxito y el fracaso; y comprender que la repetición y la
práctica es un requisito previo para el dominio”.

La Tercera Forma

“Mientras que First Way aborda el flujo de trabajo de izquierda a derecha y la Second
Way aborda la respuesta recíproca rápida y constante de derecha a izquierda, la Third
Way se enfoca en crear una cultura de aprendizaje y experiencia continuos. Estos son
los principios que permiten la creación constante de conocimiento individual, que luego
se convierte en conocimiento de equipo y organización” - Devops Handbook.

75

Competencias Necesarias -
Capabilities

02
Institucion
alizar la
mejora del
trabajo
diario

Habilitar
el
aprendiza
je
organizac
ional y
una
cultura
segura

Transformar los
descubrimiento
s locales en
mejoras
globales

Inyectar
patrones de
resiliencia en
nuestro
trabajo
diario

Los líderes
refuerzan la
cultura de
aprendizaje

01

03

04

05

76

Trabajo en Equipos - Dinámica Flowban

Parte 3: La Primera Forma - FLUJO

78

¿Por qué la Primera Forma?

Nuestro objetivo es crear las prácticas técnicas y la arquitectura necesarias para permitir y
sostener el rápido flujo de trabajo desde Desarrollo a Operaciones sin causar caos e interrupciones
en el entorno de producción o en nuestros clientes. Esto significa que tenemos que reducir el riesgo
asociado al despliegue y la liberación de los cambios en la producción. Para ello, aplicaremos un
conjunto de prácticas técnicas conocidas como entrega continua. Los enfoques principales a ser
cubiertos son:

• La creación de la base de nuestro pipeline de despliegue
• Habilitación de pruebas automatizadas rápidas y fiables
• Habilitar y practicar la integración y las pruebas continuas
• Automatización, habilitación y arquitectura para lanzamientos de bajo riesgo

Estas prácticas reducen el tiempo de espera para obtener entornos similares a los de producción,
permite la realización de pruebas continuas con una rápida retroalimentación sobre el trabajo
realizado, permite a los equipo desarrollar, probar y desplegar su código en producción de forma
segura e independiente, y hace que los despliegues y lanzamientos de producción sean una parte
rutinaria del trabajo diario.

3.0 Las Prácticas Técnicas del Flujo

79

• 3.1 La creación de la base de nuestro
pipeline de despliegue

• 3.2 Habilitación de pruebas
automatizadas rápidas y fiables

• 3.3 Desarrollo Basado en Hipótesis
• 3.4 Habilitar y practicar la integración y

las pruebas continuas
• 3.5 Automatización, habilitación y

arquitectura para lanzamientos de bajo
riesgo

• 3.6 Arquitectura para lanzamientos de
Bajo riesgo

Agenda

80

Crear los cimientos de nuestra línea de despliegue

Debatir cómo construir los mecanismos que nos permitirán crear entornos bajo
demanda, ampliar el uso del control de versiones a todos los integrantes del flujo de
valor, hacer que la infraestructura sea más fácil de reconstruir que de reparar y
garantizar que los desarrolladores ejecuten su código en entornos similares a los de
producción a lo largo de cada etapa del ciclo de vida del desarrollo de software.

En esta sección más adelante explicaremos:

1. Permitir la creación bajo demanda de entornos de desarrollo, prueba y producción
2. Crear nuestro único repositorio de la verdad para todo el sistema
3. Hacer que la infraestructura sea más fácil de reconstruir que de reparar
4. Modificar nuestra definición de desarrollo "hecho" para incluir la ejecución en

entornos similares a los de producción

3.1 Las Prácticas Técnicas Pipeline de Despliegue

81

Introducción

Debemos crear un flujo rápido y confiable de
Dev a Ops para garantizar que siempre
usamos entornos de producción en cualquier
estado del flujo de valores.

Estos entornos deben ser creados de forma
automatizada, idealmente bajo demanda
desde scripts e información de configuración
almacenados en control de versiones y
totalmente autónomo, sin ningún trabajo
manual requerido de Operaciones.

El objetivo es garantizar que podamos
recrear todo el entorno de producción
basado en el control de versiones.

El Mapeo del Flujo de Proceso es el punto de
partida para la empresa que desea elaborar
un plan bien estructurado para mejorar la
productividad, rentabilidad, calidad, reducción
de desperdicios y reducción de lead time.

Flujo

82

Pipeline de despliegue

• Cómo reducir el desperdicio
• Optimice el flujo de valor
• Controles de versión compartida
• Adaptación “Definición de Hecho”
• Automatice la Construcción y

Configuración de entornos

Se crea una instancia del pipeline de
despliegue cada vez que se realiza un cambio
en una aplicación y permite los siguientes
puntos:

 Reduce el tiempo de espera para obtener
entornos de producción

 Permite pruebas continuas que dan a todos
la respuesta rápida sobre su trabajo

 Permite que pequeños equipos desarrollan,
prueban y despliegan con seguridad
independientemente el código en
producción

 Hace implementaciones de producción y
libera una parte rutinaria del trabajo diario

3.1 El Pipeline de Despliegue

83

2.1.1 Evaluación de técnicas, infraestructura
cómo código y contenedores

Abordaremos cómo crear mecanismos que
nos permitan:

• Crear entornos bajo demanda
• Ampliar el uso del control de versiones

para todos en el flujo de valor
• Hacer que la infraestructura sea más fácil

de reconstruir que reparar
• Garantizar que los desarrolladores

ejecuten su código en entornos de
producción a lo largo de cada etapa del
ciclo de vida del desarrollo de software

El objetivo de una pipeline es automatizar el
proceso de entrega de software en
producción de forma rápida, al mismo
tiempo que garantiza su estabilidad, calidad
y resiliencia.

3.1 El Pipeline de Despliegue

84

Infraestructura como código

Es el enfoque del proceso de gestión y
aprovisionamiento a través de la lectura de
archivos de definición de máquina en lugar
de configuración de hardware físico o
herramientas de configuración interactiva.

Las configuraciones deben estar en un
sistema de control de versiones. Puede
utilizar secuencias de comandos o
definiciones declarativas en lugar de
procesos manuales.

3.1 El Pipeline de Despliegue

85

Contenedores

Proporcionan una alternativa ligera a las
máquinas virtuales y permiten a los
desarrolladores trabajar con entornos y pila
de DEV en forma idéntica.

Contenerización es una alternativa ligera a
la virtualización completa de la máquina
que implica encapsular una aplicación en
un contenedor con su propio entorno
operativo.

3.1 El Pipeline de Despliegue

86

Docker ArchitectureFuente: https://compbcn.es/docker-en-pocas-
palabras/

https://compbcn.es/docker-en-pocas-palabras/
https://compbcn.es/docker-en-pocas-palabras/
https://compbcn.es/docker-en-pocas-palabras/
https://compbcn.es/docker-en-pocas-palabras/
https://compbcn.es/docker-en-pocas-palabras/
https://compbcn.es/docker-en-pocas-palabras/
https://compbcn.es/docker-en-pocas-palabras/

87

Al definir cuidadosamente todos los aspectos del entorno antes del tiempo, es posible
crear nuevos entornos rápidamente, y garantizar que estos entornos sean estables,
confiables, consistentes y seguros.

• La Operación se beneficia al crear nuevos entornos rápidamente, refuerza la
consistencia y reduce el trabajo manual tedioso y propenso a errores

• El Desarrollo se beneficia al reproducir todas las partes necesarias del entorno de
producción para crear, ejecutar y probar su código en sus estaciones de trabajo

• El Desarrollo puede reproducir, diagnosticar y corregir defectos rápidamente, aislados
con seguridad de servicios de producción y otros recursos compartidos

• El Desarrollo puede experimentar cambios en los entornos, así como la infraestructura
como un código, creando aún más conocimiento compartido entre Desarrollo y
Operaciones

3.1 El Pipeline de Despliegue

88

• Definición de "Hecho"
• Cualquier provisión de entornos similares al de producción bajo demanda
• Reducir el riesgo de producción
• Las operaciones pueden hacer que los desarrolladores sean mucho más productivos
• Todos los artefactos de producción en el control de versiones. Hay una "única fuente

de la verdad“
• Infraestructura de producción con foco más en reconstruir que reparar

Etapa de efectividad
(automatizado)

Etapa de aceptación
(automatizado)

Prueba exploratoria
(manual)

UAT
(manual) Preparación (manual) Producción (manual)

Aprobación automática
Aprobación manual

2.1.2 Mejor solución para optimizar el flujo de valor

3.1 El Pipeline de Despliegue

89

Principios de DevOps

90

Pipeline de Despliegue

Se usa el deployment pipeline para ayudar a la revisión de la cadena de valor, esto es la
transición más automatizada de los cambios a través de todos los pasos de la cadena
de valor, comenzando desde el punto 'El desarrollo está completo', hasta 'Implementado
en operaciones’.

El pipeline ayuda a lidiar con tareas importantes de DevOps. Primero, ahorra recursos al
no comenzar los siguientes pasos antes de que se completen los anteriores. Segundo,
garantiza la calidad del producto: los cambios que no funcionan según lo requerido, no
alcanzan el entorno de producción. Tercero, acelera la entrega de cambios en el
entorno de producción al maximizar la automatización de cada paso. Y cuarto,
constantemente deja registros en los logs de auditoría, lo que proporciona datos
valiosos para su optimización.

Principios de DevOps

91

Principios de DevOps

92

Principios de DevOps

Ayuda a lidiar con 4 tareas de DevOps:

• Ahorra recursos al no empezar una etapa
antes de finalizar la otra

• Asegura la calidad del producto, ya que los
cambios que no se comporten como lo
esperado no alcanzan producción

• Acelera la entrega de cambios a producción
automatizando cada paso

• Deja registros y logs constantes lo que
permite el monitoreo de los cambios
realizados y permiten la medición de cada
etapa proveyendo data para la optimización

93

2.1.3 Repositorio de control de versión
compartida para la integridad

Todos los archivos y configuraciones de su
aplicación deben estar en control de
versiones; se convierte en el único
repositorio de confianza que contiene el
estado deseado y preciso del sistema.

Permite reproducir repetidamente y de
forma confiable todos los componentes
de nuestro sistema de software de trabajo,
que incluye nuestras aplicaciones y
entorno de producción, así como todos
nuestros entornos de preproducción.

• Todos los códigos y dependencias de la
aplicación

• Cualquier script utilizado para crear esquemas de
base de datos, referencia de aplicación de datos,
etc

• Todas las herramientas de creación de entorno y
artefactos descritos en el paso anterior

• Cualquier archivo utilizado para crear
contenedores

• Todas las pruebas automatizadas de soporte y
cualquier script de prueba manual

• Cualquier script que admita paquetes de código,
implementación, migración de base de datos y
aprovisionamiento de entorno

• Todos los artefactos del proyecto
• Todos los archivos de configuración de la nube
• Cualquier otro script o información de

configuración necesaria para crear
infraestructura que soporta varios servicios

3.1 El Pipeline de Despliegue

94

2.1.4. Definición de Hecho (DoD) para DevOps

El objetivo es asegurar que el Desarrollo y el
Control de Calidad estén integrando
rutinariamente el código con entornos
similares al de producción a intervalos cada
vez más frecuentes a lo largo del proyecto.

Si se expande la definición de "Hecho" además
de sólo la funcionalidad de código correcta, al
final de cada intervalo de desarrollo, se integra,
prueba, se trabaja con el potencial despliegue
del código, demostrados en un entorno similar
al de producción.

3.1 El Pipeline de Despliegue

95

2.1.5 Herramientas se pueden utilizar para automatizar
la construcción y la configuración del entornos

Una de las principales causas contributivas de las
implementaciones de software caótico, disruptivo y
catastrófico, es la primera vez que la aplicación se
comporte en el entorno de producción con un conjunto
de datos reales durante la liberación.

• En algunos casos, los equipos de desarrollo pueden
haber solicitado entornos de prueba en las etapas
iniciales del proyecto

• Largos tiempos de espera (lead time) para el
aprovisionamiento de entornos de pruebas

• Entornos con falta de datos adecuados
• Entornos de prueba mal configurados o diferentes de

la operación

3.1 El Pipeline de Despliegue

96

Queremos que los desarrolladores ejecuten sus códigos en entornos similares al de
producción en sus propias estaciones de trabajo, creadas bajo demanda y en servicios
de autoservicio.

• Ofrecer un mecanismo de provisión, que crea todos nuestros entornos, como
desarrollo, prueba y producción

Para ello, es necesario definir y automatizar la creación de nuestros entornos conocidos y
buenos, de manera estable, segura y de riesgo reducido.
Los requerimientos deben ser incorporados en el proceso automatizado de construcción
del entorno.

3.1 El Pipeline de Despliegue

97

Usar la automatización para cualquiera o todos los siguientes (en lugar de
construcciones manuales de entornos y sus configuraciones):

• Copiando un entorno virtualizado
• Construcción automatizada de entorno “metal crudo”
• Uso de herramientas de administración de configuración ("infraestructura como

código")
• Uso de herramientas automáticas de configuración del sistema operativo
• Montar un entorno desde un conjunto de imágenes o contenedores virtuales
• Subir un nuevo entorno en una nube pública, nube privada u otras PaaS

3.1 El Pipeline de Despliegue

98

Talleres Prácticos Sugeridos

99

Permitir pruebas automatizadas rápidas y fiables (1 / 2)

Repasar las prácticas de integración continua necesarias para crear las prácticas de
pruebas automatizadas que garanticen que los desarrolladores obtengan rápidamente
información sobre la calidad de su trabajo. Esto es aún más importante a medida que
aumentamos el número de desarrolladores y de ramas en las que trabajan en el control
de versiones.

En esta sección explicaremos:
• Construir, probar e integrar continuamente nuestro código y entornos
• Construir un conjunto de pruebas de validación automatizadas rápido y fiable
• Detectar los errores lo antes posible en nuestras pruebas automatizadas
• Garantizar que las pruebas se ejecuten rápidamente (en paralelo, si es necesario)
• Escribir nuestras pruebas automatizadas antes de escribir el código ("desarrollo

dirigido por pruebas")

3.2 Las Prácticas Técnicas Pruebas Automatizadas

100

Permitir pruebas automatizadas rápidas y
fiables (2 / 2)

En esta sección explicaremos :

• Automatizar tantas pruebas manuales
como sea posible

• Integrar las pruebas de rendimiento en
nuestro conjunto de pruebas

• Integrar las pruebas de requisitos no
funcionales en nuestro conjunto de pruebas

• Tirar de la cuerda de andon cuando se
rompa la tubería de despliegue

• Por qué tenemos que tirar de la cuerda de
andon

3.2 Las Prácticas Técnicas Pruebas Automatizadas

101

Las pruebas automatizadas abordan otro
problema significativo e inquietante.

Sin pruebas automatizadas, cuanto más código se
escribe, más tiempo y dinero son necesarios para
probar el código, y en la mayoría de los casos, es
un modelo no escalable para cualquier
organización de tecnología.

Con la automatización de pruebas, es posible
evitar las actividades manuales y repetitivas que
sobrecargan tanto el presupuesto como el
cronograma de una empresa. Además, todavía
existe la posibilidad de crear pruebas más
amplias, elaboradas y que estén de acuerdo con
las funcionalidades y exigencias de sus productos.

3.2 Pruebas Automatizadas

102

Las pruebas en DevOps se pueden dividir de
la siguiente manera:

• Unitarios: permiten la reducción de las
unidades de las clases, aplicaciones y
validaciones de tamaño de campos

• Integrados: fomentan la integración de las
aplicaciones existentes en los sistemas

• Visuales: aseguran el funcionamiento del
layout y de los elementos estáticos de una
aplicación

• Funcionales: garantizan un buen
desempeño de las funcionalidades

• Performance: hacen que los releases
atiendan a las especificaciones
previamente definidas y los comparan con
resultados anteriores

3.2 Pruebas Automatizadas

103

Crear calidad en el producto, desde las etapas iniciales con pruebas automatizadas en el trabajo
diario del desarrollador.

Así, se crea un loop de feedback rápido que ayuda a los desarrolladores a encontrar y corregir
problemas rápidamente, cuando hay menos restricciones (por ejemplo, tiempo, recursos).

Los procesos automatizados de construcción y prueba se vuelven críticos por los siguientes motivos:

• El proceso de construcción y prueba se puede ejecutar todo el tiempo
• Entender todas las dependencias necesarias para construir, empaquetar, ejecutar y probar

nuestro código
• El empaquetado de la aplicación permite la instalación repetitiva de código y configuraciones en

un entorno
• Se puede optar por empaquetar nuestras aplicaciones en contenedores
• Los entornos pueden volverse más parecidos a la producción de una manera consistente y

repetible

3.2 Pruebas Automatizadas

104

El pipeline de despliegue válida después de cada cambio, que el código se integra con
éxito en un entorno de producción.

Se convierte en la plataforma a través de la cual los analistas de pruebas solicitan y
certifican compilaciones durante pruebas de aceptación y pruebas de usabilidad, y
donde ejecutarán validaciones automatizadas de rendimiento y seguridad.

Etapa de
efectividad

(automatiza
do)

Etapa de
aceptación

(automatiza
do)

Prueba
exploratoria

(manual)

UAT
(manual)

Preparación
(manual)

Producción
(manual)

Aprobación
automática
Aprobación manual

3.2 Pruebas Automatizadas

105

En general, las pruebas automatizadas se
encuadran en una de las siguientes categorías,
desde el más sencillo al más complejo de
implementar:

• Pruebas de unitarias
• Pruebas de integración
• Pruebas de aceptación

3.2 Pruebas Automatizadas

106

Cualquier error debe ser encontrado lo más
temprano posible.

 Si la mayoría de nuestros errores se
encuentran en nuestras pruebas de
aceptación e integración, el feedback que
proporcionamos a los desarrolladores es
mucho más lento que en las pruebas
unitarias

Por lo tanto, siempre que encontremos un
error con una prueba de aceptación o
integración, debemos crear unas pruebas
unitarias que puedan encontrar el error más
rápido, más temprano y más barato.

3.2 Pruebas Automatizadas

107

Una señal que tenemos una arquitectura
fuertemente acoplada:

• Muchas veces tenemos consecuencias
inesperadas en otros módulos diferentes
al módulo que estamos desplegando

• Escribir y mantener pruebas de unitarias
y de aceptación es difícil y costoso

En ese caso, necesitaremos crear un sistema
más débilmente acoplado para que los
módulos puedan ser probados
independientemente.

