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1. INTRODUCTION

If you put several half-twists in a thin
strip of paper and tape the ends to-
gether, you get a surface F' whose bound-
ary 0F = K is a knot or link:
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More generally, given any knot or link K in
3-space, there is an embedded surface F' with
OF = K, and in fact there are many such span-
ning surfaces for K. I am a knot theorist who
approaches many problems through the lens of
spanning surfaces. Next, I will describe why
knot theory is useful mathematics and then
how my perspective connects me to, and dis-
tinguishes me from, other mathematicians and
their interests. Then, §2] will introduce some
central ideas in my research by describing two
Master’s theses that I recently co-advised and
two undergraduate theses that I am currently
advising and co-advising. Finally, §§3Hp| will
describe some of my other papers, and §6| will
offer concluding remarks.

1.1. Why knot theory? Two main reasons:
(1) radical human accessibility, and (2) sur-
prisingly broad mathematical and scientific sig-
nificance. On a human level (1), knot the-
ory is uniquely welcoming for at least four rea-
sons. First, the mathematical barrier to entry
is low: lots of open problems can be stated
in a way that anyone who was taken a proofs
course can grasp, and many techniques are sim-
ilarly accessible. Second, there are lots of fla-
vors to choose from: some techniques involve
spatial reasoning, while others are purely dia-
grammatic, or highly combinatorial, or heavily
algebraic. Third, many problems invite com-
putational approaches, inviting empiricists and
programmers. Fourth, knot theory is... fun.
Regarding (2):

e Geometric topology is both richest and most
applicable to the physical world in dimensions
three and four, where knot theory is founda-
tional (via handle structures and surgery).

e While the frameworks of general relativ-
ity and quantum mechanics remain un-
reconciled, their mathematical structures—
hyperbolic geometry, which is projective rel-
ativistic geometry, and operator algebras—
have deep and still-mysterious connections
via the Jones polynomial, a knot theory gad-
get that also has deep generalizations (webs
and Khovanov homology) which carry infor-
mation about representation theory and prop-
erly embedded surfaces in the 4-ball. It re-
mains a profound mystery as to why any of
this math should be related. What does the
Jones polynomial mean?

e Knot theory has applications to cell biology,
synthetic chemistry, and particle physics.

1.2. What distinguishes my research? To
me “coloring in” a knot with a spanning sur-
face tends both to simplify matters (less knot-
ting, just a little twisting) and to enrich them
(every knot has many spanning surfaces). This
perspective has led to insights along a few av-
enues:

(1) Problems “internal” to the broadly con-
strued topic of spanning surfaces—see [K1,
K2, K4, K5, K13, [K15];

(2) Fresh takes on foundational theorems and
key gadgets—see §§2.4]2.5 and [K3| K8, K9,
K10, K11, [K12;

(3) Purely linear algebraic problems motivated
by spanning surfaces—see and [K14];
and

(4) Adaptation to dimension four—see

I also enjoy research problems unrelated to
knots, especially ones inviting visual/spatial or
combinatorial approaches. So far, I have only
one paper like this [K7], but I have specific plans
for more—see

2. STUDENT RESEARCH PROJECTS ADVISED

2.1. Knots, diagrams, surfaces, and matri-
ces. Every knot in 3-space has spanning sur-
faces, lots of them actually. Given a knot
K C R3, take a generic projection of K to R?,
and record over-under information at the self-
intersections, or crossings, to get a diagram
D of K. It is always possible to color the re-
gions of R? — D light and dark in “checkerboard
fashion” (see below), so that like-shaded regions
abut only at crossings. If we do this so that the
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unbounded region is light, then there is a span-
ning surface F' for K that lies almost entirely in
the dark regions of R? — D, except near cross-
ings, where it twists; F' is called a checker-
board surface.

