AVERAGE CROSSCAP NUMBER OF A 2-BRIDGE KNOT THOMAS KINDRED WAKE FOREST UNIV. BASED ON JOINT WORK WITH MOSHE ADAM PATRICK CORNELIA COHEN LOWRANCE SHANAHAN VAN COTT # PROLOGUE: EVERY RATIONAL NUMBER & CAN BE EXPRESSED AS CONTINUED FRACTION: $$\frac{P}{q} = \frac{\alpha_0 + \frac{1}{\alpha_1 + \frac{1}{\alpha_2 \frac{$$ QUESTION: Given $\frac{p}{q}$, What is the smallest depth among all of its continued fraction representations? ## NOTATION: #### ADDITIVE FORM: $$\frac{P}{q} = \left[a_1, \dots, a_k\right] = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_1}}}$$ $$\vdots + \frac{1}{a_k}$$ SUBTRACTIVE FORM: $$\frac{P}{q} = [b_1, \dots, b_e] - \frac{1}{b_1 - \frac{1}{b_2 - \frac{1}{b_1 - \frac{1}{b_2 \frac{1}$$ BUT WE CAN DISTRIBUTE -'S, SO WHO CARES?! ## NOTATION: ## ADDITIVE FORM: $$\frac{P}{q} = \left[a_1, \dots, a_k\right] = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_k}}}$$ ### SUBTRACTIVE FORM: $$\frac{P}{P} = [b_{1}, \dots, b_{e}] - \frac{1}{b_{1} - \frac{1}{b_{2} - \frac{1}{b_{e}}}}$$ BUT WE CAN DISTRIBUTE -'S, SO WHO CARES?! IN WHICH ALL Q: 31, 6:22, and k is old. MOREOVER, GIVEN these expressions, reversing them gives: $$\left[a_{k_1,...,a_i}\right] = \frac{p'}{q} = \left[b_{l_1,...,b_i}\right]$$ WHERE P'-P=1 (mod q). ### OUTLINE - 1 BACKGROUND: - · Q-203 => 2-BRIDGE KNOTS! LINKS P (KP/4 - · UNORIENTED genes [: CVBSSCap nomber of - · Hatcher-Thurston surfaces as statesurfaces - 2 UNORIENTED GENUS $\Gamma(K_p)$ AND AVERAGE UNORIENTED GENUS $\Gamma(c)$ - 3 CROSSCAP NUMBER & (Kp) AND AVERAGE CROSSCAP NUMBER & (C) # Q-203- {2-BRIDGE LINKS} GIVEN 0< P < 1: - (1) Use the division algorithm and [a1,...,a2,1]=[a1,...,a2,1]=[a1,...,a2,1]. To write = [a1,...,a2] WHERE k is ald and a[(a; >1. - THEN KP IS THE "NESTED C'S" PLAT CLOSURE OF THE BRAID THE BRAID THE BRAID THE BRAID THE BRAID NOTE: THIS DIAGRAM IS ALTERNATING BECAUSE ALL Q: 21. | 22-BRIDGE | LINKS | - 203 | |-----------|-------|-------| |-----------|-------|-------| THE DOUBLE-BRANCHED COVER OF 53 W/ branch set any 2-50: dge link K is a Cons space L(P,9). THE CLASSIFICATION OF LENS SPACES! TELLS US THAT THE MAPPING KING A THM (SCHUBERT '54): KP AND KP' ARE 150 TOPIC + (OR: Kp 15 150 TOPIC TO 1TS MIRROR IMAGE P = 1 (mod q) Fai,..., and is a palindrome # PEFNS: • A SPANNING SURFACE FOR A KNOT OR LINK KCS3 IS A CONNECTED SURFACE FC53 WITH DF=K. - •115 COMPLEXITY BICF) = RANK (HICFI) = # of holes INF = # of cuts that reduce F to a disk. - . THE UNDRIENTED GENUS M(K) AND CROSSCAP NUMBER O(K) ARE: DEFNS: • A SPANNING SURFACE FOR A KNOT OR LINK KCS3 IS A CONNECTED SURFACE FC53 WITH OF=K. •115 COMPLEXITY BICF) = RANK (HICFI) = # of holes INF = # of cuts that reduce F to a disk. · THE UNDRIENTED