3.2 Pruebas Automatizadas

108

Una de las maneras más eficaces para las pruebas automatizadas confiables es utilizar técnicas
como:

• Desarrollo orientado a pruebas (TDD)
• Desarrollo orientado a pruebas de aceptación (ATDD)

Es cuando empezamos todos los cambios en el sistema, primero escribiendo una prueba
automatizada que valida el comportamiento esperado y después escribimos el código que pasará
por las pruebas.

Kent Beck (1990) en Extreme Programming, define tres etapas:

1. Asegúrese de que las pruebas fallen. "Escriba una prueba para el siguiente bit de funcionalidad
que desea agregar”. Check-in

2. Asegúrese de que las pruebas sean satisfactorias. "Escriba el código funcional hasta que la
prueba pase”. Check-in

3. Refactorizar el código nuevo y antiguo para que esté bien estructurado. Asegúrese de que las
pruebas sean satisfactorias. Check-in de nuevo

3.2 Pruebas Automatizadas

109

Talleres Prácticos Sugeridos

110

Automatice tantas Pruebas Manuales como sea posible

 Aunque las pruebas se pueden automatizar, la
creación de calidad no puede. Tener personas que
realizan pruebas que se deben automatizar es un
desperdicio de potencial humano

 Así, habilitamos a todos nuestros analistas de pruebas
(lo que, por supuesto, incluye desarrolladores)

 En trabajos de actividades de alto valor que no se
pueden automatizar, cómo probar o mejorar el
proceso de prueba en sí

 Un pequeño número de pruebas confiables y
automatizadas es casi siempre preferible a un gran
número de pruebas manuales automáticas o no
confiables

 Comenzamos con un pequeño número de pruebas
automatizadas confiables y añadimos a ellos a lo
largo del tiempo

Desafíos de automatización de pruebas:

1. Arquitectura de automatización de
pruebas

2. Paradigmas de automatización de
pruebas

3. Costo de la automatización y
mantenimiento de las pruebas

4. Profesionales calificados
5. Entorno de prueba
6. La garantía de la calidad
7. Expectativa de que el retorno de inversión

en automatización sea de corto plazo

3.3 Desarrollo Orientado por Pruebas

111

Integre las pruebas de performance en su grupo de pruebas

El objetivo es crear y ejecutar pruebas de performance automatizadas que validen la
performance en toda la pila de aplicaciones (código, base de datos, almacenamiento,
red, virtualización, etc.) como parte del pipeline de despliegue para detectar problemas
precozmente, cuando las correcciones son más baratas y más rápidas.

Las aplicaciones y los entornos se comportan bajo una carga de producción, podemos
hacer un trabajo mucho mejor en la planificación de la capacidad, así como detectar
condiciones como:

• Cuando los tiempos de consulta de base de datos crecen de forma no lineal (por
ejemplo, olvidamos de activar la indexación de la base de datos y la carga de la
página pasa de cien milisegundos a treinta segundos)

• Cuando un cambio de código hace que el número de llamadas de base de datos, uso
de almacenamiento o tráfico de red aumenta diez veces

3.3 Desarrollo Orientado por Pruebas

112

Integre pruebas no funcionales en su grupo
de pruebas

Es necesario validar todos los demás
atributos relevantes del sistema, llamados
requisitos no funcionales, que incluyen:

• Disponibilidad
• Escalabilidad
• Capacidad
• Seguridad

…y así sucesivamente.

3.3 Desarrollo Orientado por Pruebas

113

Tire de la cuerda ANDON cuando el pipeline
de despliegue se rompe

Para mantener el pipeline de despliegue en
un estado verde, crearemos una cuerda
Andon virtual, similar al físico en el Sistema
Toyota de Producción.

Siempre que alguien introduzca un cambio
que hace que nuestra creación o pruebas
automatizadas fallen, ningún nuevo trabajo
puede entrar en el sistema hasta que el
problema se corrija. Y si alguien necesita
ayuda para resolver el problema, puede
traer la ayuda que necesite.

3.3 Desarrollo Orientado por Pruebas

114

Discusión en Grupos

115

Habilitar y practicar la integración continua

Tras el uso exhaustivo del control de versiones,
la integración continua es una de las prácticas
más críticas que permiten el rápido flujo de
trabajo en nuestro flujo de valor, permitiendo a
muchos equipos de desarrollo desarrollar,
probar y entregar valor de forma independiente.

En esta sección explicaremos:

1. El desarrollo en lotes pequeños y lo que
sucede cuando confirmamos el código al
tronco con poca frecuencia

2. Adoptar prácticas de desarrollo basadas
en el tronco

3.4 Integración Continua

116

Trabajar en BRANCH

Desarrollo en BRANCH en control de versiones: Se creó principalmente para permitir a los
desarrolladores trabajar en diferentes partes del sistema de software en paralelo, sin el riesgo de
que los desarrolladores individuales verificaron cambios que podrían desestabilizar el trabajo o
incluso de introducir errores en el TRUNK (o maestro o mainline).

Desventajas:

• Más esfuerzo en BRANCH, más difícil integrar y combinar los cambios de todos en el tronco
• Integrar estos cambios se vuelve exponencialmente más difícil
• Los problemas de integración resultan en una cantidad significativa de retrabajo
• Si se realiza al final del proyecto (tradicionalmente es así), toma mucho más tiempo
• Espiral descendente: cuando la fusión de código es "dolorosa", tendemos a hacerlo con menos

frecuencia haciendo las futuras mezclas aún peores

3.4 Integración Continua

117

La integración continua fue diseñada para
resolver este problema, haciendo que la
combinación en el trunk una parte del trabajo
diario de todos.

La integración continua resuelve una variedad
sorprendente de problemas. Los principales
objetivos de la integración continua son
encontrar e investigar bugs más rápidamente,
mejorar la calidad del software y reducir el
tiempo que tarda en validar y lanzar nuevas
actualizaciones de software.

"Sin pruebas automatizadas, la integración
continua es la manera más rápida de obtener
una gran pila de basura electrónica que nunca
se compila o se ejecuta correctamente”.

La integración continua es una práctica de
desarrollo de software de DevOps en la que los
desarrolladores, a menudo, juntan sus cambios de
código en un repositorio central. Después de esto,
se ejecutan creaciones y pruebas.

3.4 Integración Continua

118

Gary Gruver, director de ingeniería de la división HP LaserJet Firmware, donde crean el
software embarcado para todos sus escáneres, impresoras y dispositivos multifunción.

El equipo estaba compuesto por cuatrocientos desarrolladores distribuidos en Estados
Unidos, Brasil e India. A pesar del tamaño del equipo, se estaban moviendo muy
lentamente. Durante años, no pudieron proporcionar nuevos recursos tan rápidamente
como los negocios necesitaban.

Gruver describió: "El marketing llegaba a nosotros con un millón de ideas para
deslumbrar a nuestros clientes y les decíamos: 'Quítate de tu lista, elige las dos cosas que
te gustaría obtener en los próximos seis o doce meses”.

3.4 Integración Continua

119

Sólo estaban concluyendo dos lanzamientos al año, con la mayor parte del tiempo
dedicado a la portabilidad de código para soportar nuevos productos. Gruver estimó
que sólo el 5% de su tiempo se gastó en la creación de nuevos recursos - el resto del
tiempo fue trabajo no productivo asociado a la deuda técnica, como la gestión de varias
ramas de código y pruebas manuales, como se muestra a continuación:

• 20 % en la planificación detallada (su baja productividad y largos períodos de tiempo
se asignaron erróneamente a una estimación defectuosa y, en espera de una
respuesta mejor, se pidió más detalles)

• 25 % en la portabilidad de código, todos mantenidos en branches de código
separados

• 10 % en la integración del código entre branch de desarrollador
• 15 % en el llenado de pruebas manuales

3.4 Integración Continua

120

Gruver y su equipo crearon una meta de acelerar el tiempo gastado en innovación y
nuevas funcionalidades por un factor de diez. El equipo esperaba que ese objetivo
pudiera ser alcanzado por medio de:

• Integración continua y desarrollo basado en TRUNK
• Inversión significativa en la automatización de pruebas
• Creación de un simulador de hardware para que las pruebas puedan ejecutarse en

una plataforma virtual
• La reproducción de errores de prueba en las estaciones de trabajo del desarrollador
• Una nueva arquitectura para soportar la ejecución de todas las impresoras de un

build y release comunes

3.4 Integración Continua

121

Las estrategias de ramificación o de uso de
BRANCH

1) Optimizar para la productividad individual:

Cada desarrollador trabaja en su propio branch
privado.

Todos trabajan independientes y nadie obstaculiza
el trabajo del otro; sin embargo, la fusión o mezcla
se convierte en una pesadilla.

La colaboración se vuelve difícil - el trabajo de
cada uno tiene que ser meticulosamente
integrado con el trabajo de todos para ver hasta la
parte más pequeña del sistema completo.

3.4 Integración Continua

122

2) Optimizar la productividad del equipo:

Todos trabajan en la misma área común. No hay branch, sólo un trunk de desarrollo
largo e ininterrumpido.

• Verificar el código con frecuencia reduce el tamaño de lote para el trabajo
• Cuanto más registran el código en el tronco, más cerca del ideal teórico del flujo de

pieza única
• Ejecutar todas las pruebas automatizadas y recibir alertas de cambios de interrupción
• Con la detección de problemas de mezcla aún pequeños, podemos corregirlos más

rápidamente
• Método confirmaciones bloqueadas: sólo es posible realizar la confirmación en el

pipeline si el cambio enviado se aprueba en todas las pruebas automatizadas antes
de ser mezclada en el trunk

• El control de versiones se convierte en un mecanismo integral de cómo el equipo se
comunica entre sí

3.4 Integración Continua

123

Adopte prácticas de desarrollo basadas en el
TRUNK

Una medida importante para las grandes
mezclas es instituir prácticas de integración
continua y de desarrollo basado en TRUNK:
• Los desarrolladores registran su código en el

tronco al menos una vez al día

Verificar el código a menudo reduce el tamaño
del lote para el trabajo realizado por todo
nuestro equipo de desarrolladores en un solo
día.

Cuanto más los desarrolladores registran el
código en el tronco, menor el tamaño del lote y
más próximos estamos del ideal teórico del flujo
de pieza única.

Definición de "listo": "Al final de cada intervalo de
desarrollo, debemos tener código integrado,
probado, funcional y potencialmente utilizable,
demostrado en un entorno similar a la producción,
creado a partir del trunk usando un proceso de un
clic y validado con pruebas automatizado”.

3.4 Integración Continua

124

Sponsored By: Shift Left Concept

Fuente: https://jaxenter.com/devops-shifting-left-172792.html

https://jaxenter.com/devops-shifting-left-172792.html
https://jaxenter.com/devops-shifting-left-172792.html
https://jaxenter.com/devops-shifting-left-172792.html
https://jaxenter.com/devops-shifting-left-172792.html
https://jaxenter.com/devops-shifting-left-172792.html
https://jaxenter.com/devops-shifting-left-172792.html
https://jaxenter.com/devops-shifting-left-172792.html

125

Automatice el proceso de Despliegue

• Documentar las etapas del proceso de Despliegue, en el mapeo del flujo de valor
• Simplifique y automatice el mayor número posible de etapas manuales, como:

 Empaquetado del código en las formas adecuadas para la implementación
 Creación de imágenes o contenedores de máquina virtual preconfigurados
 Automatización de la implementación y configuración de middleware
 Copiar paquetes o archivos a servidores de producción
 Reiniciar servidores, aplicaciones o servicios


3.4 Integración Continua

126

Automatice el proceso de Despliegue

• Intente remodelar para eliminar etapas
• También intente reducir los plazos de

entrega y el número de transferencias
• Involucre desarrolladores en la

automatización y optimización del
proceso de Despliegue

• Ponga el equipo de desarrollo a trabajar
en estrecha colaboración con las
Operaciones

3.4 Integración Continua

127

Automatice el proceso de Despliegue

3.4 Integración Continua

128

Talleres Prácticos Sugeridos

129

Automatice y habilite las liberaciones de alto
riesgo

En este capítulo, reducimos la fricción asociada a
los despliegues de producción, asegurando que se
puedan realizar con frecuencia y fácilmente, ya
sea por Operaciones o por Desarrollo. Para ello,
ampliaremos nuestro pipeline de despliegue.

En lugar de limitarse a integrar continuamente
nuestro código en un entorno similar al de
producción, habilitaremos la promoción a
producción de cualquier compilación que supere
nuestro proceso automatizado de pruebas y
validación, ya sea bajo demanda (es decir,
pulsando un botón) o automáticamente (es decir,
cualquier compilación que supere todas las
pruebas se despliega automáticamente).

3.5 Las Prácticas Técnicas Releases

130

El principal tema que debemos preocuparnos no
es la forma, sino los resultados: las
implementaciones deben ser eventos de
"presionar un botón" de bajo riesgo que podemos
ejecutar bajo demanda.
• Trabajando en pequeños lotes en el TRUNK, y

siempre el código se mantiene en un estado
liberable, podemos liberar bajo demanda
"presionando un botón" durante el horario
comercial normal, estamos haciendo una
entrega continua

• Implementando buenos builds en producción
regularmente a través del Auto-Servicio -
desplegando a producción al menos una vez
al día por desarrollador, o automáticamente
todos los cambios que un desarrollador
completa - es cuando nos estamos
comprometiendo al despliegue continuo

Definida de esta manera, la entrega continua
es el requisito previo para el despliegue
continuo, así como la integración continua es
un requisito previo para la entrega continua.

3.5 Lanzamiento de Alto Riesgo

131

Automatice el proceso de Despliegue

Los requisitos para el pipeline de despliegue
incluyen:

 Despliegue de la misma manera en
todos los entornos

 Prueba de humo de nuestras
implementaciones

 Garantizar el abastecimiento y
mantenimiento de entornos
consistentes (para Dev, QA, Soporte y
Producción)

3.5 Lanzamiento de Alto Riesgo

132

CI / CD Pipelines para Servicios

Env. - QA -
QA y OPS Pruebas

E2E:

Env. - Develop -
para pasar a Development se debe

evidenciar:
✓ Unit Tests
✓Component Tests
✓Contract Tests
✓ Smoke E2E - Stubs

✓ Regression E2E
✓ Resilience Test
✓ Manual Test
✓ Exploratory

Test

Snapshots ReleasesPromote Promote

Env. - Integración
-

QA Pruebas
Integrales:

Env. - Pre-Prod -
QA y OPS Pruebas

E2E Prod:
✓ Selected E2E

Suite
✓ Manual Test
✓ Exploratory

Test

✓ Smoke E2E

Dev
Release

Manager

Deploy to
Integración

Start
Release

Certificatio
n

Deploy
to

Pre-Prod
Desarrollo

Rama Local
Del Máster

Release
Candidate

Snapshots

Tea
m

TL

133

Automatice el proceso de Despliegue

Proporciona implementaciones
automatizadas en forma de autoservicio:

Para habilitar mejor el flujo rápido, deseamos
un proceso de promoción de código que
pueda ser ejecutado por Desarrollo o
Operaciones, idealmente sin ninguna etapas
manuales o transferencias. Esto afecta a los
pasos siguientes:

• Build
• Prueba
• Despliegue

La capacidad de los desarrolladores de auto implantar código
en producción, ver rápidamente los clientes satisfechos
cuando sus recursos funcionan y corregir rápidamente
cualquier problema sin tener que abrir un ticket en
Operaciones.

3.5 Lanzamiento de Alto Riesgo

134

Proporcione implementaciones
automatizadas en forma de autoservicio:

• Build
• Prueba
• Despliegue

3.5 Lanzamiento de Alto Riesgo

135

Talleres Prácticos Sugeridos

136

Automatice y habilite las liberaciones de bajo riesgo (2 / 2)

En esta sección explicaremos :
1. Automatizar nuestro proceso de despliegue
2. Habilitar las implantaciones automatizadas de autoservicio
3. Integrar el despliegue de código en el proceso de despliegue
4. Desvincular las implantaciones de los lanzamientos
5. Patrones de despliegue basados en el entorno
6. El patrón de despliegue azul-verde
7. Cómo hacer frente a los cambios en las bases de datos
8. Los patrones de liberación del sistema inmune canario y del clúster
9. Patrones basados en la aplicación para permitir liberaciones más

seguras
10. Implantar interruptores de funciones
11. Realizar lanzamientos oscuros
12. Estudio de la entrega continua y el despliegue continuo en la práctica

3.5 Las Prácticas Técnicas Releases

137

Arquitectura para liberaciones de bajo riesgo

En este capítulo, describiremos los pasos que podemos dar para invertir la espiral
descendente, revisaremos los principales arquetipos arquitectónicos, examinaremos los
atributos de las arquitecturas que permiten la productividad de los desarrolladores, la
capacidad de prueba, la capacidad de despliegue y la seguridad, así como
evaluaremos las estrategias que nos permiten migrar de forma segura desde cualquier
arquitectura actual que tengamos a una que permita alcanzar mejor nuestros objetivos
organizativos.

En esta sección explicaremos :

1. Una arquitectura que permite la productividad, la comprobabilidad y la seguridad
2. Arquetipos arquitectónicos: monolitos vs. Microservicios
3. Utilizar el patrón de aplicación estrangulador para evolucionar con seguridad nuestra

arquitectura empresarial

3.5 Lanzamiento de Bajo Riesgo

138

Automatice el proceso de Despliegue

Integre el código compilado en el pipeline de despliegue

Posterior al proceso de compilación de código automatizado, es posible incluirlo en el
pipeline de despliegue.

 Garantizar que los paquetes sean adecuados para su despliegue en producción
 Mostrar rápidamente la preparación de los entornos de producción
 Proporcionar un método de autoservicio accionado por un botón
 Grabar automáticamente, qué comandos, en qué máquinas, cuándo, quién autorizó y

cuál fue la salida
 Ejecutar una prueba de humo
 Proporcionar feedback rápido al implantador

3.5 Lanzamiento de Bajo Riesgo

139

Unit Test Platform Test Delivery to
Staging

App
Acceptance

Test

Deploy to
Production

Post Deploy
Tests

Continuous Delivery

Manual

Unit Test Platform Test Delivery to
Staging

App
Acceptance

Test

Deploy to
Production

Post Deploy
Tests

Continuous Deployment

Auto Auto Auto AutoAuto

Unit Test Platform Test Delivery to
Staging

App
Acceptance

Test

Deploy to
Production

Post Deploy
Tests

Continuous Integration

Auto
Manu
al

Auto Auto Auto

Auto Auto Auto Auto AutoAuto Auto

Auto

Manual Manual Manual Manual

Manual

3.5 Lanzamiento de Bajo Riesgo

140

Desacoplar los despliegues de las
liberaciones / releases

Necesitamos desacoplar nuestros
despliegues de producción de nuestras
liberaciones de aspectos o funcionalidad.