The first homology group of F, denoted
Hy(F), is a free abelian group whose elements
are represented by oriented circles embedded in
F. It has a basis A = (ay,...,a,) represented
by circles «;, each of which goes counterclock-
wise around one bounded light region R;, and so
its rank, f1(F) = n, counts “how many holes”
are in F'. There is a symmetric bilinear pair-
ing (-,-,) : Hi(F) x H1(F) — Z, first described
by Gordon and Litherland [7][]] which is repre-
sented (with respect to A) by a Goeritz ma-
trix G = (gij)ﬂ where each g;; counts (with
sign) the number of crossings incident to R; and
each g;; counts (with opposite sign) the number
of crossings incident to both R; and R;. Here is
an example, followed by two key properties:

o If o C F is a circle representing a homology
class a, then 2(a, a) is the framing of o in F,
which measures how much F “twists” along
Q.

e Since G € Z"*™ represents a bilinear map-
ping, the change-of-basis formula is G —
PGPT, where P € Z™" is unimodular, ie
det P = +1.

In a chapter in the Concise Encylope-
dia of Knot Theory [K6], I proved that
any two checkerboard surfaces Fj; and Fj
from any diagrams of a given knot are re-
lated by a sequence of isotopy and “kink-
ing” moves, which change Goeritz matrices
like this G’ < [§ 2] and look like this:
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This raises the following practical question:
given F; and Fb, how to find such a sequence
of moves between them? Maybe, I thought,
a good approach would be to forget the sur-

faces altogether and just focus on the linear al-
gebra: if G; and Gy are the Goeritz matrices

for F1 and F3, then any sequence of kinking
moves between F; and F5 gives a sequence of
moves like G <+ PGPT and G « [§ 2| from
G1 to Ga. Call two symmetric integer matrices
kink-equivalent if they are related by such a
sequence. What can we say about this notion?

2.2. Kink-equivalence of matrices, sur-
faces, 4-manifolds, and quadratic forms.
Two springs ago, I posed this question to a stu-
dent, John, in my topology topics course as we
walked together from our classroom back to the
math building. The question quickly grew into a
Master’s thesis project, which I co-advised with
Hugh Howards and Frank Moore. We soon dis-
covered that not every move like [g 2]l —=G
can be realized geometrically, ie there are “fake
unkinking moves.” Stepping away from topol-
ogy into pure linear algebra, John asked:

Question 2.1. Is every positive-definite G €
7™ kink-equivalent to a negative-definite G_7

(Were it not for fake unkinking moves, there
would be no chance of this, because of a theo-
rem from 2017 about definite Goeritz matrices
and alternating knots [8].) John proved that
if there is an integer matrix C' (not necessar-
ily square) such that G = I + CC”, then G is
kink-equivalent to the negative-definite matrix
—I — CTC. But does such C always exist? In
fact, no. John discovered a 6 x 6 counterexam-
ple, and for a while, we held out this matrix as a
likely candidate for a negative answer to Ques-
tion [2.1} Then, as John was getting ready to
finish his thesis, he announced that he had fig-
ured out how to transform his 6 X 6 matrix into
a negative-definite matrix, and that his method
worked in general. This gives the following the-
orem, which has implications for 4-manifolds,
quadratic forms, and indeed anywhere one finds
symmetric integer pairings [K14]:

Theorem 2.2. Any nonsingular symmetric
G € 7" is kink-equivalent to +-definite ma-
trices.

Theorem 2.3. Every simply connected, closed,
topological 4-manifold with mnonsingular inter-
section form has a positive blow-up homeomor-
phic to a negative blow-up of a positive-definite,
simply connected, closed, topological 4-manifold.

IThis is my all-time favorite paper, partly because of its content, but especially because they prove their results
twice: first, they take a sophisticated approach, involving double-branched covers of the 4-ball (in some sense, this
is the best way to understand the deep significance of their work), and then, restarting from scratch, they take a
down-to-earth approach that uses only elementary tools and thus makes this profound paper remarkably accessible.
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2Given z = S xiagandy =Y ya; in Hi(F) and denoting & = |: : :| and § = |: : :| , we have (z,y) = 27 GY.
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Theorem 2.4. Let q : Z" — Q be a non-
singular quadratic form with ny positive eigen-
values and n_ megative eigenvalues, and write
qo : x — x2. There are +-definite quadratic
forms q+ that satisfy these wunimodular con-
gruences: q & (0)™ = ¢4 & (—qo)" and

q® (—qo)°™ = q— ® (qo)"™*

The overall approach of this project—
translating an insight about spanning surfaces
into an inquiry about matrices and then pur-
suing the linear algebra—offers a promising
blueprint for much more research to come.
There is ample intellectual space here for un-
dergraduates to pursue natural questions about
the interplay between linear algebra, knots,
and surfaces—and perhaps, like John, discover
something with unanticipated consequences.