GENUS M(K) AND CROSSCAP NUMBER O(K) ARE: FACT: Every link satisfies $V(L) = \{ \Gamma(L), \Gamma(L) + i \}$ REASON: Even if every surface Frealizing \(\Gamma(L) \) is 2-sided, we can make any such F1-sided by attaching a single (D). $$\Gamma = 2$$ $$\beta_1 = 2$$ $$\beta_1 = 3$$ $$\beta_2 = 3$$ GIVEN OF JEI, HATCHER-THURSTON DESCRIBE A CORRESPONDENCE UNDER WHICH THE DEPTH l OF [6,,.., be] - or 1+[bi,..., be] - equals B. (F). $$EX: \frac{11}{18} = [2,3,4] - 24$$ Upshot: THE SMALLEST DEPTH AMONG ALL CONTINUED FRACTION REPRESENTATIONS OF Plg equals $\Gamma(Kprq)$. Q: HOW TO FIND UNORIENTED GENUS [(KP1q)? OPTION: Apply earlier results of Hatcher-Thurston, Hirasawa-Teraga: to, or Hoste-Shanahan-Van Cott... Q: WHAT IF WE ALSO WANT TO FIND THE AVERAGE UNDRIENTED GENUS TCO AMONG ALL 2-BRIDGE C-CROSSING KNOTS? Q: HOW TO FIND UNORIENTED GENUS [(KP19)? OPTION: Apply earlier results of Hatcher-Thurston, Hirasawa-Teraga: to, or Hoste-Shanahan-Van Cott... Q: WHAT IF WE ALSO WANT TO FIND THE AVERAGE UNDRIENTED GENUS (C) AMONG ALL 2-BRIDGE C-CROSSING KNOTS? IDEA: USE PROPERTIES OF ALTERNATING LINKS TO GET A NEW FORMULA FOR [(KPIq), ONE WELL-SUTTED FOR RECURSION... ### EVENTUALLY THIS WILL LEAD TO: THEOREM: THE AVERAGE UNIVERTED GENUS (C) AND AVERAGE CROSSCAP NUMBER Y(C) AMONG ALL C-CROSS/NG 2-BRIDGE KNOTS SATISFY $$\Pi(C) = \frac{2}{3} + \frac{1}{9} + \xi(C) \qquad \qquad \forall CL) = \Pi(C) + \xi_2(C)$$ WHERE $\xi(C) \to 0$ AND $\xi_2 \to 0$ As $C \to \infty$. #### STATE SURFACES: FACT: 1F a diagram D has a crossings and a state X of D has |x| state circles, there its state surface F_X satisfies $\beta_1(F_X)=1+C-1\times1$. WE APPLY RESULTS OF ADAMS - K ABOUT ALTERNATING LINKS TO FIND (SURFACES REALIZING) THE UNORIENTED GENUS [(KP/a): PROCEDURE (ADAMS-K): · SMOOTH AROUND A 1. GOW IF THERE IS ONE · IF NOT, SMOSTH AROUND A BIGON / IN 2-BRIDGE SETTING / · REPEAT always THEOREM (ADAMS-K): The resulting surface F always realizes moriented genus: [3,(F)=[7(K) RECALL: HATCHER-THURSTON SURFACES ARE PLUMBINGS OF ANNULL! M'OBIUS BANDS: RECALL: HATCHER - THURSTON SURFACES ARE PLUMBINGS OF ANNULI & M'OBIUS BANDS: OBS: ALL HATCHER-THURSTON SURFACES OF KAPIS CAN BE REALIZED AS STATE SURFACES OF A SINGLE ALTERNATING DIAGRAM: PLUMBING SQUARES: #### EXAMPLES OF HATCHER-THURSTON (H-T) SURFACES AS STATE SURFACES rall-even! • THE H-T SURFACE [4,4,-4,-4,4,-6] IS AN ALGORITHMIC SEIFERT SURFACE . #### EXAMPLES OF HATCHER-THURSTON (H-T) SURFACES AS STATE SUFFACES rall-even! • THE H-T SURFACE [4,4,-4,-4,4,-6] IS AN ALGORITHMIC SEIFERT SURFACE THE H-T SURFACE FOR THE POSITIVE SUBTRACTIVE FORM [4,4,2,2,3]15 A CHECKERBOARD SURFACE FOR A KNOT DIAGRAM D, WHEREAS THE ADDITIVE FORM [3,1,2,3,2] DESCRIBES