En la práctica, los términos despliegue y
liberación se utilizan frecuentemente de
forma intercambiable. Sin embargo, son
dos acciones distintas que sirven a dos
propósitos muy diferentes:

• Despliegue(Deployment)
• Liberación (release)

Los despliegues (deployment) es la
instalación de una versión específica del
software en un entorno determinado.

Liberación (release) es cuando ofrecemos
una funcionalidad (o conjunto) a todos
nuestros clientes o a un segmento de clientes

3.5 Lanzamiento de Bajo Riesgo

141

Automatice el proceso de Despliegue

Proporcione implementaciones
automatizadas en forma de autoservicio:

• Build
• Prueba
• Despliegue
• Liberación (Operate)

3.5 Lanzamiento de Bajo Riesgo

142

Desacoplar los despliegues de las liberaciones / releases

Hay dos grandes categorías de estándares de lanzamiento que podemos utilizar:

• Estándares de versión basados en el entorno: dos o más entornos en los que
desplegamos, pero sólo un entorno está recibiendo tráfico de clientes activos (por
ejemplo, configurando nuestros equilibradores de carga). El nuevo código se
despliega en un entorno no activo y el lanzamiento se ejecuta moviendo el tráfico a
ese entorno

• Estándares de versión basados en aplicaciones: es donde modificamos nuestra
aplicación para que podamos liberar y exponer selectivamente la funcionalidad
específica de la aplicación a través de pequeños cambios en la configuración. Por
ejemplo, podemos desplegar nuevas funcionalidades que exponen progresivamente
nuevas funcionalidades en producción

3.5 Lanzamiento de Bajo Riesgo

143

Desacoplar los despliegues de las
liberaciones / releases

• Estándares de versión basados en el
entorno: dos o más entornos en los que
desplegamos, pero sólo un entorno está
recibiendo tráfico de clientes activos (por
ejemplo, configurando nuestros
equilibradores de carga). El nuevo código
se despliega en un entorno no activo y el
lanzamiento se ejecuta moviendo el
tráfico a ese entorno

Fuente: https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3

3.5 Lanzamiento de Bajo Riesgo

https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3
https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3
https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3
https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3
https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3
https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3
https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3
https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3
https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3
https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3
https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3
https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3
https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3
https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3
https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3
https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3
https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3
https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3
https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3

144

• Estándares de versión basados en
aplicaciones: es donde modificamos
nuestra aplicación para que podamos
liberar y exponer selectivamente la
funcionalidad específica de la aplicación
a través de pequeños cambios en la
configuración. Por ejemplo, podemos
desplegar nuevas funcionalidades que
exponen progresivamente nuevas
funcionalidades en producción

Fuente: https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-
more-3a3

3.5 Lanzamiento de Bajo Riesgo

https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3
https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3
https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3
https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3
https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3
https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3
https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3
https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3
https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3
https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3
https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3
https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3
https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3
https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3
https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3
https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3
https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3
https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3
https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3

145

Estándares de versión basados en el
entorno

Desacoplar despliegues de nuestros
lanzamientos cambia drásticamente como
trabajamos.
• Se evita despliegues en el medio de la

noche o en los fines de semana
• Así, los despliegues son durante el horario

de trabajo típico
• De esta manera, se disminuye

significativamente el riesgo asociado a las
liberaciones de producción y reducir el
lead time de el despliegue

3.5 Lanzamiento de Bajo Riesgo

146

Estándar de liberación Azul-verde:

El más simple de los tres estándares se llama el despliegue azul-verde. En este estándar,
hay dos entornos de producción: azul y verde. En cualquier momento, sólo uno de ellos
está atendiendo al tráfico de clientes, el entorno verde está en vivo.

Parte Verde

Parte Azul

Servidor web

BD Verde

BD Azul

Servidor de banco
de datos

Parte Verde

Parte Azul

Servidor de
aplicaciones

EnrutadorUsuarios

3.5 Lanzamiento de Bajo Riesgo

147

Lidiando con los cambios en la base de datos

Tener dos versiones de nuestra aplicación en producción crea problemas cuando
dependen de una base de datos común. Hay dos enfoques generales para resolver este
problema:
• Cree dos bases de datos (por ejemplo, una base de datos azul y otra verde)
• Desacoplar cambios de base de datos de cambios de aplicaciones

Este estándar también es comúnmente llamado estándar de expansión/contrato. No cambiamos
(mutate) objetos de base de datos, como columnas o tablas. En vez de eso, primero hemos
expandido, añadiendo nuevos objetos, y luego contratamos removiendo los antiguos.

Parte Verde

Parte Azul

Servidor web

BD Verde

BD Azul

Servidor de banco de datos

Parte Verde

Parte Azul

Servidor de aplicaciones

EnrutadorUsuarios

3.5 Lanzamiento de Bajo Riesgo

148

Estándar de liberación Canario

Automatiza el proceso de lanzamiento de promoción para entornos más grandes y
críticos, con confirmaciones planificadas.

Se monitorea el rendimiento del software en cada entorno.

Cuando algo parece estar equivocado, retrocedemos; de lo contrario, se despliega en el
siguiente entorno.

El término liberación de canario viene de la tradición de mineros de carbón, que llevaban canarios
enjaulados a las minas para proporcionar detección precoz de niveles tóxicos de monóxido de
carbono. Si hubiera mucho gas en la cueva, él mataría a los canarios antes de matar a los
mineros, alertándolos para evacuar.

3.5 Lanzamiento de Bajo Riesgo

149

Ejemplo muestra los grupos de entornos que creó Facebook para soportar este estándar
de release:

Pequeño conjunto de
usuarios

Enrutador/
Balanceador

de carga

Nuevo
paquete de

release

Empleados del
Facebook

Usuarios

Mayoría de
los usuarios

3.5 Lanzamiento de Bajo Riesgo

150

El sistema inmune de clúster

Expande el estándar de release canario
conectando el sistema de monitoreo de
producción con el proceso de release y
automatizando la reversión del código.

Hay dos beneficios significativos:
1. Protegemos contra defectos que son

difíciles de encontrar
2. Reducimos el tiempo necesario para

detectar y responder al desempeño
degradado

Pequeño conjunto
de usuarios

Enrutador/
Balanceador

de carga

Nuevo paquete de
release

Empleados del
Facebook

Usuarios

Mayoría de
los usuarios

3.5 Lanzamiento de Bajo Riesgo

151

Aumenta la flexibilidad en la forma en que
lanzamos nuevos recursos con seguridad
para nuestros clientes, generalmente en una
base por característica o funcionalidad.

Hay una necesidad de exigir mayor disciplina
y participación del Desarrollo.

3.5 Lanzamiento de Bajo Riesgo

152

Despliega las funcionalidades
selectivamente.

Mecanismo para habilitar y deshabilitar
selectivamente recursos sin requerir un
despliegue de código de producción. Las
alternancias de recursos también nos
permiten hacer lo siguiente:

 Retroceder fácilmente
 Degradar el rendimiento graciosamente
 Aumentar nuestra resiliencia a través de

una arquitectura orientada a servicios
Proporciona el mecanismo para habilitar y
deshabilitar selectivamente recursos sin requerir
despliegues de código de producción.

3.5 Lanzamiento de Bajo Riesgo

153

Desplegar Dark Releases/ Lanzamientos Ocultos

Las alternancias de recursos permiten desplegar
recursos en la producción sin hacerlos accesibles
a los usuarios, permitiendo una técnica conocida
como lanzamiento oscuro.

Despliegues con toda funcionalidad en la
producción:
• Realizamos pruebas de esta funcionalidad
• Todavía es invisible para los clientes

Para cambios grandes o arriesgados, muchas
veces lo hacemos por semanas antes del
lanzamiento en la producción, lo que nos permite
probar con seguridad las cargas previstas de
producción.

3.5 Lanzamiento de Bajo Riesgo

154

Talleres Prácticos Sugeridos

155

Arquitectura evolucionista

El desafío es cómo seguir migrando de la
arquitectura que tenemos para la arquitectura
que necesitamos.

Migración:
• Buscar áreas de mayor retorno posible

clasificando las páginas del sitio por los
ingresos producidos

• Así, elegir las áreas de mayor ingreso

Técnica de estrangulamiento - en lugar de
"extraer y reemplazar" servicios antiguos por
arquitecturas que ya no soportan las metas
organizacionales, se coloca la funcionalidad
existente detrás de una API y se evita hacer más
cambios.

3.6 Arquitectura de Bajo Riesgo

156

Arquitectura que permita productividad,
testeabilidad y seguridad

Arquitectura débilmente acoplada:
• Interfaces bien definidas que refuerzan cómo los

módulos se conectan
• Promueve la productividad y la seguridad

Permite que equipos pequeños, productivos y de dos
pizzas puedan hacer pequeños cambios que puedan
ser desplegados de manera segura e independiente.

Esta arquitectura orientada a servicios permite:
• Pequeños equipos trabajen en unidades más

pequeñas y más sencillas de desarrollo
• Que cada equipo puede desplegar de forma

independiente, rápida y segura

3.6 Arquitectura de Bajo Riesgo

157

Arquitectura Monolítica versus Microservicios

En algún momento de su historia, la mayoría de las organizaciones de DevOps fue
perjudicada por arquitecturas monolíticas y fuertemente acopladas que, a pesar de ser
extremadamente exitosas en ayudarlas a alcanzar el ajuste del producto/mercado,
colocaron al grupo en riesgo de falla organizacional.
• Las arquitecturas monolíticas no son inherentemente malas - en realidad, por lo

general, son la mejor opción para una organización al principio del ciclo de vida de
un producto

UI

Ship Acct

Mgt Engr

DB

Monolítica

UI

Ship Acct

Mgt Engr
DBDB

DB DB
Get

Post
Get

Get

Microservicios

3.6 Arquitectura de Bajo Riesgo

158

Utilice el patrón estrangulador para evolucionar la arquitectura con seguridad

Si hemos determinado que nuestra arquitectura actual está muy acoplada, podemos
empezar a separar con seguridad partes de la funcionalidad de nuestra arquitectura
existente.

Al hacer esto, habilitamos a los equipos que soportan la funcionalidad desacoplada a
desarrollar, probar y desplegar independientemente su código en producción con
autonomía y seguridad, además de reducir la entropía arquitectónica.

Creando aplicaciones estranguladoras, evitamos simplemente reproducir la
funcionalidad existente en alguna nueva arquitectura o tecnología - generalmente,
nuestros procesos de negocio son mucho más complejos de lo necesario debido a las
idiosincrasias de los sistemas existentes, que acabamos reproduciendo.

3.6 Arquitectura de Bajo Riesgo

159

Talleres Prácticos Sugeridos

Parte 4: La Segunda Forma -
FEEDBACK

161

¿Por qué la Segunda Forma?

En el ámbito de la tecnología, nuestro trabajo se desarrolla casi por completo en sistemas
complejos con un alto riesgo de consecuencias catastróficas. Como en la fabricación, a menudo
descubrimos problemas sólo cuando se producen grandes fallos, como una interrupción masiva de
la producción o una de producción o un fallo de seguridad que provoque el robo de datos de los
clientes.

Hacemos que nuestro sistema de trabajo sea más seguro creando un flujo de información rápido,
frecuente y de alta calidad de alta calidad a través de nuestro flujo de valor y nuestra organización,
que incluye bucles de retroalimentación y alimentación. Esto nos permite:

• Detectar y remediar problemas mientras aún son pequeños, más baratos y más fáciles de
arreglar

• Evitar los problemas antes de que causen una catástrofe, y
• Crear un aprendizaje organizativo que que integramos en el trabajo futuro
• Tratar a los fallos y accidentes, cómo oportunidades de aprendizaje, en lugar de una causa de

castigo y culpa

4.0 Las Prácticas Técnicas de la Retroalimentación

162

Puntos a cubrir

Mientras que la Primera Vía describe los principios que permiten el rápido flujo de traba de izquierda
a derecha, la Segunda Vía describe los principios que permiten la de la derecha a la izquierda en
todas las etapas del flujo de valor. Nuestro objetivo es crear un sistema de trabajo cada vez más
seguro y resiliente.

En esta sección explicaremos:

1. Cómo crear telemetría para poder ver y resolver problemas
2. Utilizar nuestra telemetría para anticipar mejor los problemas y alcanzar los objetivos
3. Integrar la investigación y el feedback de los usuarios en el trabajo de los equipos de producto
4. Permitir la retroalimentación para que los departamentos de desarrollo y operaciones puedan

realizar los despliegues de forma segura
5. Permitir la retroalimentación para aumentar la calidad de nuestro trabajo a través de revisiones

por pares y la programación por pares

4.0 Las Prácticas Técnicas de la Retroalimentación

163

• 4.1 Cómo crear telemetría para poder ver
y resolver problemas.

• 4.2 Integrar la investigación y el feedback
de los usuarios en el trabajo de los
equipos de producto

• 4.3 Permitir la retroalimentación para que
los departamentos de desarrollo y
operaciones puedan realizar los
despliegues de forma segura

• 4.4 Permitir la retroalimentación para
aumentar la calidad de nuestro trabajo a
través de revisiones por pares y la
programación por pares

Agenda

164

Crear telemetría para permitir ver y resolver problemas

Un hecho de la vida en Operaciones, o cuando trabajamos con sistemas complejos, es que las
cosas van a salir mal: pequeños cambios pueden llevar a resultados inesperados, incluyendo
cortes y fallos globales que afectan a todos nuestros clientes. Esta es la realidad de la gestión de
sistemas complejos: ninguna persona puede ver todo el sistema y entender cómo encajan todas
las piezas.

Durante una interrupción al servicio, es posible que no se pueda determinar si el problema se
produce debido a una falla:
• En nuestra aplicación (por ejemplo, defecto en el código)
• En nuestro entorno (por ejemplo, un problema de red, problema de configuración del servidor)
• Algo totalmente externo a nosotros (por ejemplo, un ataque masivo de denegación de servicio)

Ante esta situación, debemos usar un enfoque disciplinado para resolver problemas, utilizando la
telemetría de la producción para entender los posibles factores que están contribuyendo al evento
y así poder enfocarse en la solución de problemas, a diferencia de simplemente “reiniciar los
servidores” a cada rato.

4.1 Telemetría: ¿Por qué?

165

La telemetría cómo habilitador en el
diagnóstico

Para habilitar este comportamiento
disciplinado de resolución de problemas,
tenemos que diseñar nuestros sistemas para
crear continuamente telemetría.

Telemetría se define como "un proceso de
comunicación automatizado por el que se
recogen mediciones y otros datos en puntos
remotos y se transmiten a equipos receptores
para su control".

Nuestro objetivo es crear telemetría dentro de
nuestras aplicaciones y entornos, tanto en
nuestra pre-producción como en los
ambientes productivos, incluyendo nuestra
cadena de despliegue.

Cultura de Causalidad: las organizaciones de mejor
desempeño resultaron ser mucho más efectivas tanto en el
diagnóstico, cómo en la corrección de los incidentes de
servicio que sus pares.

4.1 Telemetría: ¿Por qué?

166

¿Por qué la telemetría?

En la Conferencia Velocity de 2012, McDonnell describió cuánto riesgo eso creaba:

"Estábamos cambiando algunas de nuestras infraestructuras más críticas, que,
idealmente, los clientes nunca notarían. Sin embargo, ellos definitivamente notarán si
nosotros estropeemos algo. Necesitábamos más métricas para darnos la confianza de
que no estábamos realmente rompiendo las cosas mientras hacíamos estos grandes
cambios, tanto para nuestros equipos de ingeniería y para miembros del equipo en
áreas no técnicas, como marketing”.

"Comenzamos a recoger toda la información de nuestro servidor en una herramienta de
nombre Ganglia, mostrando toda la información en Graphite, una herramienta de
código abierto en la que invertimos pesadamente. Al hacer esto, podríamos ver más
rápidamente cualquier efecto colateral de el despliegue no intencional. Incluso
empezamos a poner pantallas de televisión en toda la oficina para que todos pudieran
ver el rendimiento de nuestros servicios”.

4.1 Telemetría: ¿Por qué?

167

Mejora la capacidad de resolver incidentes

Las organizaciones de alta performance resuelven
incidentes de producción 168 veces más rápido que
sus pares, con un promedio de alto rendimiento que
tiene un MTTR medido en minutos, mientras que la
mediana de bajo rendimiento tuvo un MTTR medido
en días. Las dos principales prácticas técnicas que
permitieron el MTTR rápido fueron:

• El uso del control de versiones por Operaciones
• La utilización de telemetría y monitoreo proactivo

en el entorno de producción

El objetivo es garantizar que siempre tengamos
telemetría suficiente para poder confirmar que
nuestros servicios están funcionando
correctamente en todos nuestros ambientes.

Fuente: DevOps
Handbook

4.1 Telemetría: ¿Por qué?

168

Resumen

El objetivo es asegurar que siempre tengamos
suficiente telemetría para que podamos confirmar
que nuestros servicios están funcionando
correctamente en producción.

Y cuando se produzcan problemas, hacer que sea
posible determinar rápidamente lo que va mal y
tomar decisiones informadas sobre la mejor
manera de solucionarlo, idealmente mucho antes
de que los clientes se vean afectados.

Además, la telemetría es lo que nos permite reunir
nuestra mejor comprensión de la realidad y
detectar cuando nuestra comprensión de la
realidad es incorrecta.

4.1 Telemetría: ¿Por qué?

169

Infraestructura de Telemetría Centralizada

Durante décadas hemos acabado con silos de información, donde Desarrollo sólo crea
eventos de registro que son útiles para los desarrolladores, y Operaciones sólo supervisa
si los entornos están activos o inactivos.

El resultado es que cuando ocurren eventos inoportunos, nadie puede determinar por
qué todo el sistema no está funcionando como se diseñó o qué componente específico
está fallando, impidiendo nuestra capacidad de devolver el sistema a su estado de
funcionamiento.

Debemos diseñar y desarrollar nuestras aplicaciones y entornos para que generen
telemetría suficiente, permitiéndonos entender cómo nuestro sistema se está
comportando como un todo.