2.3. Gauss codes and crosscap numbers.
The first knot theorist, Gauss, discovered a way
of recording a knot diagram as a tuple of inte-
gers. Here is what you do. Pick a basepoint
and orient the knot; then walk along the knot,
recording each new crossing with the next un-
used integer and each repeated crossing with
the corresponding integerﬁ For example, us-
ing the indicated basepoint and orientation, the
Gauss code of the following knot diagram is
(1,2,3,1,4,5,6,3,2,4,7,6,5,7).

)

Gauss codes offer computational approaches
to lots of problems in knot theory: if you know
how to do something diagrammatically, can you
figure out how to do it using only the tuple? If
so, and if you know a little Python, you can
write a computer program to compute thou-
sands of examples for you. For example, given
an alternating diagram D of a knot K, Colin
Adams and I figured out how to compute the
crosscap number of K from D (this is the small-
est (1(F) achieved by any nonorientable span-
ning surface F' for K). During my first postdoc,
having no prior experience with Python, I wrote
a program that computed the crosscap numbers
of all alternating knots through 13 crossings (of
which there are several thousand) [K5|]. The ap-
proach I used for that project was distinct from
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my approach with Colin Adams, although it re-
lied on our results. This new approach worked
for knots but not for links.

I am currently co-advising (with Jason Pars-
ley) an undergraduate thesis project about
Gauss codes for alternating knots and links, in
which one of our main goals is to compute the
crosscap numbers of all alternating knots and
links through at least 14 crossings. I met our
student, Isaias, when he took my knot theory
course last semester. This year, he is applying
to graduate programs in computer science.

2.4. An application to statistical physics.
I met my second undergraduate thesis student
this year, Tristan, when she took my discrete
math/intro to proofs course last fall. Tristan
is working on a problem that comes out of an
application of knot theory to statistical physics.
The Ising model uses statistics of quantum me-
chanics to capture phase changes or spin behav-
iors in lattices of molecules. The model features
a partition function which takes as input a pla-
nar graph G whose edges are labeled with signs
and maps it to a Gaussian integer P(G). The
same planar graph G also encodes—although
not quite uniquely—a diagram D of a knot or
link L. One would like P(G) to be an invariant
of L, in the sense that if two graphs G and G’
both encode diagrams of L then P(G) = P(G’),
but this is not quite the case. The first research
question is this: Can we choose a correction fac-
tor f(G), so that f(G) - P(G) is an invariant of
L? Indeed, we will find that we can, but when
we do, we will find that it is easier to define
f(G) using G and D. Yet, G does not encode D
uniquely, so buried within this topic are several
levels for inquiry and discovery. I am excited to
see where Tristan takes this project.

2.5. Essential states in Khovanov ho-
mology. My first two years at Wake, Hugh
Howards and I advised a Master’s thesis about
Khovanov homology. In general, for a Master’s
or undergraduate thesis, I would recommend al-
most any other area among my research inter-
ests above this topic above Khovanov homology.
But I do have a couple specific projects in mind,
and so I included the topic in a list of four or five
possibilities when Hugh and I first met with our
new advisee, Emma. It turns out that Emma’s
best friend growing up was the daughter of a
mathematician specializing in Khovanov homol-
ogy, and she had a burning desire to know what

3In general, one uses the over/under information at the crossings to attach signs to these integers. For alternating
diagrams, however, this is unnecessary, subject to the convention that the first crossing is an over-crossing.
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this was all about. So we went for it! We spent
the first year learning about Khovanov homol-
ogy works; then we got to a research question.