D VIA THE BRAID DISTE TO TEST THEOREM: IF A DIAGRAM D OF A 2-BRIDGE KNOT OR LINK K GRRESPONDS TO THE POSITIVE SUBTRACTIVE CONTINUED FRACTION [b., ..., be] -, THEN (K) = W-Z, WHERE · W= # 3i: 6:23}+ # of strings of 2's IN [b1,..., ble]-· Z = # of TIMES 2,3,3,...,3,2 appears ,N [b1,...,66]at least one 3 2 THEOREM: IF A DIAGRAM D OF A 2-BRIDGE KNOT OR FRACTION [b., ..., bk]-, THEN [(K) = W-Z, WHERE • W= # {i:6; ≥3}+ # of strings of 2's IN [b1,..., bk] • Z = # of TIMES 2,3,3,...,3,2 appears IN [b1,..., bk]- THEOREM: IF A DIAGRAM D OF A 2-BRIDGE KNOT OR LINK K GRRESPONDS TO THE POSITIVE SUBTRACTIVE CONTINUED FRACTION [b., ..., be] -, THEN (K) = W-Z, WHERE · W= # 3i: 6:23}+ # of strings of 2's ,~ [b1,..., bk]- · Z = # of TIMES 2,3,3,...,3,2 appears ,N [b1,...,be]at least one 3 IDEA OF PROOF (by induction on k): To compute <u>Average</u> unoriented <u>Genus</u>, we <u>DENOTE</u>: K = {c-crossing 2-bridge knots} where nonisotopre mirror magus K(c) = { (b, ..., bk) ∈ Zk, keZt, all b; ≥2, K[b, ..., bk] ∈ Ke} K^e(c) = & palindromic (b1,...,bk) ∈ K(c)} THEN FOR CZ4: $$|K_c| = \frac{1}{2} (|K(c)| + |K^{\dagger}(c)|) = \begin{cases} \frac{2^{c-2} - 1}{3} & c = 1 \pmod{4} \\ \frac{2^{c-2} + 2^{(c-1)/2}}{3} & c = 1 \pmod{4} \end{cases}$$ ERNST-SUMMERS $\frac{2^{c-2} + 2^{(c-1)/2} + 2}{3}$ $c = 3 \pmod{4}$ To compute <u>AVERAGE</u> UNORIENTED GENUS, WE <u>DENOTE</u>: K = {c-crossing 2-bridge knots} where nonisotopre mirror mages are considered distinct , K(c) = { (b1, ..., bk) ∈ Zk, ke Zt, all b; ≥2, K[b1, ..., bk] ∈ Ke} K^e(c) = & palindromic (b1,...,bk) ∈ K(c)} $\left(\frac{2^{c-2}-1}{3}\right)$ c even THEN FOR CZ4: $|K_c| = \frac{1}{2} (|K(c)| + |K^{P}(c)|) = \begin{cases} \frac{2^{c-2} + 2^{(c-1)/2}}{3} & C = 1 \pmod{4} \\ \frac{2^{c-2} + 2^{(c-1)/2} + 2}{3} & C = 3 \pmod{4} \end{cases}$ ALSO DENOTING: ALSO DENOTING: Z(c) = \(\int \(\) \(W(c) = \(\tilde{\text{Lis}}\) Lek(c) W(c) = \(\times \times \(\times \) \\ \[\lambda \times \times \times \times \times \(\times \) \\ \[\lambda \times \ [(c)= 1/Kc| KeKe | KeKe | Z|Kc| (W(c)-Z(c)+W(c)-Z(c)) Q: How to compute W(c), Z(c), WP(c), ZP(c)? ## Sketch for WCc) (others are sinilar): (i) PARTITION K(c) = K22(c) U K32(c) U K4(c) and establish a bijection g=fivf2vf3vfy: K(c)→ K(c-2) U K(c-1) U K(c-2) = K2(c-1) L K2(c-1) - 2) Use g to get a recursion of the form W(c)=W(c-1)+2W(c-2)+Dw when Dw comes from the ways that g changes w. - (3) Solve the recursion using initial values. THIS APPROACH REVEALS THAT WP(c)=0=ZP(c) when c is even and, writing d= c-1, YIELDS THE FOLLOWING FORMULAS: $$\begin{split} W(c) &= c \cdot 2^{c-4} \quad \text{for c24} \\ Z(c) &= \frac{3c-8}{27} (2^{c-4}) + \frac{14}{27} (-1)^c - (-1)^c \cdot \frac{2}{3} \cdot \delta_{1,c \bmod 3} \quad \text{for c26} \\ W^P(c) &= \frac{1+3d}{3} \left(2^{d-1}\right) - \frac{2}{3} (-1)^d \quad \text{for odd c211} \\ Z^P(c) &= \frac{(3d+1)}{27} (2^{d-1}) - \frac{14}{27} (-1)^d + \frac{2}{3} (-1)^d \left(\delta_{1,d \bmod 3} + 3\delta_{2,d \bmod 3}\right) \quad \text{for odd c211} \end{split}$$ THEOREM: LET CZII AND WRITE $d = \frac{C-1}{2}$. THEN THE AVERAGE UNORIENTED GENUS AMONG ALL C-CROSSING 2-BRIDGE KNOTS IS: SINCE E,CC) -> 0 AS C->0, (CC) -> = + + AS C->0. TO DETERMINE WHETHER THE CROSSCAP NUMBER $V(K_{P/q})$ is $\Gamma(K_{P/q})$ or $\Gamma(K_{P/q})+1$, we prove: THEOREM: SUPPOSE THAT A DIAGRAM D OF A 2-BRIDGE KNOT OR LINK K CORRESPONDS TO THE ALLIEVEN SUBTRACTIVE CONTINUED FRACTION [C.,..., C.]., AND ASSUME THAT D HAS MORE THAN TWO CROSSINGS. THEN TFAE: - 1) D HAS A UNIQUE MINIMAL COMPLEXITY STATE SURFACE FX, AND FX 15 2-SIDED. - 2 V(L)=[(L)+1. - 3 Each 1e:124. WE ALSO PROVE A RELATED THEOREM ABOUT ALTERNATING LINKS IN GENERAL. IN ONE DIRECTION, THE IDEA IS— To compute Average crosscap Number, we DENOTE: 2-conssing 2-bridge knots? Le= {c-crossing 2-bridge links} Ke(e) = { (e1,..., en) \earrow{(2x)}, ke 72^+, all |e| \geq 4, Ke1,...,en] \in \frac{1}{2}}. To compute Average crosscap Number, we DENOTE: 2-component LC= {c-crossing 2-bridge knots} LC= {c-crossing 2-bridge links} κ(c) = { (e,..., e k) ε(x), ke Z[†], a(| [e;|≥4, K_[e,,...,eω] ∈ Ke] [(c)] = { (e,..., e k) ε(x), ke Z[†], a(| [e;|≥4, K_[e,,...,eω] ∈ Ke] E(c) = KE(c) ~ LE(c), A(c) = | KE(c) | ~ | LE(c) |, 10 | KE(c) = \frac{1}{2} (|E(c)| + A(c)) PARTITION KE(c)= KE(c) UKE(c) AND LE(c)= Lu(c) ULE(c) AND DEFINE fK: Ke(c) → Ke(c-2) fr: L = (c) → L = (c-2) 9K: Kq(c) → [(c-3) 11 [(c-4) 9 L: L4(c) → K (c-3) ~ K (c-4) \supset GET RECURSIONS $\Delta(c) = \Delta(c-2) - \Delta(c-3) - \Delta(c-4)$ ANO THE RECURSIONS | E(c) = | E(c-2) + 1 E (c-3) + | E(c-4) | ANO D(c) = D(c-2) - D(c-3) - D(c-4) HAVE CHARACTERISTIC POLYNOMIALS $X^4 - X^2 - X - 1 = (X + i)(X^3 - X^2 - i)$ AND $Y^4 - Y^2 + Y + 1 = (Y + i)(Y^3 - Y^2 + i)$ WHOSE ROOTS Xi AND Y: WE CAN WRITE IN TERMS OF $$\lambda = \sqrt[3]{\frac{1}{2}(29 + 3\sqrt{93})}, \quad \omega = e^{\pi i/3}, \quad \Delta NO \qquad \beta = -\sqrt[3]{\frac{1}{2}(25 + 3\sqrt{69})}:$$ $$X_{1} = -1, \quad X_{2} = \frac{1}{3}(1 + \alpha + \alpha^{-1}) \approx 1.5, \quad X_{3} = \frac{1}{3}(1 - \alpha \omega - \alpha^{-1}\omega^{-1}) \approx -.2 \quad -.7; \quad X_{4} = \overline{X_{3}}$$ $$Y_{1} = -1, \quad Y_{2} = \frac{1}{3}(1 + \beta + \beta^{-1}) \approx -.8, \quad Y_{3} = \frac{1}{3}(1 - \beta \omega^{-1} - \beta^{-1}\omega) \approx .8 - .7i, \quad Y_{4} = \overline{Y_{3}}$$ HAVE CHARACTERISTIC POLYNOMIALS $$X^4 - X^2 - X - 1 = (X + 