4.1 Telemetría: Arq. de Monitoreo Moderna

170

Infraestructura de Telemetría Centralizada y
Moderna

Cuando todos los niveles de nuestro ecosistema
de aplicaciones tienen monitoreo y registro,
habilitamos otros recursos importantes, como
gráficos y visualización de nuestras métricas,
detección de anomalías, alerta proactiva y
escalonamiento, etc. Para ello se sugiere:
• Recolección de datos en la capa de lógica de

negocios, aplicaciones y entornos: para crear
telemetría en forma de eventos, logs y métricas

• Un enrutador de eventos responsable de
almacenar nuestros eventos y métricas: este
recurso permite la visualización, la tendencia,
la alerta, la detección de anomalías, etc

Enrutador
de Eventos

Destino:
Almacena

do
Gráfico
Alerta

Lógica del Negocio

Aplicación

Sistema OperativoEv
en

to
s,

 R
eg

is
tr

os
,

M
ét

ri
ca

s

Estructura de Monitoreo

4.1 Telemetría: Arq. de Monitoreo Moderna

171

Arquitectura de monitoreo moderna

• Al centralizar los registros:
• Podemos convertirlos en métricas que

podemos contabilizar en el enrutador
de eventos

• Al transformar los logs en métricas:
• Es posible realizar operaciones

estadísticas, como usar la detección
de anomalías para encontrar valores
discrepantes y variaciones más
rápidamente

4.1 Telemetría: Arq. de Monitoreo Moderna

172

Adicionalmente, podemos recoger telemetría en
el pipeline de despliegue en eventos importantes,
ej.: las pruebas automatizadas que pasan o
fallan o en los despliegues que se están
realizando en cualquiera de los entornos.

También puedo recoger telemetría de la
duración o el tiempo que se está tomando el
ejecutar nuestros Builds o corridas de pruebas de
regresión.

Al hacer esto, podemos detectar condiciones
que podrían indicar problemas, como por
ejemplo si la prueba de rendimiento o nuestra
compilación tarda el doble de lo normal, lo que
nos permite encontrar y corregir los errores antes
de que pasen a producción.

4.1 Telemetría: Arq. de Monitoreo Moderna

173

https://www2.microstrategy.com/producthelp/Current/PlatformAnalytics/en-us/Content/pa_architecture_examples.htm

4.1 Telemetría: Arq. de Monitoreo Moderna

https://www2.microstrategy.com/producthelp/Current/PlatformAnalytics/en-us/Content/pa_architecture_examples.htm
https://www2.microstrategy.com/producthelp/Current/PlatformAnalytics/en-us/Content/pa_architecture_examples.htm
https://www2.microstrategy.com/producthelp/Current/PlatformAnalytics/en-us/Content/pa_architecture_examples.htm

174

Crear Telemetría De Registro De Aplicaciones Que
Ayuda A La Producción

Todos los miembros del pipeline utilizarán la
telemetría de varias maneras:

• El equipo DEV pueden crear temporalmente
más telemetría en su aplicación para
diagnosticar mejor los problemas en su local

• El equipo OPS puede usar la telemetría para
diagnosticar un problema de producción

• Infosec y los auditores pueden revisar la
telemetría para confirmar la eficacia de un
control necesario, rastrear los resultados de
negocios, el uso de recursos o las tasas de
conversión

4.1 Telemetría: Logging de Aplicaciones

175

Crear registros de telemetría

Para soportar estos varios modelos de uso,
tenemos diferentes niveles de registro,
algunos de los cuales también pueden
accionar alertas, como los siguientes:

• Nivel de DEBUG
• Nivel INFO
• Nivel de WARN (alerta)
• Nivel de ERROR (excepción)
• Nivel FATAL

4.1 Telemetría: Logging de Aplicaciones

176

Crear registros de telemetría

Todos los eventos potencialmente significativos de la aplicación deben generar entradas de
registro, incluidas las que figuran en esta lista elaborada por Anton A. Chuvakin,
vicepresidente de investigación del grupo GTP Security and Risk Management de Gartner:

• Decisiones de autenticación/autorización (incluido el cierre de sesión)
• Acceso al sistema y a los datos
• Cambios en el sistema y las aplicaciones (especialmente los cambios de privilegios)
• Cambios en los datos, como añadir, editar o eliminar datos
• Entradas no válidas (posibles inyecciones maliciosas, amenazas, etc.)
• Recursos (RAM, disco, CPU, ancho de banda o cualquier otro recurso que tenga límites)
• Salud y disponibilidad del servicio
• Arranques y paradas
• Fallos y errores
• Disparos de circuit breakers
• Retrasos / Delays
• Éxito/fallo de las copias de seguridad

4.1 Telemetría: Logging de Aplicaciones

177

Logging para mejorar el análisis de los incidentes

La telemetría nos permite utilizar el método científico para formular hipótesis sobre la causa de un
problema concreto y lo que se necesita para resolverlo. Ejemplos de preguntas que podemos
responder durante la resolución del problema incluyen:

• ¿Qué pruebas tenemos de nuestra monitorización de que un problema se está produciendo
realmente?

• ¿Cuáles son los eventos y cambios relevantes en nuestras aplicaciones y entornos que podrían
haber contribuido al problema?

• ¿Qué hipótesis podemos formular para confirmar la relación entre las causas y los efectos
propuestos?

• ¿Cómo podemos demostrar cuáles de estas hipótesis son correctas y solucionar el problema con
éxito?

El valor de la resolución de problemas basada en hechos no sólo radica en un mejor MTTR (y
mejores resultados para el cliente), sino también en el refuerzo de la percepción de una relación de
beneficio mutuo entre Desarrollo y Operaciones.

4.1 Telemetría: Logging de Aplicaciones

178

Crear Autoservicios para Acceso a Radiadores De
Información y Telemetría

Queremos que nuestra telemetría de producción
sea muy visible, lo que significa ponerla en áreas
centrales donde trabajen Desarrollo y Operaciones,
permitiendo así que todos los que estén interesados
vean cómo están funcionando nuestros servicios
(Desarrollo, Operaciones, Gestión de Productos e
Infosec. entre otros)

Se promueve la responsabilidad entre los miembros
del equipo, demostrando activamente valores:

• El equipo no tiene nada que esconder de sus
visitantes (clientes, partes interesadas, etc.)

• El equipo no tiene nada que esconder de sí
mismo: reconoce y enfrenta problemas

https://www.boldbi.com/integrations/azure-
devops

4.1 Telemetría: Radiadores de Información

https://www.boldbi.com/integrations/azure-devops
https://www.boldbi.com/integrations/azure-devops
https://www.boldbi.com/integrations/azure-devops

179

Encontrar y rellenar las lagunas en la Telemetría

Para conseguirlo es necesario crear suficiente
telemetría en todas las gaps de las aplicaciones y
para todos nuestros entornos, así como para los
pipelines de despliegue que los soportan.
Necesitamos métricas de los siguientes niveles:

• Nivel de negocio
• Nivel de aplicación
• Nivel de infraestructura
• Nivel de software del cliente
• Nivel de pipelines de despliegue

Al tener cobertura de telemetría en todas estas
áreas, podremos ver la salud de todo aquello en lo
que se basa nuestro servicio, utilizando datos y
hechos en lugar de rumores, acusaciones, culpas,
etc.

4.1 Telemetría: Brechas en la Telemetría

https://www.boldbi.com/integrations/azure-
devops

https://www.boldbi.com/integrations/azure-devops
https://www.boldbi.com/integrations/azure-devops
https://www.boldbi.com/integrations/azure-devops

180

Encontrar y rellenar las lagunas en la Telemetría

• Nivel de negocio: Los ejemplos incluyen el número de transacciones de ventas, los
ingresos de las transacciones de ventas, las inscripciones de usuarios, la tasa de
abandono, los resultados de las pruebas A/B, etc

• Nivel de aplicación: Los ejemplos incluyen los tiempos de transacción, los tiempos de
respuesta de los usuarios, fallos de la aplicación, etc

• Nivel de infraestructura (por ejemplo, base de datos, sistema operativo, red
almacenamiento): Los ejemplos incluyen el tráfico del servidor web, la carga de la CPU,
el uso del disco, etc

• Nivel de software del cliente (por ejemplo, JavaScript en el navegador del cliente,
aplicación móvil): Los ejemplos incluyen errores y fallos de la aplicación, tiempos de
transacción medidos por el usuario, etc.

• Nivel de Pipeline de despliegue: Los ejemplos incluyen el estado de la cadena de
construcción (por ejemplo, rojo o verde para nuestros diversos conjuntos de pruebas
automatizados), tiempos de despliegue de cambios de despliegue, frecuencias de
despliegue, promociones de entornos de prueba y estado del entorno

4.1 Telemetría: Brechas en la Telemetría

181

Analizar la telemetría para anticiparse mejor a los problemas y alcanzar los objetivos

Como vimos en la sección anterior necesitamos suficiente telemetría de producción en
nuestras aplicaciones e infraestructura para ver y resolver los problemas a medida que
se producen. Es importante que creemos herramientas que nos permitan descubrir
variaciones y señales de fallo cada vez más débiles ocultas en nuestra telemetría de
producción para poder evitar fallos catastróficos. Algunas técnicas que podemos usar
son:
• Utilizar las medias y las desviaciones estándar para detectar posibles problemas
• Instrumentar y alertar sobre resultados no deseados
• Utilizar técnicas de detección de anomalías

4.1 Telemetría: Análisis Predictivos Telemetría

182

Estas técnicas estadísticas pueden utilizarse
para analizar nuestra telemetría de
producción, de modo que podamos
encontrar y solucionar los problemas antes
que ocurran, a menudo cuando todavía son
pequeños y mucho antes de que causen
resultados catastróficos. Esto nos permite
encontrar señales de fallo cada vez más
pequeñas sobre las que podemos actuar,
creando un sistema de trabajo cada vez más
seguro.

4.1 Telemetría: Análisis Predictivos Telemetría

Fuente: DevOps
Handbook

183

Permitir la retroalimentación para que el
desarrollo y las operaciones puedan desplegar el
código con seguridad

En esta sección hablaremos de los mecanismos de
retroalimentación que nos permiten mejorar
nuestro servicio en cada etapa de nuestro trabajo
diario, ya sea desplegando cambios en
producción, arreglando el código cuando las cosas
van mal y se llama a los ingenieros, haciendo que
los desarrolladores sigan su trabajo aguas abajo,
creando requisitos no funcionales que ayuden a
los equipos de desarrollo a escribir un código más
listo para la producción, o incluso devolviendo
servicios problemáticos para que sean
autogestionados por Desarrollo.

4.2 Feedback

184

Ampliar los ciclos de feedback

Al crear estos bucles de retroalimentación, hacemos que los despliegues de producción
sean más seguros, aumentamos la preparación para la producción del código creado
por Desarrollo y ayudamos a crear una mejor relación de trabajo entre Desarrollo y
Operaciones al reforzar los objetivos, las responsabilidades y la empatía compartidos.

Algunas acciones para mejorar el feedback:
• Usar la telemetría para hacer el proceso de despliegue más seguro
• Rotación del Standby entre Operaciones y Desarrollo
• Hacer que los desarrolladores acompañan los procesos aguas abajo (downstream)
• Hacer que los desarrolladores autogestionen al principio su servicio en producción

• Launch Guidance
• Launch Readiness Review
• Hand Off Readiness Review

4.2 Feedback

185

Aumente la telemetría para liberaciones más
seguras

Monitorear activamente las métricas asociadas a
las funcionalidades durante el despliegue,
garantiza que no violamos nuestro servicio
inadvertidamente o, peor, que violamos otro
servicio.

Si el cambio se rompe o perjudica cualquier
funcionalidad, trabajamos rápidamente para
restaurar el servicio, trayendo a quien más
necesite para diagnosticar y corregir el problema.

Se puede optar por:
• Desactivar los recursos rotos con la "Feature

Toggles”
• Corregir
• Dar Marcha atrás

4.2 Feedback

186

Comparta deberes entre Dev y Ops (Stand-bys, Pager Rotation, Prod Issue Resolution,
etc)

En cualquier servicio complejo todavía tendremos problemas inesperados, como
incidentes e interrupciones que ocurren en momentos inoportunos y que se presentan
de manera consistente (todas las noches a las 2 de la mañana). Estos, si no se corrigen,
pueden causar problemas recurrentes con daño a las Operaciones e impacto a los
usuarios.

Para evitar que esto ocurra, todos los participantes del flujo de valor comparten las
responsabilidades de manejar los incidentes operativos. De este modo, el departamento
de operaciones no se enfrenta, aislado y solo, a los problemas de producción
relacionados con el código, sino que todo el mundo ayuda a encontrar el equilibrio
adecuado entre la corrección de los defectos de producción y el desarrollo de nuevas
funcionalidades, independientemente del lugar en el que nos encontremos en el flujo de
valor.

4.2 Feedback

187

Dev Team acompaña aguas abajo su desarrollo

Una de las técnicas más poderosas en interacción y diseño de experiencia del usuario
(UX) es la investigación contextual, que es cuando el equipo del producto observa a un
cliente utilizar la aplicación en su entorno natural, generalmente trabajando en su
escritorio.

Nuestro objetivo es utilizar esa misma técnica para observar cómo nuestro trabajo
afecta a nuestros clientes internos. Los desarrolladores deben seguir su trabajo en
sentido descendente, de modo que puedan ver cómo los centros de trabajo
descendentes deben interactuar con su producto para llevarlo a producción.

Al hacer esto, creamos una retroalimentación sobre los aspectos no funcionales de
nuestro código -todos los elementos que no están relacionados con la función de cara
al cliente, e identificamos formas de mejorar la capacidad de despliegue, gestión y
funcionamiento, etc.

4.2 Feedback

188

Dev teams auto gestionando sus servicios en producción al inicio

Cuando los desarrolladores han desplegando y están ya ejecutando su código en
entornos de producción diariamente pueden surgir errores graves.

Aun equipos experimentados de Operaciones pueden experimentar lanzamientos de
producción desastrosos porque es la primera vez que realmente vemos cómo nuestro
código se comporta durante una liberación y bajo condiciones reales de producción.

Una contramedida potencial es tener grupos de desarrollo auto gestionando sus
servicios en producción antes de ser elegibles para ser entregados a un grupo de
operaciones administrado centralizado.

Al hacer que el equipo de desarrollo gestione inicialmente sus propias aplicaciones y
servicios, el proceso de transición de nuevos servicios a la producción se hace mucho
más fácil y previsible.

4.2 Feedback

189

Ops puede retornar un módulo a desarrollo
nuevamente

Para servicios ya en producción, necesitamos un
mecanismo diferente para garantizar que Ops
nunca quede atrapada en un servicio no
soportable en producción.

Podemos crear un mecanismo de devolución
(handback), cuando un servicio de producción se
vuelve muy frágil, Ops tiene la capacidad de
devolver la responsabilidad del soporte a la
producción de vuelta al Dev.

Cuando un servicio retorna a un estado
administrado por el desarrollador, la función de
Operaciones pasa del soporte a la producción
para la consulta, ayudando al equipo a preparar
el servicio para la producción.

4.2 Feedback

190

Guia de Lanzamiento (Launch Guidance)

Al crear una guía de lanzamiento, ayudamos a garantizar que cada equipo de producto se
beneficie de la experiencia acumulada y colectiva de toda la organización, especialmente de
Operaciones. Las orientaciones y los requisitos de lanzamiento incluirán probablemente lo
siguiente:
• Recuento y gravedad de los defectos: ¿La aplicación funciona realmente como se ha

diseñado?
• Tipo/frecuencia de las alertas de buscapersonas: ¿Genera la aplicación un número

insoportable de alertas en producción?
• Cobertura de la supervisión: ¿La cobertura de la supervisión es suficiente para restablecer el

servicio cuando las cosas van mal?
• Arquitectura del sistema: ¿Está el servicio lo suficientemente desacoplado como para soportar

un alto índice de cambios y despliegues en producción?
• Proceso de despliegue: ¿Existe un proceso predecible, determinista y suficientemente

automatizado para desplegar el código en producción?
• Higiene de producción: ¿Existe evidencia de suficientes buenos hábitos de producción que

permitan que el soporte de producción sea gestionado por cualquier otra persona?

4.2 Feedback

191

Superficialmente, estos requisitos pueden parecer similares a las listas de control de
producción tradicionales que hemos utilizado en el pasado. Sin embargo, las
diferencias clave son que requerimos una supervisión eficaz, que los despliegues sean
fiables y deterministas, y una arquitectura que soporte despliegues rápidos y
frecuentes.

4.2 Feedback

192

Launch Readiness Review y Hand-Off Readiness Review

1 32

HRR

Es
ta

bi
lid

ad

Tiempo

Lanzamiento

Transferencia
Nuevos Lanzamientos

LRR

¡Clientes
activos!

SRE
Autoejecució
n
(+ de 6
meses)

Creació
n

3 54

HRR

Es
ta

bi
lid

ad

Tiempo

Transferencia

Devolución
HRR

SREAutoejecuciónSRE

Transferencia

SRE: Ingeniero de Confiabilidad de Sitio
LRR: Revisión de Preparación de Lanzamiento
HRR: Revisión de Preparación para la Entrega Fuente: DevOps Handbook

193

Launch Readiness Review y Hand-Off Readiness Review

Google ha creado dos conjuntos de comprobaciones de seguridad para dos etapas
críticas del lanzamiento de nuevos servicios, denominadas Launch Readiness Review y
Hand-Off Readiness Review (LRR y HRR, respectivamente).

La LRR debe realizarse y aprobarse antes de que cualquier nuevo servicio de Google se
ponga a disposición del público y reciba tráfico de producción en directo, mientras que
la HRR se realiza cuando el servicio pasa a un estado gestionado por operaciones,
normalmente meses después de la LRR.

4.2 Feedback

194

Las listas de comprobación de la LRR y la
HRR son similares, pero la HRR es mucho
más estricta y tiene normas de aceptación
más estrictas, mientras que la LRR es
autoinformada por los equipos de
producto.

Fuente: DevOps
Handbook

4.2 Feedback

195

Integrar el desarrollo basado en hipótesis y
las pruebas A / B en nuestro trabajo diario

Con demasiada frecuencia, en los proyectos
de software, los desarrolladores trabajan en
las funciones durante meses o años,
abarcando varias versiones, sin confirmar
nunca si se están cumpliendo los resultados
empresariales deseados, como por ejemplo
si una función concreta está logrando los
resultados deseados o incluso si se está
utilizando.

"La forma más ineficiente de probar un modelo de
negocio o una idea de producto es construir el
producto completo para ver si la demanda
prevista realmente existe” - Jez Humble.

4.3 Desarrollo Basado en Hipótesis

196

Antes de construir una funcionalidad, debemos preguntarnos:
• ¿Debemos construirlo? y
• ¿Por qué?

Luego, deberíamos realizar los experimentos más baratos y rápidos posibles para validar
a través de la investigación del usuario si la función deseada realmente logrará los
resultados deseados. Podemos utilizar técnicas cómo:
• Desarrollo impulsado por hipótesis
• Los embudos de adquisición de clientes
• Las pruebas A / B

“La manera más ineficiente de probar un modelo de negocio o una idea de producto
es construir el producto completo para ver si la demanda prevista realmente existe”.