Earlier, I mentioned the Jones polynomial,
but so far I have not said anything about what
it is, or how it is computed. Here is one perspec-
tive. Given a diagram D of a knot K, “smooth”
each crossing in one of two ways, X +— X LA
X. The resulting diagram z is called a (Kauff-
man) state of D and consists of state circles
joined by A- and B-labeled arcs, one from each
crossing. “Enhance” = by assigning each state
circle a binary label: ()t <— (O % (). Then
use the number of A- versus B-smoothings lead-
ing to each state and the number of blue versus
green circles in each enhancement to assign each
“enhanced state” X a bigrading (ix,jx), and
use this bigrading (and the writhe of the dia-
gram) to arrange the enhanced states in a grid.
Here is an example:

& &H— b
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For each pair (i,7), let C;;(D) be the free Z-
module generated by those enhanced states X
with (ix,jx) = (¢,7). Then the (unnormalized)
Jones polynomial of K is

Vi(g) = ¢ > (~1)'rank(C; ;(D)).
2 (2

For example, the Jones polynomial of the knot
in the preceding diagram is ¢ + ¢ + ¢° — ¢°.
Amazingly, Vi (q) does not depend on D. Even
more amazingly, Khovanov described “(co)-
boundary maps” d : C; ;(D) — Cjt1,(D) such
that the resulting (co)homology groups also are
independent of D [11],21]. All of this works over
any commutative ring R with 1 # 0; I will focus
on R=7 and R=7/2Z.

When 1 first learned about Khovanov ho-
mology, I worked a few simple examples, all
coming from alternating diagrams, and noticed
that many of the nonzero Khovanov homol-
ogy classes were represented by states that de-
scribed essential surfaces (in a sense that I will

explain in . In some cases, these essen-
tial surfaces were checkerboard surfaces, and in
others they were obtained by plumbing checker-
board surfaces. Moreover, any “diagrammatic
plumbing” of alternating checkerboard states
gives what is called a homogeneously ade-
quate state, and these always describe essen-
tial surfaces [16]. I proved that such states al-
ways correspond to nonzero Khovanov homol-
ogy classes, at least over Z /27 [K3|:

Theorem 2.5. If x is a homogeneously ade-
quate state, then = gives nonzero Khovanov ho-
mology classes over Z/27 in two gradings. If a
certain graph Gy, is bipartz’tﬂ then this is also
true with integer coefficients.

The research question for Emma was what
happens to such essential states in Khovanov
homology when we change the underlying di-
agram by adding or removing a crossing via
a simple kink (called an R1 move). I sus-
pected that such a simple move would preserve
all the important features of Khovanov homol-
ogy classes and their representatives. Surpris-
ingly, though, Emma discovered that sometimes
adding a crossing via an R1 move could make
things nicer. For example, in a 3-crossing di-
agram of the trefoil, there is a Khovanov ho-
mology class that doesn’t have a “nice” repre-
sentative (coming from a single state), but after
certain R1 moves, this homology class has a nice
representative. Emma is now in her second year
in the math Ph.D. program at the University of
Kentucky.

3. TAIT’S CONJECTURES, GEOMETRICALLY

In general, it is hard to determine the cross-
ing number of an arbitrary knot, or to deter-
mine whether or not a given diagram minimizes
crossings, but certainly no diagram that mini-
mizes crossings can have a “nugatory” crossing,

like the two highlighted below:
S @ L ( Q 3
N QL O &9
A diagram without nugatory crossings is called
reduced, whether or not it minimizes crossings.
Interestingly, if a knot K has a diagram D that
is reduced and alternating, then D always min-
imizes crossings: ¢(D) = ¢(K). Although this
fact was first observed empirically by P.G. Tait

AThis corresponds to the A-smoothed part of x being a Seifert state.



in 1898 [20], it and two related conjectures re-
mained unproven for almost a century:

Tait’s conjectures. Given two reduced alter-
nating diagrams D and D' of a knot K C S3:

(1) D and D" have the same number of cross-
ings, which is minimal: ¢(D) = ¢(D') =
c(K).