1)(X^3 - X^2 - 1)$$ AND $Y^4 - Y^2 + Y + 1 = (Y + 1)(Y^3 - Y^2 + 1)$, WHOSE ROOTS X; AND Y: WE CAN WRITE IN TERMS OF $$X_{1}=-1$$, $X_{2}=\frac{1}{3}(1+\alpha+\alpha^{-1})\approx 1.5$, $X_{3}=\frac{1}{3}(1-\alpha\omega-\alpha^{-1}\omega^{-1})\approx -.2$ $-.7$; $X_{4}=\overline{X_{3}}$ $Y_{1}=-1$, $Y_{2}=\frac{1}{3}(1+\beta+\beta^{-1})\approx -.8$, $Y_{3}=\frac{1}{3}(1-\beta\omega^{-1}-\beta^{-1}\omega)\approx .8-.7$; $Y_{4}=\overline{Y_{3}}$ WHERE, BY CRANER'S RULE, $$U_1 = \begin{bmatrix} 2 & 1 & 1 & 1 \\ 0 & X_1 & X_3 & X_4 \\ 2 & X_1^2 & X_3^2 & X_4^2 \\ 2 & X_1^3 & X_3^2 & X_1^2 \end{bmatrix} = \frac{2}{3}$$, $V_1 = \begin{bmatrix} -2 & 1 & 1 & 1 \\ 0 & Y_1 & Y_3 & Y_4 \\ -2 & Y_1^2 & Y_3^2 & Y_4^2 \\ 2 & Y_1^3 & Y_3^3 & Y_1^2 \end{bmatrix} = -2$ AND LIKEWISE U2 2.7, U3 2.3-. Zi, U4 = U3, V2 21.1, V3 2-.5-1i, V4= V3 AFTER SIMILARLY ACCOUNTING FOR PALINDROMES, WE OBTAIN: THEOREM: FOR C27, THE NUMBER OF C-CROSSING 2-BRIDGE KNOTS K WITH 8(K) = M(K)+1 (RATHER THAN 8(K)=M(K)) 15: $$\frac{1}{2} \left(|K^E(c)| + |K^{EP}(c)| \right) = \frac{1}{4} \sum_{i=1}^{4} \left(u_i x_i^{\frac{c-7}{2}} \left(x_i^{\frac{c-1}{2}} + \delta_{0,c \mod 2} \right) + v_i y_i^{c-4} \right),$$ WHERE THE UI, VI, XI, AND YI ARE FROM THE LAST SLIDE. ERGO, VITH THESE SAME VALUES AND DENOTING d= C-1: THEOREM: THE PORTION ELCC) OF C-Crossing 2-bridge knows with $$\mathcal{S}(\mathcal{K}) = \Gamma(\mathcal{K}) + 1 \qquad Is:$$ $$\varepsilon_{2}(c) = \begin{cases} \sum_{i=1}^{4} \frac{3\left(u_{i}x_{i}^{d-3}\left(x_{i}^{d} + \delta_{0,c \mod 2}\right) + v_{i}y_{i}^{c-4}\right)}{4(2^{c-2} - 1)} & c \text{ even} \end{cases}$$ $$\varepsilon_{2}(c) = \begin{cases} \sum_{i=1}^{4} \frac{3\left(u_{i}x_{i}^{d-3}\left(x_{i}^{d} + \delta_{0,c \mod 2}\right) + v_{i}y_{i}^{c-4}\right)}{4(2^{c-2} + 2^{d})} & c \equiv 1 \pmod{4} \end{cases}$$ $$\sum_{i=1}^{4} \frac{3\left(u_{i}x_{i}^{d-3}\left(x_{i}^{d} + \delta_{0,c \mod 2}\right) + v_{i}y_{i}^{c-4}\right)}{4(2^{c-2} + 2^{d} + 2)} & c \equiv 3 \pmod{4} \end{cases}$$ $$\varepsilon_2(c) = \begin{cases} \sum_{i=1}^4 \frac{3\left(u_i x_i^{d-3} \left(x_i^d + \delta_{0,c \mod 2}\right) + v_i y_i^{c-4}\right)}{4(2^{c-2} + 2^d)} & c \equiv 1 \pmod{4} \end{cases}$$ $$\sum_{i=1}^{4} \frac{3\left(u_i x_i^{d-3} \left(x_i^d + \delta_{0,c \mod 2}\right) + v_i y_i^{c-4}\right)}{4(2^{c-2} + 2^d + 2)} \quad c \equiv 3 \pmod{4}$$ IN PARTICULAR, E2(c) -0 AS (-) 0. THEOREM: THE AVERAGE UNORIENTED GENUS (C) AND AVERAGE CROSSCAP NUMBER Y(L) AMONG ALL C-CROSSING 2-BRIDGE KNOTS SATISFY $$\Gamma(C) = \frac{2}{3} + \frac{1}{9} + \varepsilon(C) \qquad \qquad \forall CL) = \Gamma(C) + \varepsilon_2(C)$$ WHERE $\varepsilon(C) \to 0$ AND $\varepsilon_2 \to 0$ As $C \to \infty$.