4.3 Desarrollo Basado en Hipótesis

197

Integración de Prueba A/B en la validación
de funcionalidades

Una técnica de búsqueda de usuarios es la
definición del pipeline de adquisición de
clientes y la realización de pruebas A / B.

La técnica A/B más comúnmente usada en
la moderna práctica de UX implica un sitio en
el que los visitantes se seleccionan
aleatoriamente para exhibir una de las dos
versiones de una página, un control (el "A") o
un tratamiento (el "B").

4.3 Desarrollo Basado en Hipótesis – Construcción de
Funcionalidades

198

Integración de Prueba A/B en la liberación

Las pruebas A/B rápidas e iterativas son
posibles gracias a la capacidad de realizar
despliegues de producción de forma rápida
y fácil bajo demanda.
• Esto requiere una telemetría de

producción útil en todos los niveles del
conjunto de aplicaciones

Al entrar en nuestro recurso o funcionalidad,
se puede controlar qué porcentaje de los
usuarios ve la versión de tratamiento de un
experimento.

4.3 Desarrollo Basado en Hipótesis – Liberaciones

199

Integración de Prueba A/B en la planificación de funcionalidades

Una vez que tenemos la infraestructura para apoyar el lanzamiento y las pruebas de
características A/B, debemos hacer que los Product Owners piensen en cada
característica como una hipótesis y utilicen nuestros despliegues de producción como
experimentos con usuarios reales para probar o refutar esa hipótesis.

La construcción de experimentos debe diseñarse en el contexto del general de
adquisición de clientes. Barry O'Reilly, coautor de “Lean Enterprise: How High Performance
Organizations Innovate at Scale” , describió cómo podemos enmarcar las hipótesis en el
desarrollo de características.

4.3 Desarrollo Basado en Hipótesis – Planificación

200

Podemos enmarcar las hipótesis en el desarrollo de características de la siguiente
forma:
• Creemos que aumentar el tamaño de las imágenes del hotel en la página de

reservas dará lugar a una mejora del compromiso y la conversión de los clientes
• Tendremos confianza para proceder cuando veamos un aumento del 5% en clientes

que revisan las imágenes del hotel y que luego proceden a reservar en cuarenta y
ocho horas

Adoptar un enfoque experimental para el desarrollo de productos requiere no sólo
dividir el trabajo en pequeñas unidades (historias o requisitos), sino también validar si
cada unidad de trabajo genera los resultados esperados. Si no lo hace, modificamos
nuestra hoja de ruta de trabajo con caminos alternativos que realmente alcancemos
los resultados esperados.

4.3 Desarrollo Basado en Hipótesis – Planificación

201

Crear procesos de revisión y coordinación para aumentar la calidad de nuestro
trabajo actual

Nuestro objetivo es permitir que Desarrollo y Operaciones trabajen colaborativamente
para reducir el riesgo que representa introducir cambios en la producción antes de que
se realicen los despliegues.

Tradicionalmente, cuando revisamos los cambios para la implementación, tendemos a
depender en gran medida de las revisiones, inspecciones y aprobaciones justo antes de
la implementación. Con frecuencia, esas aprobaciones son otorgadas por equipos
externos que a menudo están demasiado alejados del trabajo para tomar decisiones
informadas sobre si un cambio es arriesgado o no, y el tiempo requerido para obtener
todas las aprobaciones necesarias también alarga nuestro cambio.

En esta sección vamos a compartir unas prácticas técnicas más eficientes para reducir
el riesgo de los despliegues en produccion.

4.4 Revisión de Pares

202

Crear procesos de revisión y coordinación para
aumentar la calidad del trabajo

El proceso de revisión por pares en GitHub es un
ejemplo impresionante de cómo la inspección
puede aumentar la calidad, hacer que los
despliegues sean más seguras y hacerlo
integrándose al flujo de trabajo diario de todos.

Ellos fueron pioneros en el proceso llamado pull
request, una de las formas más populares de
revisión por pares que abarca Dev y Ops.

El objetivo ahora es permitir que el Desarrollo y las
Operaciones reduzcan el riesgo de cambios en la
producción antes de que se realicen.

4.4 Revisión y Coordinación

203

Crear procesos de revisión y coordinación

El Flujo de GitHub está compuesto de cinco etapas:
1) Para trabajar en algo nuevo, el desarrollador crea una

branch local desde Master (por ejemplo, "new-auth2-
scopes")

2) El desarrollador efectúa sus cambios en ese branch
localmente, enviando regularmente su trabajo al
mismo branch nombrado en el servidor

3) Cuando necesiten feedback o ayuda, o cuando crean
que el branch está listo para ser “merged” crean un
pull request

4) Cuando se hayan resuelto los comentarios al código y
se obtengan las aprobaciones necesarias del recurso,
el desarrollador podrá mezclarlo al maestro

5) Cuando los cambios de código se mezclan y se envían
a master, el desarrollador las despliega en producción

4.4 Revisión y Coordinación

204

Pull Request

Un pull request de mala calidad es aquel que no tiene contexto suficiente para el lector, con
poca o ninguna documentación de lo que el cambio pretende hacer.

Por ejemplo, un pull request que simplemente contiene el siguiente texto: "Corregir el
problema 3616 y 3841".

Descripción recomendada en un pull request:
• Debe haber suficientes detalles sobre por qué se está haciendo el cambio
• Como el cambio fue hecho
• Cualquier riesgo identificado
• Contramedidas resultantes

Información mejor de la solicitud tirada:
• Riesgos adicionales señalados
• Ideas sobre las mejores formas de desplegar el cambio deseado
• Ideas sobre cómo mejor atenuar el riesgo

4.4 Revisión y Coordinación

205

Peligros potenciales del “control excesivo”

Los mecanismo para la gestión de cambio
(Change Management) tradicionales
00*pueden llevar a resultados negativos no
intencionales, cómo lo son agregar retrasos
adicionales a la entrega y una reducción la
inmediatez del feedback necesario, y por lo
tanto de su impacto en el proceso de
despliegue.

“Las personas más cercanas a un problema
generalmente saben más sobre él” – STP.

4.4 Revisión y Coordinación

206

Algunos de los controles que muchas veces implementamos cuando ocurren fallas en el
proceso de control de cambios:
• Agregar más preguntas al formulario de solicitud de cambio
• Exigir más autorizaciones, como más un nivel de aprobación de gestión (por ejemplo,

el vicepresidente, el CIO)
• Exigir más tiempo de preparación para aprobaciones de cambios, para que se

evalúen adecuadamente

Estos controles generalmente agregan más fricción al proceso de despliegue,
multiplicando el número de etapas y aprobaciones, y aumentando el tamaño de los
lotes y los plazos de implementación.

“Las personas más cercanas a un problema generalmente saben más sobre él” – STP.

4.4 Revisión y Coordinación

207

Una de las creencias fundamentales del
Sistema de Producción Toyota es que "las
personas más cercanas a un problema
suelen ser las que más saben sobre él". Esto
se acentúa a medida que el trabajo que se
realiza y el sistema en el que se produce el
trabajo se vuelven más complejo y
dinámico, como es típico en los flujos de
valor de DevOps.

Como se ha demostrado repetidas veces,
cuanto mayor es la distancia entre la
persona que realiza el trabajo (es decir, el
implementador del cambio) y la persona
que decide sobre hacerlo (es decir, el
autorizador de cambio), peor el resultado.

“Las personas más cercanas a un problema
generalmente saben más sobre él” – STP.

4.4 Revisión y Coordinación

208

Coordinación y programación del cambio

Siempre que tengamos varios grupos trabajando en sistemas que comparten
dependencias es probable que haya que coordinar nuestros cambios para garantizar
que no interfieran entre sí (por ejemplo, la organización, la agrupación y la
secuenciación de los cambios).

En informática y diseño de sistemas, un sistema poco acoplado es aquel en el que cada
uno de sus componentes hace uso, o tiene poca o ninguna interacción con las funciones
de otros componentes separados. Las subáreas incluyen el acoplamiento de clases,
interfaces, datos y servicios. Sistemas altamente acoplados son los sistemas que están
altamente interconectados.

Para mitigar riesgos, podemos utilizar salas de chat (tipo Slack) para anunciar cambios
y localizar de manera proactiva posibles colisiones.

4.4 Revisión y Coordinación

209

En general:
• Cuanto más desacoplada sea nuestra arquitectura, menos tendremos comunicación

y coordinación con otros equipos de componentes. Si arquitectura está realmente
orientada a los servicios, los equipos pueden realizar cambios con un alto grado de
autonomía, y es poco probable que los cambios locales provoquen interrupciones
globales

• Sin embargo, incluso en una arquitectura poco acoplada, cuando muchos equipos
realizan cientos de despliegues independientes al día, puede existir el riesgo de que los
cambios interfieran unos con otros (por ejemplo, pruebas A/B simultáneas). Para
mitigar estos riesgos, podemos utilizar salas de chat para anunciar los cambios y
encontrar proactivamente los conflictos que puedan existir.

4.4 Revisión y Coordinación

210

• En el caso de organizaciones más complejas y con arquitecturas más acopladas es
posible que tengamos que programar deliberadamente nuestros cambios, y hacer
que representantes de los equipos se reúnan, no para autorizar cambios, sino para
programar y secuenciar sus cambios para minimizar los accidentes

• Sin embargo, en algunas áreas, como los cambios en la infraestructura global (por
ejemplo, los cambios en los nodos la red, cambios en los conmutadores de la red
central) siempre tendrán un mayor riesgo asociado. Estos cambios siempre requerirán
contramedidas técnicas, como la redundancia la conmutación por error, la realización
de pruebas exhaustivas y (en el mejor de los casos) la simulación

4.4 Revisión y Coordinación

211

Desempeño de TI
Revisión de Colegas vs. Aprobación de Cambio

Cuando las orgs utilizaron revisión de colegas
(en lugar de aprobaciones de cambio) ...

... el desempeño de TI aumentó

D
es

em
pe

ño
 d

e
TI

Usa aprobación de cambio / Usa revisión de colegas

Revisión de Pares del Código

En lugar de exigir la aprobación de un órgano externo
antes del despliegue, podemos exigir que los ingenieros
hagan revisiones de sus cambios.

El objetivo:
• Encontrar errores, con los ingenieros cercanos al

trabajo, examinando nuestros cambios
• Mejorar la calidad de nuestros cambios
• Crear los beneficios de la capacitación cruzada, el

aprendizaje entre pares y la mejora de las habilidades

Pero para cambios en la base de datos o componentes
esenciales para los negocios con baja cobertura de
prueba automatizada, podemos exigir una revisión
adicional de un especialista en el tema (por ejemplo,
ingeniero de seguridad de la información, ingeniero de
base de datos) o varias revisiones (por ejemplo, "+2" en
lugar de sólo "+1").

Fuente: DevOps Handbook

4.4 Revisión y Coordinación

212

El principio de tamaños pequeños de lotes también se aplica a revisiones de código.
• Cuanto mayor sea el tamaño de la alteración que necesita ser revisada, más tiempo

lleva a entender y mayor es la carga sobre el ingeniero revisor

Existe una relación no lineal entre el tamaño del cambio y el riesgo potencial de integrar
ese cambio - cuando usted pasa de un cambio de código de diez líneas a un código de
cien líneas, el riesgo de algo ir mal es más de diez veces mayor, y así sucesivamente.
• La capacidad de criticar significativamente los cambios de código disminuye a

medida que el tamaño del cambio aumenta. "Pida a un programador para revisar
diez líneas de código, él encontrará diez ediciones. Pídale a él para hacer quinientas
palabras, y él dirá que parece bueno”.

4.4 Revisión y Coordinación

213

Directrices generales para las revisiones de código:

• Todos deben tener a alguien que revise sus cambios antes de integrarlos a la rama
principal

• Todos deben supervisar el flujo de commits de sus compañeros de equipo para que se
puedan identificar y revisar los posibles conflictos

• Definir qué cambios se consideran de alto riesgo y pueden requerir la revisión de un
experto (por ejemplo, cambios en la base de datos, módulos sensibles a la seguridad,
como la autenticación, etc.)

• Si alguien envía un cambio que es demasiado grande para entender con facilidad, es
decir, no se puede entender su impacto después de leerlo un par de veces, o hay que
pedirle al remitente que lo aclare, este cambio debería dividirse en varios cambios
más pequeños que puedan entenderse de un vistazo

4.4 Revisión y Coordinación

214

Programación del Código en Pares

Las revisiones de código vienen en varias
formas:

• Programación en pares
• Revisión sobre los hombros
• Envío de correo electrónico
• Revisión de código asistida por

herramientas

4.4 Revisión y Coordinación

215

Resumen

Crear las condiciones que permitan a los
ejecutores del cambio apropiarse
plenamente de la calidad de sus cambios es
una parte esencial de la cultura generativa
de alta confianza que estamos tratando de
construir. Además, estas condiciones nos
permiten crear un sistema de trabajo cada
vez más seguro, en el que todos nos
ayudamos mutuamente a alcanzar nuestros
objetivos, traspasando los límites necesarios
para conseguirlo.

4.4 Revisión y Coordinación

216

Discusión en Grupos - Code Reviews

Parte 5: Aprendizaje y
Experimentación Continua

218

¿Por qué la Tercera Forma?

Revisaremos las prácticas que crean oportunidades de aprendizaje, de la manera más
rápida, frecuente, barata y pronta posible. Esto incluye la creación de aprendizajes a partir de
accidentes y fracasos, que son inevitables en sistemas complejos, así cómo prácticas para
que estemos constantemente experimentando, aprendiendo, y creando sistemas más
seguros. El resultado es una mayor resiliencia y un conocimiento colectivo cada vez mayor.

Los rituales que aumentan la seguridad, la mejora continua y el aprendizaje son:
• Establecer una cultura justa para hacer posible la seguridad
• Inyectar fallos de producción para crear resiliencia
• Convertir los descubrimientos locales en mejoras globales
• Reservar tiempo para crear mejoras organizativas y aprendizaje

También crearemos mecanismos para que cualquier nuevo aprendizaje generado
localmente pueda utilizarse rápidamente en toda la organización de manera global. De este
modo, también creamos una cultura de trabajo más segura y resistente, de la que las
personas están encantadas de formar parte y que les ayuda a alcanzar su máximo potencial.

5.0 Las Prácticas Técnicas del Aprendizaje

219

Para aumentar la seguridad en sistemas complejos, las
organizaciones deben:
• Ser mejores en autodiagnóstico y autodesarrollo
• Necesitan tener capacidad para detectar problemas,

resolverlos y multiplicar los efectos, poniendo a
disposición las soluciones en toda la organización

Esto crea un sistema dinámico de aprendizaje que nos
permite entender nuestros errores y traducir ese
entendimiento en acciones que evitan que esos errores se
repitan en el futuro.

La historia también muestra cómo las organizaciones que
aprenden piensan en fracasos, accidentes y errores, como
una oportunidad para aprender y no algo para ser
castigado.

¿Cómo crear un sistema de aprendizaje y cómo establecer
una cultura justa, además de cómo ensayar rutinariamente
y deliberadamente, creando fallas para acelerar el
aprendizaje?

Cultura del Aprendizaje

220

Uno de los prerrequisitos para una cultura de aprendizaje
es que, cuando ocurren accidentes (que sin duda
ocurrirán), la respuesta a estos accidentes es vista como
"justa".

• Cuando se consideran injustas:
 Puede impedir investigaciones de seguridad
 Promoviendo el miedo
 Tornando las organizaciones más burocráticas que

más cuidadosas
 Cultivando secreto profesional, evasión y

autoprotección
• Cuando los ingenieros cometen errores y se sienten

seguros al dar detalles sobre ellos:
 Están dispuestos a ser responsabilizados
 También están entusiasmados en ayudar al resto de

la empresa a evitar el mismo error en el futuro

Esto es lo que crea el aprendizaje organizacional.

Cultura del Aprendizaje

221

Burocrática
Generativa

Patológica Entendamos por
qué ocurrió el

error

Creemos una
nueva regla

Nosotros no
cometemos errores y

no toleramos a la
gente que los comete

Cultura del Aprendizaje: Modelos de Tipología Organizacional

El modelo de tipología
organizacional de Westrum:
cómo procesan la información
las organizaciones (Fuente: Ron
Westrum, “A tipology of
organisational culture”), BMJ
Quality & Safety 13, n.º 2 (2004),
doi:10.1136/qshc.2003.009522).

https://qualitysafety.bmj.com/content/13/suppl_2/ii22.short
https://qualitysafety.bmj.com/content/13/suppl_2/ii22.short
https://qualitysafety.bmj.com/content/13/suppl_2/ii22.short
https://qualitysafety.bmj.com/content/13/suppl_2/ii22.short
https://qualitysafety.bmj.com/content/13/suppl_2/ii22.short

222

Patológica Burocrática Generativa

La información es ocultada La información podría ser
ignorada

La información es activamente
buscada

Los mensajeros son culpados Los mensajeros son tolerados Los mensajeros son entrenados

Responsabilidades eludidas Limitación de responsabilidades Responsabilidades son
compartidas

Se desaconseja las conciliaciones
entre grupos

Se tolera las conciliaciones entre
grupos

Se incentiva las conciliaciones entre
grupos

El fracaso es ocultado o genera
chivos expiatorios

El fracaso conduce a la justicia
hacia las personas

El fracaso genera preguntas
(causas raíces)

Las nuevas ideas son suprimidas Las nuevas ideas crean
problemas Las nuevas ideas son bienvenidas

El modelo de tipología organizacional de Westrum: cómo procesan la información las organizaciones
(Fuente: Ron Westrum, “A tipology of organisational culture”), BMJ Quality & Safety 13, n.º 2 (2004),

doi:10.1136/qshc.2003.009522).

Cultura del Aprendizaje: Modelos de Tipología Organizacional

https://qualitysafety.bmj.com/content/13/suppl_2/ii22.short
https://qualitysafety.bmj.com/content/13/suppl_2/ii22.short
https://qualitysafety.bmj.com/content/13/suppl_2/ii22.short
https://qualitysafety.bmj.com/content/13/suppl_2/ii22.short
https://qualitysafety.bmj.com/content/13/suppl_2/ii22.short

223

La cultura tiene que ver con rituales diarios que
influyen en cómo funciona un equipo

En función de estos aspectos, aquí hay algunas
prácticas que puedes implementar para mejorar
tu cultura:
• Incentiva la Colaboración entre miembros y

grupos
• Capacita y premia a los mensajeros
• Fomenta los Riesgos y Responsabilidades

compartidas
• Busca conectar los sistemas aislados en la

organización
• Permite que los errores generen preguntas
• Apoya la experimentación y el aprendizaje

estos llevan a la innovación

Cultura del Aprendizaje: Modelos de Tipología Organizacional

224

¿Qué prácticas crean oportunidades de aprendizaje con rapidez, frecuencia y bajo costo?