(2) D and D' have equal wm’theﬁ w(D) =
w(D').

(3) If D and D' are pm’meﬁ then they are re-
lated by a sequence of flype moves:

J — @lﬂ(@

Tait’s conjectures remained open until the
discovery of the Jones polynomial in the mid-
1980’s [10], which almost immediately led to
three independent proofs of Tait’s first conjec-
ture Jones polynomial of a knot K: the degree
span, or breadth, of Vi (t), denoted bth(Vk(t)),
always provides a lower bound for crossing num-
ber, ¢(K) < bth(Vk(t)), and any reduced al-
ternating diagram D of K satisfies ¢(D) =
bth(Vk (t));

Within a decade, the Jones polynomial had
led to proofs of all three of Tait’s conjectures.
Yet, these proofs were only somewhat satisfy-
ing: why did they work? What was the Jones
polynomial really measuring? In their 1993
proof of Tait’s flyping conjecture, Menasco and
Thistlethwaite spotlighted this remaining gap
in our understanding: “the question remains
open as to whether there exist purely geometric
proofs of this and other results that have been
obtained with the help of new polynomial in-
variants.” The aim is not just to know, but to
understand. I love that the mathematical com-
munity values this.

The first partial answer came in 2017 from
Greene in a paper where he answered another
longstanding question, this one from Ralph Fox:
“What [geometrically] is an alternating knot?”
First, Greene observed that, if B and W are the
checkerboard surfaces from an alternating knot
diagram and G'p and Gyy are their Goeritz ma-
trices, then Gpg is positive-definite and Gyy is
negative-definite, or vice-versa: “B and W are

5QOrient D arbitrarily. Then every crossing looks like JXor X. The writhe of D is w(D) =

5

definite and of opposite signs.’ﬂ Second, Greene
proved that alternating knots are the only ones
with a two such surfaces. In fact, he proved
that if Fy and F_ are definite spanning sur-
faces of opposite signs for the same knot K, then
K has an alternating diagram whose checker-
board surfaces are “the same as” (are isotopic
to) Fy and F_. Greene was then able to trans-
late Tait’s conjectures into non-diagrammatic
statements and give the first “purely geomet-
ric” proofs of Tait’s second conjecture and part
of his first: any reduced alternating diagrams D
and D’ of the same knot satisfy ¢(D) = ¢(D’)
and w(D) = w(D") ﬂSﬂﬁ

Recently, I gave the first purely geometric
proof of Tait’s “flyping” conjecture [K9]. The
first key insight was that flyping a diagram D
changes one of its checkerboard surfaces by iso-
topy and the other, F', by a geometric operation
I call re-plumbing,

- & &

which replaces a disk U C F (shown green,
left) with another disk V' (shown half yellow and
half blue, center) that is disjoint from F' except
along its boundary 0V = OU. Here is another
replumbing move:

=D~ 2D
My insight about flyping and re-plumbing
translates Tait’s diagrammatic conjecture to a
geometric statement about spanning surfaces.
Then the real work begins. That story is too
long for right now though.

Around the time I proved Tait’s flyping con-
jecture, Boden-Karimi extended Greene’s in-
sights about definite surfaces in S to the con-
text of thickened surfaces, like St x St x [—1,1]
[1]. T used their innovations to extend Tait’s
flyping conjecture to that context. Many of the
arguments adapted directly, but a few techni-
cal points required special attention. Some of
these subtleties led to fundamental revelations
about wvirtual knots, which correspond to knots

|| = |X|, where bars

count components. It is independent of the orientation on D.
6A knot diagram D is prime if, for every circle v C S? that intersects D generically in two points, all crossings of

D lie on the same side of .

"Gp € Z™™ is positive-definite if and only if Z¥GgZ > 0 for every nonzero ¥ € Z".

81t remains an open problem to give a purely geometric proof of Tait’s full first conjecture, since Greene’s insights
are less useful regarding the possibilities of non-alternating diagrams of an alternating knot. I have some ideas....