• Establecer una cultura de aprendizaje justa
• Programar reuniones post-mortem sin culpa después de los accidentes
• Publicar nuestras autopsias lo más ampliamente posible
• Disminuir las tolerancias de los incidentes para encontrar señales de fallo cada vez más débiles
• Redefinir el fracaso y fomentar la asunción de riesgos calculados
• Inyectar fallos de producción para permitir la resiliencia y el aprendizaje
• Instituir días de juego para ensayar fallos

Los resultados incluyen mayor resiliencia y un conocimiento colectivo cada vez mayor.

Acciones para aumentar la seguridad, la mejora continua y el aprendizaje:

• Establecer una cultura justa para hacer posible la seguridad
• Inyectar fallas de producción para crear resiliencia
• Convertir descubrimientos locales en mejoras globales
• Reservar tiempo para crear mejoras en la organización y el aprendizaje

Permitir e Inyectar el Aprendizaje en el Día a Día

225

Programación de post mortem libres de culpa tras incidentes

Post-mortem sin culpa, "los errores de una forma que enfoca los aspectos situacionales
del mecanismo de una falla y el proceso de toma de decisión de los individuos cercanos
a las fallas”.

Se programa el post-mortem lo más rápido posible después de la ocurrencia del
accidente y antes de que los recuerdos y los eslabones entre la causa y el efecto
desaparezcan o las circunstancias cambien.

Los objetivos de una revisión post mortem son muy simples:
• Identificar lo que ha hecho bien, para que pueda experimentarlo de nuevo
• Observar lo que debería haber sido hecho de manera diferente, para que usted

pueda refinar
• Observar lo que ha hecho mal y sugerir enfoques alternativos

Cultura del Aprendizaje: Modelos de Tipología Organizacional

226

• 5.1 Inyectar fallos de producción para
crear resiliencia

• 5.2 Convertir los descubrimientos locales
en mejoras globales

• 5.3 Reservar tiempo para crear mejoras
organizativas y aprendizaje

Agenda

227

El Ejército Simio

Netflix tuvo varias discusiones sobre la
ingeniería de sus sistemas para manejar
automáticamente las fallas. Estas
discusiones evolucionaron hacia un servicio
llamado Chaos Monkey.

• El Mono del Caos (Chaos Monkey)
• El Gorila del Caos (Chaos Gorilla)
• Caos Kong (Chaos Kong)

5.1 Crear Resiliencia

https://netflix.github.io/chaosmonkey
/

https://netflix.github.io/chaosmonkey/
https://netflix.github.io/chaosmonkey/

228

El ejército Simio ahora incluye:

• Mono de Latencia: (Latency Monkey)
• Mono de Conformidad(Conformity

Monkey)
• Mono Doctor : (Doctor Monkey)
• Mono Conserje: (Janitor Monkey)
• Mono de Seguridad: (Security Monkey)

5.1 Crear Resiliencia

Fuente: https://blog.aspiresys.pl/technology/chaos-monkey-how-netflix-deals-with-resilience/

https://blog.aspiresys.pl/technology/chaos-monkey-how-netflix-deals-with-resilience/
https://blog.aspiresys.pl/technology/chaos-monkey-how-netflix-deals-with-resilience/
https://blog.aspiresys.pl/technology/chaos-monkey-how-netflix-deals-with-resilience/
https://blog.aspiresys.pl/technology/chaos-monkey-how-netflix-deals-with-resilience/
https://blog.aspiresys.pl/technology/chaos-monkey-how-netflix-deals-with-resilience/
https://blog.aspiresys.pl/technology/chaos-monkey-how-netflix-deals-with-resilience/
https://blog.aspiresys.pl/technology/chaos-monkey-how-netflix-deals-with-resilience/
https://blog.aspiresys.pl/technology/chaos-monkey-how-netflix-deals-with-resilience/
https://blog.aspiresys.pl/technology/chaos-monkey-how-netflix-deals-with-resilience/
https://blog.aspiresys.pl/technology/chaos-monkey-how-netflix-deals-with-resilience/
https://blog.aspiresys.pl/technology/chaos-monkey-how-netflix-deals-with-resilience/
https://blog.aspiresys.pl/technology/chaos-monkey-how-netflix-deals-with-resilience/
https://blog.aspiresys.pl/technology/chaos-monkey-how-netflix-deals-with-resilience/

229

Programación de post mortem libres de culpa tras incidentes

En la incontestable reunión post-mortem, haremos lo siguiente:
• Construir una línea del tiempo
• Estimular para mejorar la seguridad
• Estimular y fomentar a las personas que cometen errores a ser especialistas
• Aceptar que siempre hay un espacio discrecional donde los seres humanos pueden decidir

actuar o no, y que el juicio de esas decisiones está en retrospectiva
• Proponer contramedidas para evitar que un accidente similar ocurra en el futuro

En la reunión, debemos reservar tiempo suficiente para reflexionar y decidir qué contramedidas
serán implementadas.

Una vez que las contramedidas hayan sido identificadas, deben ser priorizadas y dadas a un
propietario y debe haber cronograma para la implementación.

Esto demuestra que valoramos la mejora de nuestro trabajo diario más que el propio trabajo
diario.

5.1 Crear Resiliencia

230

¿Quién debe estar presente en la reunión?:

• Las personas implicadas en las decisiones
que pueden haber contribuido al problema

• Las personas que identificaron el problema
• Las personas que respondieron al problema
• Las personas que diagnosticaron el

problema
• Las personas afectadas por el problema
• Y cualquier otra persona que esté interesada

en participar en la reunión

5.1 Crear Resiliencia

231

Introducir fallas en producción para aumentar
la resiliencia y el aprendizaje

La resiliencia requiere que primero definamos
nuestros modos de fallo y, a continuación, que
realicemos pruebas para garantizar que estos
modos de fallo funcionen según lo proyectado.

Una manera de hacer esto es inyectando fallas
en nuestro entorno de producción y ensayando
fallas a gran escala, por lo que estamos seguros
de que podemos recuperarnos de accidentes
cuando se producen, de preferencia sin afectar
a nuestros clientes.

https://netflix.github.io/chaosmonkey
/

5.1 Crear Resiliencia

https://netflix.github.io/chaosmonkey/
https://netflix.github.io/chaosmonkey/

232

Etapas
Avanzadas

Etapas
Base

1.
Agile

2.
Version Control

3.
Continuous
Integration

CI

4.
Continuous

Testing

5.
Continuous
Delivery CD

6.
Continuous
Deployment

CI/CD

7.
Infrastructure

as Code

8.
Configuration
Management

9.
Monitoring

and Logging

10.
Dashboard

11.
Automated

Recovery

12.
Automated

Environment
De-Provisioning

13.
Testing in

Production

14.
User Telemetry

15.
Fault Injection

Etapas
Intermedias

5.1 Crear Resiliencia

233

Instituir el Día del Juego (Game Day)

El concepto de Game Days viene de la
disciplina de ingeniería de resiliencia.

Debemos garantizar que los servicios
continúen operando cuando ocurren fallas,
potencialmente en todo nuestro sistema,
idealmente sin crisis o incluso intervención
manual.

"Un servicio no es realmente probado hasta
que se rompe en producción”. "Un ejercicio diseñado para aumentar la

resistencia a través de la inyección de fallas a
gran escala en sistemas críticos".

5.1 Crear Resiliencia

234

El objetivo del Game Day es ayudar a los equipos a simular y ensayar accidentes para
que puedan practicar.
• Programamos un evento catastrófico, para suceder en algún momento en el futuro
• Damos a los equipos tiempo para preparar, eliminar todos los puntos únicos de fallo y

crear los procedimientos de monitoreo necesarios, procedimientos de conmutación
por error, etc

Nuestro equipo del Día del Juego define y ejecuta ejercicios, como:
• Conducir failovers de base de datos (es decir, asegurarse de que la base de datos

secundaria funciona)
• Desactivar una conexión de red importante para exponer problemas en procesos

definidos

Cualquier problema o dificultad encontrada es identificado, corregido y probado de
nuevo.

5.1 Crear Resiliencia

235

Al ejecutar Game Day, progresivamente:
• Creamos un servicio más resiliente
• Un mayor grado de garantía de que

podemos reanudar las operaciones
cuando ocurriesen eventos inoportunos

• Crear más aprendizajes y una
organización más resiliente

Al crear fallos en una situación controlada,
podemos practicar y crear los manuales
que necesitamos.

"Siempre que usted planea proyectar un sistema a escala, lo
mejor que puede esperar es construir una plataforma de
software confiable sobre componentes que no sean de
confianza. Esto le pone en un entorno donde fallas complejas
son inevitables e imprevisibles”.

5.1 Crear Resiliencia

236

¿Cuáles mecanismos posibilitan que nuevos aprendizajes y mejoras descubiertas localmente sean
capturados y compartidos globalmente en toda la organización, multiplicando el efecto del
conocimiento y de la mejora globales?

• Utilice salas de chat y bots de chat para automatizar y capturar el conocimiento de la
organización

• Automatizar los procesos estandarizados en el software para su reutilización
• Crear un único repositorio de código fuente compartido para toda la organización
• Difundir el conocimiento mediante el uso de pruebas automatizadas como documentación y

comunidades de práctica
• Diseñar para las operaciones mediante requisitos no funcionales codificados
• Incorporar al desarrollo historias de usuario de operaciones reutilizables
• Garantizar que las opciones tecnológicas ayuden a alcanzar los objetivos de la organización

Elevamos el estado de la práctica de toda la organización para que todos los que trabajan se
beneficien de la experiencia acumulativa de la organización.

5.2 Descubrimientos Locales, Mejoras Globales

237

Diseñar operaciones a través de requisitos
no funcionales codificados

La implementación de estos requisitos no
funcionales permitirá que nuestros servicios
sean fáciles de desplegar y continuar
ejecutándose en la producción.

Y que podamos detectar y corregir
problemas rápidamente y garantizar que se
degrada normalmente cuando los
componentes fallan.

Ejemplos de requisitos no funcionales incluyen
garantizar que tenemos:

• Telemetría de producción
• La capacidad de acompañar con precisión

las dependencias
• Servicios que son resilientes
• Compatibilidad con versiones anteriores y

futuras
• La capacidad de archivar datos para

administrar el tamaño del conjunto de
datos de producción

• La capacidad de entender fácilmente los
mensajes de log entre los servicios

• La capacidad de rastrear solicitudes de
usuarios a través de varios servicios

• Configuración simple y centralizada de
Tiempo de Entrega

5.2 Descubrimientos Locales, Mejoras Globales

238

Construir historias de Usuario de Operaciones reutilizables en el Desarrollo

Cuando hay un trabajo de Operaciones que no puede ser totalmente automatizado o
transformado en autoservicio, nuestro objetivo es hacer que este trabajo recurrente sea
lo más repetitivo y determinista posible.

• Hacemos esto estandarizando el trabajo necesario, automatizando lo máximo posible
y documentando nuestro trabajo, para que podamos capacitar mejor a los equipos
de producto a planificar y proporcionar recursos para esa actividad

• En lugar de crear manualmente los servidores y, a continuación, ponerlos en
producción de acuerdo con las listas de comprobación manual, debemos
automatizar el máximo posible este trabajo

Debemos definir colectivamente las transferencias de la forma más clara posible para
reducir los tiempos de espera y los errores.

5.2 Descubrimientos Locales, Mejoras Globales

239

Idealmente, para todos nuestros trabajos
recurrentes de Ops, sabremos lo siguiente:
• Qué trabajo es necesario, quién es

necesario para ejecutarlo, cuáles son las
etapas para concluirlo y así sucesivamente

• Por ejemplo, "Sabemos que un lanzamiento
de alta disponibilidad lleva catorce etapas,
exigiendo trabajo de cuatro equipos
diferentes y, en las últimas cinco veces en
que hicimos eso, tomó un promedio de tres
días”.

"Historias de usuario del Ops" bien definidas
que representan actividades de trabajo que
pueden ser reutilizadas en todos nuestros
proyectos (por ejemplo, despliegue,
capacidad, seguridad, etc.).

Exponemos el trabajo repetitivo de las
operaciones de TI de una manera que aparece
junto al trabajo de desarrollo, permitiendo una
mejor planificación y resultados más repetitivos.

5.2 Descubrimientos Locales, Mejoras Globales

240

Repositorio único con código compartido

Un repositorio de código fuente compartido
en toda la empresa.

Al actualizar cualquier elemento en el
repositorio de código fuente (por ejemplo,
una biblioteca compartida):
• Propagación rápida y automática a todos

los demás servicios que utilizan esta
biblioteca y se integra a través del
pipeline de despliegues de cada equipo El repositorio de código fuente

compartido es uno de los mecanismos
más poderosos utilizados para integrar
los descubrimientos locales en toda la
organización.

5.2 Descubrimientos Locales, Mejoras Globales

241

En el repositorio de código fuente
compartido también se colocan otros
artefactos que codifican el conocimiento y el
aprendizaje, incluyendo:
• Estándares de configuración para

nuestras bibliotecas, infraestructura y
entornos (recetas de chef, manifiestos de
títeres, etc.)

• Herramientas de despliegue
• Prueba de estándares y herramientas,

incluso la seguridad
• Herramientas de pipeline de despliegue
• Herramientas de monitoreo y análisis
• Tutoriales y estándares

Ventajas:
• Permite a los usuarios acceder a todo el código

actualizada, sin necesidad de coordinación
• Uno de los mecanismos más poderosos que

tenemos para propagar conocimiento

5.2 Descubrimientos Locales, Mejoras Globales

242

Automatizar procesos estandarizados

En lugar de poner nuestros conocimientos
en documentos de Word:
• Transformarlos en un formato ejecutable

que los hace más fáciles de reutilizar

Objetivo:
• Permitir que las prácticas sean

ampliamente adoptadas Codificando nuestros procesos manuales en código
que es automatizado y ejecutado, permitimos que el
proceso sea ampliamente adoptado,
proporcionando valor para cualquiera que los utilice.

5.2 Descubrimientos Locales, Mejoras Globales

243

Divulgue el conocimiento usando pruebas automatizadas

Garantizar que cada una de estas bibliotecas tenga cantidades significativas de
pruebas automatizadas incluidas significa que estas bibliotecas se auto documentan y
se muestran a otros ingenieros cómo utilizarlas.

Este beneficio será casi automático si tuviésemos prácticas de desarrollo orientado a
pruebas, donde las pruebas automatizadas se escriben antes de escribir el código.

Crear grupos de discusión o salas de chat para cada biblioteca o servicio, para que
cualquier persona que tenga dudas pueda recibir respuestas de otros usuarios, que
generalmente son más rápidos para responder que los desarrolladores.

5.2 Descubrimientos Locales, Mejoras Globales

244

Las opciones tecnológicas deben cumplir
con los objetivos organizacionales

Para maximizar la productividad del
desarrollador, el que se utiliza de
arquitecturas orientadas a servicios,
pequeños equipos de servicio pueden crear
y ejecutar sus servicios en cualquier
lenguaje o estructura que mejor cumple a
sus necesidades específicas.

En algunos casos, eso es lo que mejor nos
permite alcanzar nuestros objetivos
organizacionales.

El objetivo es identificar las tecnologías
que:
• Impiden o retrasan el flujo de trabajo
• Crean desproporcionadamente altos

niveles de trabajo no planificado
• Crean desproporcionadamente un

gran número de solicitudes de soporte
• Son más incoherentes con nuestros

resultados arquitectónicos deseados
(por ejemplo, tasa de transferencia,
estabilidad, seguridad, confiabilidad,
continuidad de negocios)

5.2 Descubrimientos Locales, Mejoras Globales

245

5.3 Permitir e Inyectar el Aprendizaje en el Día a Día

Otras formas de reservar tiempo para el aprendizaje y la mejora de la organización,
institucionalizando aún más la práctica de dedicar tiempo a mejorar el trabajo diario,
incluyen:
• Implementar Blitz de Mejora
• Institucionalizar los rituales para saldar la deuda técnica
• Permitir que todos enseñen y aprendan
• Comparta sus experiencias en las conferencias de DevOps
• Cree consultorías y entrenadores internos para difundir las prácticas

El resultado de estas mejoras suele ser un nuevo enfoque para resolver un problema,
como nuevas disposiciones de los equipos, nuevos medios de transporte material e
información, un espacio de trabajo más organizado o un trabajo estandarizado. También
pueden dejar una lista de cambios por hacer en el futuro.

246

Deuda Técnica

Blitz de mejora (o a veces un blitz kaizen),
definida como un período de tiempo dedicado y
concentrado para tratar de una cuestión
específica, muchas veces a lo largo de varios
días.
• Blitz: un grupo se reúne para concentrarse

intensamente en un proceso con problemas
• El objetivo es mejorar el proceso a través del

uso concentrado de personas de fuera del
proceso para aconsejar a aquellos
normalmente dentro del proceso. Se puede
usar para refactorizar código, migrar código
obsoleto, identificar y corregir fallos en la
funcionalidad completa, o atacar otros
elementos puntuales de deuda técnica

5.3 Permitir e Inyectar el Aprendizaje en el Día a Día

247

Institucionalice rituales para pagar la deuda
técnica

• Una de las maneras más fáciles de hacer
esto es programar y realizar actividades
diarias o semanales o blitzs de mejora
continua

• Ningún trabajo de historias está permitido
• Además de los términos orientados al Lean

kaizen blitz y blitz de mejora, la técnica de
rituales dedicados al trabajo de mejora
también ha sido llamada de limpiezas de
primavera u otoño y semanas de inversión
de cola

5.3 Permitir e Inyectar el Aprendizaje en el Día a Día

248

Habilite todos a enseñar y aprender

• Una cultura dinámica de aprendizaje crea
condiciones para que todos puedan no sólo
aprender, sino también enseñar

• Los asuntos son lo que nuestros colaboradores
quieren aprender

• Para todos los profesionales de tecnología que
aman innovar, aman el cambio, hay un futuro
maravilloso y vibrante delante de nosotros

Enseñar:
• Métodos didácticos tradicionales (por ejemplo,

personas que tienen clases, participando en
entrenamientos)

• Métodos más experimentales o abiertos (por
ejemplo, conferencias, talleres, tutoría)

5.3 Permitir e Inyectar el Aprendizaje en el Día a Día

249

Comparta sus experiencias en las Conferencias
DevOps

• Para ayudar a construir una organización de
aprendizaje, debemos alentar a nuestros
ingenieros

• DevOpsDays sigue siendo una de las series de
conferencias auto organizadas más vibrantes
de la actualidad

Muchas prácticas de DevOps fueron
compartidas y promulgadas en eventos.
Permaneció libre o casi libre, apoyado por una
comunidad vibrante de comunidades y
proveedores profesionales.

5.3 Permitir e Inyectar el Aprendizaje en el Día a Día

250

Cree Consultoría interna y Entrenadores para divulgar prácticas

• Crear una organización interna de consultoría y coaching es un método comúnmente
usado para diseminar conocimientos en toda la organización. Esto puede venir de
muchas maneras diferentes

• Google utiliza varios mecanismos para impulsar la adopción, pero uno de los más
famosos fue el Boletín en los Baños Públicos

Prueba en el cuarto de aseo: boletín informativo publicado en casi todos los cuartos de
aseo de casi todas las oficinas de Google en todo el mundo.

"El objetivo es aumentar el grado de prueba de conocimiento y sofisticación en toda la
empresa. Es cuestionable si una publicación sólo on-line ha implicado a personas en el
mismo grado”.

5.3 Permitir e Inyectar el Aprendizaje en el Día a Día

251

Cultura de Aprendizaje: Resumen

Se indicó cómo podemos instituir rituales
que ayudan a reforzar la cultura de que
todos somos aprendices a lo largo de la vida
y que valoramos la mejora del trabajo diario
en detrimento del propio trabajo diario.

• Lo hacemos reservando tiempo para
pagar la deuda técnica

• Creamos foros que permitan a todos
aprender y enseñar unos a otros

• Ofrecemos especialistas para ayudar a
los equipos internos Nos ayudamos unos a otros a alcanzar nuestro

pleno potencial como seres humanos.

5.3 Permitir e Inyectar el Aprendizaje en el Día a Día

252

Discusión en Grupos - State of DevOps
Report

Parte 6: Integrando Gestión del
Cambio, Seguridad de la Información
y Cumplimiento

254

Puntos a cubrir

A lo largo de esta sección explicaremos cómo tomar los principios de DevOps y
aplicarlos a la seguridad de la información, ayudándonos a alcanzar nuestros objetivos
y asegurándonos de que la seguridad forma parte del trabajo de todos, todos los días.
Una mejor seguridad garantiza que seamos defendibles y sensatos con nuestros datos,
que podamos recuperarnos de los problemas de seguridad antes de que sean
catastróficos y, lo más importante, que podamos hacer que la seguridad de nuestros
sistemas y datos sea mejor que nunca.

En esta sección explicaremos:

1. Seguridad de la Información somos todos.
2. Integración con Gestión del Cambio, Seguridad y otros requisitos de Conformidad y

Cumplimiento

6.0 Integrando DevOps con Otras Áreas

255

• 6.1 Seguridad de la Información somos
todos.

• 6.2 Integración con Gestión del Cambio,
Seguridad y otros requisitos de
Conformidad y Cumplimiento

Agenda

256

La seguridad de la información como el trabajo de todos, todos los días

Cuando el área de Infosec se organiza como un silo fuera del Desarrollo y de
Operaciones, muchos problemas surgen.

Infosec generalmente tiene menor número de colaboradores que las otras áreas, sin
automatización e integración de los elementos de seguridad de la información en el
trabajo diario de Dev y Ops, Infosec sólo puede realizar la verificación de conformidad, lo
que es lo opuesto de la ingeniería de seguridad de la información.

DevOps puede ser una de las mejores maneras de integrar la seguridad de la
información al trabajo diario de todos los involucrados en el flujo de valor de tecnología.

6.1 Seguridad de la Información Somos Todos

257

Prácticas para Seguridad de la Información

• Integrar la seguridad en las demostraciones de
iteración del desarrollo

• Integrar la seguridad en el seguimiento de los defectos
y en los análisis posteriores

• Integrar los controles de seguridad preventiva en los
repositorios de código fuente y servicios compartidos

• Integrar la seguridad en nuestro proceso de despliegue
• Garantizar la seguridad de la aplicación
• Garantizar la seguridad de nuestra cadena de

suministro de software
• Garantizar la seguridad del entorno
• Integrar la seguridad de la información en la telemetría

de producción
• Crear telemetría de seguridad en nuestras aplicaciones
• Crear telemetría de seguridad en nuestro entorno
• Proteger nuestro pipeline de despliegue

6.1 Seguridad de la Información Somos Todos

258

Integrar Controles de Seguridad Preventivos

Agregar al repositorio de código fuente
compartido:

• Cualquier mecanismo o herramienta que nos
ayude a garantizar que nuestras aplicaciones
y entornos estén seguros

• Bibliotecas pre-aprobadas por la seguridad
para atender a objetivos específicos de
Infosec, como bibliotecas y servicios de
autenticación y encriptación

El control de versiones también sirve como un
mecanismo de comunicación omnidireccional
para mantener a todas las partes conscientes de
los cambios que se están haciendo.

6.1 Seguridad de la Información Somos Todos

259

Integrar Controles de Seguridad Preventivos

El objetivo es proporcionar las bibliotecas o servicios de seguridad que cada aplicación
o entorno moderno requiere, como la activación de la autenticación, autorización,
administración de contraseñas, cifrado de datos y así sucesivamente.

Además, podemos proporcionar a Dev y Ops configuraciones de seguridad específicas
para los componentes que utilizan en sus pilas de aplicaciones, como para el registro,
la autenticación y el cifrado.

Podemos incluir elementos como:
• Bibliotecas de código y sus configuraciones recomendadas
• Administración secreta
• Paquetes de SO y compilaciones

6.1 Seguridad de la Información Somos Todos

260

Integrar Seguridad en el pipeline de despliegue

El objetivo:
• Proporcionar a Dev y Ops el feedback rápido

sobre su trabajo
• Permitir que detecten y corrijan rápidamente

problemas de seguridad como parte de su
trabajo diario

• Impulsa el aprendizaje y evita errores futuros

Acciones:
• Automatizar el máximo posible de nuestras

pruebas de seguridad
• Pruebas de seguridad automatizadas se

ejecutarán en el pipeline de despliegue

6.1 Seguridad de la Información Somos Todos

261

Integrar Telemetría en la Seguridad

Para detectar un comportamiento problemático
del usuario, que pueda ser un indicador o un
facilitador de fraude y acceso no autorizado,
debemos crear la telemetría relevante en
nuestras aplicaciones.

Los ejemplos pueden incluir:

• Logins de usuario exitosos y fallidos
• La contraseña del usuario se restablece
• La dirección de correo electrónico del usuario

se restablece
• Cambios en la tarjeta de crédito del usuario

.

6.1 Seguridad de la Información Somos Todos

262

Crear telemetría suficiente en nuestros entornos
para detectar indicadores precoces de acceso no
autorizado, especialmente en los componentes
que se están ejecutando en la infraestructura que
no controlamos (por ejemplo, entornos de
hospedaje en la nube).

Ejemplos de alertas sobre ítems:
• Cambios en el sistema
• Cambios en el grupo de seguridad
• Cambios en la configuración
• Cambios en la infraestructura de la nube
• Intentos de XSS
• Intentos de SQLi
• Errores de servidor Web

6.1 Seguridad de la Información Somos Todos

263

Proteja el pipeline de despliegue

La infraestructura que soporta nuestros
procesos de integración continua y el
despliegue continuo también presenta una
nueva área de superficie vulnerable a
ataques. Por ejemplo, un invasor podría
inyectar cambios maliciosos en nuestro
repositorio de control de versiones y, por lo
tanto, inyectar cambios maliciosos en
nuestras aplicaciones y servicios.

6.1 Seguridad de la Información Somos Todos

264

Para proteger la construcción, integración o el despliegue continuo, las estrategias de
mitigación pueden incluir:

• Proteger servidores de construcción e integración continuos
• Revisar todos los cambios introducidos en el control de versiones
• Detectar cuando el código de prueba contiene llamadas de API sospechosas
• Garantizar que todo proceso de IC se ejecute en su propio contenedor o VM aislada
• Garantizar de que las credenciales de control de versiones utilizadas por el sistema de

CI sean de sólo lectura

6.1 Seguridad de la Información Somos Todos

265

Integración con Gestión del Cambio, Seguridad y
otros requisitos de Conformidad y Cumplimiento

En esta sección estudiaremos cómo proteger
nuestra tubería de despliegue, así como la forma de
lograr los objetivos de seguridad y cumplimiento en
nuestros entornos de control, incluyendo la gestión
de cambios y la separación de funciones. Algunas
buenas prácticas incluyen:
• Integrar la seguridad y el cumplimiento en los

procesos de aprobación de cambios
• Recategorizar la mayoría de nuestros cambios de

menor riesgo como cambios estándar*
• Definir el tratamiento de los cambios normales*
• Reducir la dependencia en la separación de

funciones
• Garantizar la documentación y las pruebas para

los auditores y los responsables de cumplimiento

6.2 Integrando con Otras Áreas

*en base a
ITIL

266

Seguridad en el Cambio

Casi toda organización de TI de cualquier tamaño
significativo tendrá procesos de gestión de
cambios existentes, que son los principales
controles para reducir riesgos de operaciones y de
seguridad.

El pipeline de despliegues ejecutando
implementaciones de bajo riesgo:

• Mayoría de nuestros cambios no necesitará
pasar por un proceso manual de aprobación
de cambios

• Habremos confiado en controles como pruebas
automatizadas y monitoreo de producción
proactivo

6.2 Integrando con Otras Áreas

267

Integrar la seguridad y el cumplimiento en procesos de aprobación de cambios

Los procesos de gestión de cambios buscan implementar controles para reducir los
riesgos en las operaciones y de seguridad. Los directores de cumplimiento y de
seguridad confían en los procesos de gestión de cambios para cumplir con los requisitos,
y suelen exigir pruebas de que todos los cambios han sido debidamente autorizados.

Existen estos tipos de cambios:
• Cambios estándar: Son cambios de menor riesgo que siguen un proceso establecido

y aprobado, pero que también pueden ser pre aprobados
• Cambios normales: Son cambios de mayor riesgo que requieren la revisión o

aprobación de la autoridad de cambio acordada
• Cambios urgentes: Se trata de cambios de emergencia y, en consecuencia, de alto

riesgo potencial, que deben ponerse en producción inmediatamente (por ejemplo,
parche de seguridad urgente, restauración del servicio)

6.2 Integrando con Otras Áreas

268

Nuestro pipeline de despliegue de estar configurado correctamente para que los
despliegues sean de bajo riesgo, y la mayoría de nuestros cambios no necesitarán pasar
por un proceso manual de aprobación de cambios, porque habremos confiado en
controles como las pruebas automatizadas y la supervisión proactiva de la producción.

6.2 Integrando con Otras Áreas

269

Recategorizar la mayoría de nuestros cambios de menor riesgo como cambios estándar*

Al contar con una cadena de despliegue fiable, ya nos hemos ganado una reputación de
despliegue rápido, fiable y sin dramas. En este punto, deberíamos tratar de obtener el acuerdo de
Operaciones de que nuestros despliegues son de bajo riesgo y pueden ser clasificados como
cambios estándar, pre-aprobados por el CAB.

Lo ideal es que los despliegues sean realizados automáticamente por nuestras herramientas de
gestión de la configuración y de canalización del despliegue (por ejemplo, Puppet, Chef, Jenkins) y
que podamos vincular automáticamente estos registros de despliegues en PROD a elementos
específicos en nuestras herramientas de planificación del trabajo (por ejemplo, JIRA, Rally, LeanKit,
ThoughtWorks Mingle), lo que nos permite crear más contexto para nuestros cambios, como la
vinculación a los defectos, los incidentes de producción o las historias de usuario.

Al hacer esto, podemos rastrear un despliegue de producción a los cambios en el control de
versiones y, a partir de ahí, rastrearlos hasta los tickets de la herramienta de planificación.

6.2 Integrando con Otras Áreas

270

Qué hacer cuando los cambios son clasificados como cambios normales

Para cambios normales que requerirán la aprobación de al menos un subconjunto de
CAB nuestro objetivo es garantizar que podamos desplegar rápidamente, aunque no
esté totalmente automatizado.

Por ejemplo, podríamos crear automáticamente un ticket de cambio de ServiceNow con
un enlace a la historia de usuario de JIRA, junto con los manifiestos de construcción y los
resultados de las pruebas de nuestra y enlaces a los scripts de Puppet/Chef que se
ejecutarán. Esto incluye identificar por qué estamos haciendo el cambio (por ejemplo,
proporcionando un enlace a las características defectos o incidentes), a quién afecta el
cambio y qué se va a cambiar.

Nuestro objetivo es compartir las pruebas y los artefactos que nos dan confianza en que
el cambio funcionará en producción tal y como se ha diseñado, para que CAB puede
aprobar más rápidamente.

6.2 Integrando con Otras Áreas

271

Reducir la dependencia de la separación de funciones

A medida que aumenta la complejidad y la frecuencia de los despliegues, la realización de
despliegues de producción requiere cada vez más que todos los miembros del flujo de valor vean
rápidamente los resultados de sus acciones.

La separación de funciones a menudo puede impedir esto al ralentizar y reducir la información que
reciben los ingenieros sobre su trabajo. Esto impide que los ingenieros asuman la calidad de su
trabajo y reduce la capacidad de la empresa para crear aprendizaje organizativo.

En consecuencia, siempre que sea posible, debemos evitar utilizar la separación de funciones como
control. En su lugar, deberíamos optar por controles como la programación por parejas la
inspección continua de las comprobaciones del código y la revisión del mismo.

Estos controles nos pueden dar la seguridad necesaria sobre la calidad de nuestro trabajo.

Siempre que sea posible, debemos evitar el uso de la separación de tareas como control.

6.2 Integrando con Otras Áreas

272

Garantizar la documentación y las pruebas necesarias para auditores y responsables de
cumplimiento

A medida que las organizaciones tecnológicas adoptan cada vez más patrones DevOps, hay más
tensión que nunca entre TI, auditoría y los responsables de cumplimiento. Para ayudar a cerrar esa
brecha, hace que los equipos trabajen con los auditores en el proceso de diseño del control.

El DevOps Audit Defense Toolkit describe la narración de principio a fin del proceso de cumplimiento
y auditoría para una organización ficticia (Parts Unlimited de “The Phoenix Project”).
El documento describe cómo podrían diseñarse los controles en una cadena de despliegue para
mitigar los riesgos declarados, y proporciona ejemplos de atestados de control y artefactos de
control para demostrar la eficacia del control.

Se pretende que sea general para todos los objetivos de control, incluido el apoyo a la presentación
de informes financieros precisos, el cumplimiento de la normativa (por ejemplo, SEC SOX-404,
HIPAA, FedRAMP, contratos modelo de la UE y la propuesta de normativa Reg-SCI de la SEC), las
obligaciones contractuales (por ejemplo, PCI DSS, DOD DISA) y las operaciones eficaces y eficientes.

6.2 Integrando con Otras Áreas

273

Discusión en Grupos - OWASP

274

¿PREGUNTAS?
¿DUDAS?
¡CUMPLIDOS!

275

Fuente del Material

DevOps For The Modern Enterprise:
Winning Practices to Transform Legacy
IT Organizations Tapa blanda – 3 Abril
2018
de Mirco Hering (Author), Bhaskar
Ghosh (Foreword)

The Phoenix Project (A Novel About
IT, DevOps, and Helping Your
Business Win) Tapa blanda –
Ilustrado, 1 Febrero 2018
de Gene Kim (Author)

The DevOps Handbook: How to
Create World-Class Agility,
Reliability, and Security in
Technology Organizations Tapa
blanda – Ilustrado, 6 Octubre 2016
de Gene Kim (Author), Patrick Debois
(Author), John Willis (Author), Jez
Humble (Author), John Allspaw
(Foreword)

Team Topologies: Organizing Business
and Technology Teams for Fast Flow
Tapa blanda – Ilustrado, 17 Septiembre
2019
de Matthew Skelton (Author), Manuel
Pais (Author), Ruth Malan (Foreword)

https://www.amazon.com/-/es/Mirco-Hering/e/B07CBFH2LC/ref=dp_byline_cont_book_1
https://www.amazon.com/-/es/Mirco-Hering/e/B07CBFH2LC/ref=dp_byline_cont_book_1
https://www.amazon.com/-/es/s/ref=dp_byline_sr_book_2?ie=UTF8&field-author=Bhaskar+Ghosh&text=Bhaskar+Ghosh&sort=relevancerank&search-alias=books
https://www.amazon.com/-/es/s/ref=dp_byline_sr_book_2?ie=UTF8&field-author=Bhaskar+Ghosh&text=Bhaskar+Ghosh&sort=relevancerank&search-alias=books
https://www.amazon.com/-/es/Gene-Kim/e/B00AERCJ9E/ref=dp_byline_cont_book_1
https://www.amazon.com/-/es/Gene-Kim/e/B00AERCJ9E/ref=dp_byline_cont_book_1
https://www.amazon.com/-/es/Patrick-Debois/e/B01M1YD7P9/ref=dp_byline_cont_book_2
https://www.amazon.com/-/es/Patrick-Debois/e/B01M1YD7P9/ref=dp_byline_cont_book_2
https://www.amazon.com/-/es/s/ref=dp_byline_sr_book_3?ie=UTF8&field-author=John+Willis&text=John+Willis&sort=relevancerank&search-alias=books
https://www.amazon.com/-/es/Jez-Humble/e/B003SNGS8E/ref=dp_byline_cont_book_4
https://www.amazon.com/-/es/Jez-Humble/e/B003SNGS8E/ref=dp_byline_cont_book_4
https://www.amazon.com/-/es/s/ref=dp_byline_sr_book_5?ie=UTF8&field-author=John+Allspaw&text=John+Allspaw&sort=relevancerank&search-alias=books
https://www.amazon.com/-/es/s/ref=dp_byline_sr_book_5?ie=UTF8&field-author=John+Allspaw&text=John+Allspaw&sort=relevancerank&search-alias=books
https://www.amazon.com/-/es/Matthew-Skelton/e/B07TJHW1DT/ref=dp_byline_cont_book_1
https://www.amazon.com/-/es/Manuel-Pais/e/B092W1M9H9/ref=dp_byline_cont_book_2
https://www.amazon.com/-/es/Manuel-Pais/e/B092W1M9H9/ref=dp_byline_cont_book_2
https://www.amazon.com/-/es/s/ref=dp_byline_sr_book_3?ie=UTF8&field-author=Ruth+Malan&text=Ruth+Malan&sort=relevancerank&search-alias=books
https://www.amazon.com/-/es/s/ref=dp_byline_sr_book_3?ie=UTF8&field-author=Ruth+Malan&text=Ruth+Malan&sort=relevancerank&search-alias=books

276

Material de Apoyo
• https://cloud.google.com/devops
• https://web.devopstopologies.com/
• https://itrevolution.com/the-three-ways-principles-underpinning-devops/
• https://techbeacon.com/devops/10-companies-killing-it-devops
• https://techbeacon.com/devops/10-companies-killing-it-devops-2020
• https://github.com/Netflix/SimianArmy
• https://netflixtechblog.com/the-netflix-simian-army-16e57fbab116

Fuente del Material

https://cloud.google.com/devops
https://cloud.google.com/devops
https://web.devopstopologies.com/
https://web.devopstopologies.com/
https://itrevolution.com/the-three-ways-principles-underpinning-devops/
https://itrevolution.com/the-three-ways-principles-underpinning-devops/
https://itrevolution.com/the-three-ways-principles-underpinning-devops/
https://itrevolution.com/the-three-ways-principles-underpinning-devops/
https://itrevolution.com/the-three-ways-principles-underpinning-devops/
https://itrevolution.com/the-three-ways-principles-underpinning-devops/
https://itrevolution.com/the-three-ways-principles-underpinning-devops/
https://itrevolution.com/the-three-ways-principles-underpinning-devops/
https://itrevolution.com/the-three-ways-principles-underpinning-devops/
https://itrevolution.com/the-three-ways-principles-underpinning-devops/
https://itrevolution.com/the-three-ways-principles-underpinning-devops/
https://itrevolution.com/the-three-ways-principles-underpinning-devops/
https://techbeacon.com/devops/10-companies-killing-it-devops
https://techbeacon.com/devops/10-companies-killing-it-devops
https://techbeacon.com/devops/10-companies-killing-it-devops
https://techbeacon.com/devops/10-companies-killing-it-devops
https://techbeacon.com/devops/10-companies-killing-it-devops
https://techbeacon.com/devops/10-companies-killing-it-devops
https://techbeacon.com/devops/10-companies-killing-it-devops
https://techbeacon.com/devops/10-companies-killing-it-devops
https://techbeacon.com/devops/10-companies-killing-it-devops
https://techbeacon.com/devops/10-companies-killing-it-devops
https://techbeacon.com/devops/10-companies-killing-it-devops-2020
https://techbeacon.com/devops/10-companies-killing-it-devops-2020
https://techbeacon.com/devops/10-companies-killing-it-devops-2020
https://techbeacon.com/devops/10-companies-killing-it-devops-2020
https://techbeacon.com/devops/10-companies-killing-it-devops-2020
https://techbeacon.com/devops/10-companies-killing-it-devops-2020
https://techbeacon.com/devops/10-companies-killing-it-devops-2020
https://techbeacon.com/devops/10-companies-killing-it-devops-2020
https://techbeacon.com/devops/10-companies-killing-it-devops-2020
https://techbeacon.com/devops/10-companies-killing-it-devops-2020
https://techbeacon.com/devops/10-companies-killing-it-devops-2020
https://techbeacon.com/devops/10-companies-killing-it-devops-2020
https://github.com/Netflix/SimianArmy
https://github.com/Netflix/SimianArmy
https://netflixtechblog.com/the-netflix-simian-army-16e57fbab116
https://netflixtechblog.com/the-netflix-simian-army-16e57fbab116
https://netflixtechblog.com/the-netflix-simian-army-16e57fbab116
https://netflixtechblog.com/the-netflix-simian-army-16e57fbab116
https://netflixtechblog.com/the-netflix-simian-army-16e57fbab116
https://netflixtechblog.com/the-netflix-simian-army-16e57fbab116
https://netflixtechblog.com/the-netflix-simian-army-16e57fbab116
https://netflixtechblog.com/the-netflix-simian-army-16e57fbab116
https://netflixtechblog.com/the-netflix-simian-army-16e57fbab116
https://netflixtechblog.com/the-netflix-simian-army-16e57fbab116

277

Ilustraciones:
• Storyset | Customize, animate and download illustration for free
• https://www.pinterest.es/pin/798192733957711009/?d=t&mt=login
• https://www.ithinkupc.com/es/blog/como-conseguir-la-eficiencia-en-un-entorno-bimodal-it
• https://compbcn.es/docker-en-pocas-palabras/
• https://jaxenter.com/devops-shifting-left-172792.html
• https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3
• https://www.boldbi.com/integrations/azure-devops
• https://netflix.github.io/chaosmonkey/
• https://blog.aspiresys.pl/technology/chaos-monkey-how-netflix-deals-with-resilience/

Fuente del Material

https://storyset.com/
https://storyset.com/
https://storyset.com/
https://www.pinterest.es/pin/798192733957711009/?d=t&mt=login
https://www.pinterest.es/pin/798192733957711009/?d=t&mt=login
https://www.ithinkupc.com/es/blog/como-conseguir-la-eficiencia-en-un-entorno-bimodal-it
https://www.ithinkupc.com/es/blog/como-conseguir-la-eficiencia-en-un-entorno-bimodal-it
https://www.ithinkupc.com/es/blog/como-conseguir-la-eficiencia-en-un-entorno-bimodal-it
https://www.ithinkupc.com/es/blog/como-conseguir-la-eficiencia-en-un-entorno-bimodal-it
https://www.ithinkupc.com/es/blog/como-conseguir-la-eficiencia-en-un-entorno-bimodal-it
https://www.ithinkupc.com/es/blog/como-conseguir-la-eficiencia-en-un-entorno-bimodal-it
https://www.ithinkupc.com/es/blog/como-conseguir-la-eficiencia-en-un-entorno-bimodal-it
https://www.ithinkupc.com/es/blog/como-conseguir-la-eficiencia-en-un-entorno-bimodal-it
https://www.ithinkupc.com/es/blog/como-conseguir-la-eficiencia-en-un-entorno-bimodal-it
https://www.ithinkupc.com/es/blog/como-conseguir-la-eficiencia-en-un-entorno-bimodal-it
https://www.ithinkupc.com/es/blog/como-conseguir-la-eficiencia-en-un-entorno-bimodal-it
https://www.ithinkupc.com/es/blog/como-conseguir-la-eficiencia-en-un-entorno-bimodal-it
https://www.ithinkupc.com/es/blog/como-conseguir-la-eficiencia-en-un-entorno-bimodal-it
https://www.ithinkupc.com/es/blog/como-conseguir-la-eficiencia-en-un-entorno-bimodal-it
https://www.ithinkupc.com/es/blog/como-conseguir-la-eficiencia-en-un-entorno-bimodal-it
https://www.ithinkupc.com/es/blog/como-conseguir-la-eficiencia-en-un-entorno-bimodal-it
https://www.ithinkupc.com/es/blog/como-conseguir-la-eficiencia-en-un-entorno-bimodal-it
https://www.ithinkupc.com/es/blog/como-conseguir-la-eficiencia-en-un-entorno-bimodal-it
https://compbcn.es/docker-en-pocas-palabras/
https://compbcn.es/docker-en-pocas-palabras/
https://compbcn.es/docker-en-pocas-palabras/
https://compbcn.es/docker-en-pocas-palabras/
https://compbcn.es/docker-en-pocas-palabras/
https://compbcn.es/docker-en-pocas-palabras/
https://compbcn.es/docker-en-pocas-palabras/
https://compbcn.es/docker-en-pocas-palabras/
https://jaxenter.com/devops-shifting-left-172792.html
https://jaxenter.com/devops-shifting-left-172792.html
https://jaxenter.com/devops-shifting-left-172792.html
https://jaxenter.com/devops-shifting-left-172792.html
https://jaxenter.com/devops-shifting-left-172792.html
https://jaxenter.com/devops-shifting-left-172792.html
https://jaxenter.com/devops-shifting-left-172792.html
https://jaxenter.com/devops-shifting-left-172792.html
https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3
https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3
https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3
https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3
https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3
https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3
https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3
https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3
https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3
https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3
https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3
https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3
https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3
https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3
https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3
https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3
https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3
https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3
https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3
https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3
https://www.boldbi.com/integrations/azure-devops
https://www.boldbi.com/integrations/azure-devops
https://www.boldbi.com/integrations/azure-devops
https://www.boldbi.com/integrations/azure-devops
https://netflix.github.io/chaosmonkey/
https://netflix.github.io/chaosmonkey/
https://blog.aspiresys.pl/technology/chaos-monkey-how-netflix-deals-with-resilience/
https://blog.aspiresys.pl/technology/chaos-monkey-how-netflix-deals-with-resilience/
https://blog.aspiresys.pl/technology/chaos-monkey-how-netflix-deals-with-resilience/
https://blog.aspiresys.pl/technology/chaos-monkey-how-netflix-deals-with-resilience/
https://blog.aspiresys.pl/technology/chaos-monkey-how-netflix-deals-with-resilience/
https://blog.aspiresys.pl/technology/chaos-monkey-how-netflix-deals-with-resilience/
https://blog.aspiresys.pl/technology/chaos-monkey-how-netflix-deals-with-resilience/
https://blog.aspiresys.pl/technology/chaos-monkey-how-netflix-deals-with-resilience/
https://blog.aspiresys.pl/technology/chaos-monkey-how-netflix-deals-with-resilience/
https://blog.aspiresys.pl/technology/chaos-monkey-how-netflix-deals-with-resilience/
https://blog.aspiresys.pl/technology/chaos-monkey-how-netflix-deals-with-resilience/
https://blog.aspiresys.pl/technology/chaos-monkey-how-netflix-deals-with-resilience/
https://blog.aspiresys.pl/technology/chaos-monkey-how-netflix-deals-with-resilience/
https://blog.aspiresys.pl/technology/chaos-monkey-how-netflix-deals-with-resilience/

¡Síguenos, ponte en contacto!

https://www.linkedin.com/company/certiprof
http://facebook.com/certiprof
https://www.instagram.com/certiprof_llc/
https://twitter.com/certiprof
https://www.youtube.com/channel/UCjNbrARuWdns7aPrpo0og5g

	Número de diapositiva 1
	Número de diapositiva 2
	¿Quién es Certiprof®?
	Nuestras Afiliaciones
	IT Certification Council - ITCC
	Agile Alliance
	Credly
	Insignias Digitales
	¿Por qué son importantes?
	¿Por qué son importantes?
	¿Por qué son importantes?
	Número de diapositiva 12
	¿Por qué es importante obtener su certificado?
	¿Por qué es importante obtener su certificado?
	Insignia
	Aprendizaje Permanente
	Número de diapositiva 17
	Parte 1: Introducción
	Agenda
	Número de diapositiva 20
	Número de diapositiva 21
	Número de diapositiva 22
	Número de diapositiva 23
	Número de diapositiva 24
	Número de diapositiva 25
	Número de diapositiva 26
	Número de diapositiva 27
	Número de diapositiva 28
	Número de diapositiva 29
	Número de diapositiva 30
	Número de diapositiva 31
	Número de diapositiva 32
	Número de diapositiva 33
	Número de diapositiva 34
	Número de diapositiva 35
	Número de diapositiva 36
	Número de diapositiva 37
	Número de diapositiva 38
	Número de diapositiva 39
	Número de diapositiva 40
	Número de diapositiva 41
	Número de diapositiva 42
	Número de diapositiva 43
	Número de diapositiva 44
	Número de diapositiva 45
	Número de diapositiva 46
	Número de diapositiva 47
	Número de diapositiva 48
	Número de diapositiva 49
	Número de diapositiva 50
	Número de diapositiva 51
	Número de diapositiva 52
	Número de diapositiva 53
	Número de diapositiva 54
	Número de diapositiva 55
	Número de diapositiva 56
	Número de diapositiva 57
	Número de diapositiva 58
	Número de diapositiva 59
	Número de diapositiva 60
	Número de diapositiva 61
	Número de diapositiva 62
	Número de diapositiva 63
	Parte 2: Principios de DevOps - 3 Ways of DevOps
	Número de diapositiva 65
	Número de diapositiva 66
	Número de diapositiva 67
	Número de diapositiva 68
	Número de diapositiva 69
	3.4 Integración Continua
	Competencias Necesarias - Capabilities
	Número de diapositiva 72
	Competencias Necesarias - Capabilities
	Número de diapositiva 74
	Competencias Necesarias - Capabilities
	Trabajo en Equipos - Dinámica Flowban
	Parte 3: La Primera Forma - FLUJO
	Número de diapositiva 78
	Número de diapositiva 79
	Número de diapositiva 80
	Número de diapositiva 81
	Número de diapositiva 82
	Número de diapositiva 83
	Número de diapositiva 84
	Número de diapositiva 85
	Número de diapositiva 86
	Número de diapositiva 87
	Número de diapositiva 88
	Principios de DevOps
	Número de diapositiva 90
	Número de diapositiva 91
	Principios de DevOps
	Número de diapositiva 93
	Número de diapositiva 94
	Número de diapositiva 95
	Número de diapositiva 96
	Número de diapositiva 97
	Número de diapositiva 98
	Número de diapositiva 99
	Número de diapositiva 100
	Número de diapositiva 101
	Número de diapositiva 102
	Número de diapositiva 103
	Número de diapositiva 104
	Número de diapositiva 105
	Número de diapositiva 106
	Número de diapositiva 107
	Número de diapositiva 108
	Número de diapositiva 109
	Número de diapositiva 110
	Número de diapositiva 111
	Número de diapositiva 112
	Número de diapositiva 113
	Número de diapositiva 114
	Número de diapositiva 115
	Número de diapositiva 116
	Número de diapositiva 117
	Número de diapositiva 118
	Número de diapositiva 119
	Número de diapositiva 120
	Número de diapositiva 121
	Número de diapositiva 122
	Número de diapositiva 123
	Sponsored By: Shift Left Concept
	Número de diapositiva 125
	Número de diapositiva 126
	Número de diapositiva 127
	Número de diapositiva 128
	Número de diapositiva 129
	Número de diapositiva 130
	Número de diapositiva 131
	Número de diapositiva 132
	Número de diapositiva 133
	Número de diapositiva 134
	Número de diapositiva 135
	Número de diapositiva 136
	Número de diapositiva 137
	Número de diapositiva 138
	Número de diapositiva 139
	Número de diapositiva 140
	Número de diapositiva 141
	Número de diapositiva 142
	Número de diapositiva 143
	Número de diapositiva 144
	Número de diapositiva 145
	Número de diapositiva 146
	Número de diapositiva 147
	Número de diapositiva 148
	Número de diapositiva 149
	Número de diapositiva 150
	Número de diapositiva 151
	Número de diapositiva 152
	Número de diapositiva 153
	Número de diapositiva 154
	Número de diapositiva 155
	Número de diapositiva 156
	Número de diapositiva 157
	Número de diapositiva 158
	Número de diapositiva 159
	Número de diapositiva 160
	Número de diapositiva 161
	Número de diapositiva 162
	Número de diapositiva 163
	Número de diapositiva 164
	Número de diapositiva 165
	Número de diapositiva 166
	Número de diapositiva 167
	Número de diapositiva 168
	Número de diapositiva 169
	Número de diapositiva 170
	Número de diapositiva 171
	Número de diapositiva 172
	Número de diapositiva 173
	Número de diapositiva 174
	Número de diapositiva 175
	Número de diapositiva 176
	Número de diapositiva 177
	Número de diapositiva 178
	Número de diapositiva 179
	Número de diapositiva 180
	Número de diapositiva 181
	Número de diapositiva 182
	Número de diapositiva 183
	Número de diapositiva 184
	Número de diapositiva 185
	Número de diapositiva 186
	Número de diapositiva 187
	Número de diapositiva 188
	Número de diapositiva 189
	Número de diapositiva 190
	Número de diapositiva 191
	Número de diapositiva 192
	Número de diapositiva 193
	Número de diapositiva 194
	Número de diapositiva 195
	Número de diapositiva 196
	Número de diapositiva 197
	Número de diapositiva 198
	Número de diapositiva 199
	Número de diapositiva 200
	Número de diapositiva 201
	Número de diapositiva 202
	Número de diapositiva 203
	Número de diapositiva 204
	Número de diapositiva 205
	Número de diapositiva 206
	Número de diapositiva 207
	Número de diapositiva 208
	Número de diapositiva 209
	Número de diapositiva 210
	Número de diapositiva 211
	Número de diapositiva 212
	Número de diapositiva 213
	Número de diapositiva 214
	Número de diapositiva 215
	Número de diapositiva 216
	Parte 5: Aprendizaje y Experimentación Continua
	Número de diapositiva 218
	Número de diapositiva 219
	Número de diapositiva 220
	Número de diapositiva 221
	Número de diapositiva 222
	Número de diapositiva 223
	Número de diapositiva 224
	Número de diapositiva 225
	Número de diapositiva 226
	Número de diapositiva 227
	Número de diapositiva 228
	Número de diapositiva 229
	Número de diapositiva 230
	Número de diapositiva 231
	Número de diapositiva 232
	Número de diapositiva 233
	Número de diapositiva 234
	Número de diapositiva 235
	Número de diapositiva 236
	Número de diapositiva 237
	Número de diapositiva 238
	Número de diapositiva 239
	Número de diapositiva 240
	Número de diapositiva 241
	Número de diapositiva 242
	Número de diapositiva 243
	Número de diapositiva 244
	Número de diapositiva 245
	Número de diapositiva 246
	Número de diapositiva 247
	Número de diapositiva 248
	Número de diapositiva 249
	Número de diapositiva 250
	Número de diapositiva 251
	Número de diapositiva 252
	Parte 6: Integrando Gestión del Cambio, Seguridad de la Información y Cumplimiento
	Número de diapositiva 254
	Número de diapositiva 255
	Número de diapositiva 256
	Número de diapositiva 257
	Número de diapositiva 258
	Número de diapositiva 259
	Número de diapositiva 260
	Número de diapositiva 261
	Número de diapositiva 262
	Número de diapositiva 263
	Número de diapositiva 264
	Número de diapositiva 265
	Número de diapositiva 266
	Número de diapositiva 267
	Número de diapositiva 268
	Número de diapositiva 269
	Número de diapositiva 270
	Número de diapositiva 271
	Número de diapositiva 272
	Número de diapositiva 273
	Número de diapositiva 274
	Fuente del Material
	Número de diapositiva 276
	Número de diapositiva 277
	Número de diapositiva 278
	Número de diapositiva 279