6

in thickened surfaces. This led to two further
spin-off projects.

In one paper [K10], I explained how there are
two common, but different, notions of prime-
ness for virtual knots, and likewise for their di-
agrams; I introduce a new tool called “lassos”
and proved how to use it to tell by inspection
whether or not the link it represents is prime in
either sense. It turns out that the virtual fly-
ping theorem holds for alternating virtual knot
diagrams that are prime in the weaker sense,
whether or not they are prime in the stronger
sense, and as a corollary, it follows that, given
any two non-classical alternating virtual knots,
there are infinitely many distinct ways to take
their connect sum:

==

The other paper [K11] considers a notion
of “essential” surfaces that is more restric-
tive usual. The initial motivation had to do
with implementing a familiar classical technique
(Menasco’s crossing bubbles) in a thickened sur-
face rather than in S3, but the results might also
prove useful in the study of Seifert solids for
knotted surfaces in 4-space, among other possi-
ble applications.

4. GENUS AND CROSSCAP NUMBER OF AN
ALTERNATING KNOT

4.1. Seifert matrix and Alexander polyno-
mial of a 2-sided surface. While every span-
ning surface F' has its Gordon-Litherland pair-
ing, when F'is a (2-sided) Seifert surface, there
is another pairing Hi(F') x Hi(F) — 7Z that
carries more information. This Seifert pairing is
represented by a Seifert matriz A, where A4 AT
is a Goeritz matrix for F', but with something
extra: the polynomial A (t) = det(A — tAT),
called the Alexander polynomial of F, de-
pends (up to degree shift) only on K. Moreover,
the degree span or breadth bth(Ag(t)), which
depends only on K, provides a lower bound for

9(K):

(1) bth(Ak (1)) < g(K).

4.2. The Crowell-Murasugi theorem. A
classical result proven independently in 1958-

59 by Crowell and Murasugi asserts conditions
under which equality holds in :

Theorem 4.1 (Crowell-Murasugi [2, [14]). If F
is a surface constructed via Seifert’s algorithm

from an alternating diagram D of a knot K,
then

9(F) = g(K)

In part, the Crowell-Murasugi theorem as-
serts that while, in general a Seifert surface re-
sulting from Seifert’s algorithm need not have
minimal genus, when Seifert’s algorithm is ap-
plied to an alternating diagram, the resulting
surface F' always has minimal genus: ¢(F) =
g(K). Gabai gave a short, elegant, purely geo-
metric, proof of this fact in 1986 [5]. The
Crowell-Murasugi theorem, however, had some-
thing extra about the Alexander polynomial.
When I taught a topics course at UNL in 2021,
I wanted to understand, and then share, why
this full result was true. This led me to discover
a new, short, extremely satisfying proof of the
Crowell-Murasugi theorem [K8]. It involves sev-
eral of my favorite characters: checkerboard sur-
faces, linear algebra, and plumbing or Murasugi
sum—a way of gluing two spanning surfaces Fj
and Fj along a disk U to obtain another span-
ning surface F' = Fy x Fy (there is one extra

1
= —bth(K).
S Uth()

condition); here is an example:

.‘**’ @

@

Here is a synopsis of my proof. First, to prove
that g(F) = g(K) = ibth(Ak(t)), I showed
that it suffices to prove that the Seifert matrix
A from F is invertible. Second, I showed that
this is true if F' happens to be a checkerboard
surface (from an alternating diagram). Third, it
turns out that the surfaces obtained via Seifert’s
algorithm from alternating diagrams are always
plumbings of alternating checkerboard surfaces,
so it suffices to prove that if F' is a plumb-
ing of surfaces F; and F, which have invertible
Seifert matrices A; and As, then I also has
an invertible Seifert matrix. Finally, I showed
that, indeed, F' has a Seifert matrix of the form

A= [’;131 Xg } ; applying the pigeonhole principle
to the formula det|a;]l; =

Zaesn Hz 1 o ()
thus confirms that det(A) = det(A;)-det(Az) #
0.

4.3. Unoriented genus of an alternating
knot. My first research project began in 2005,
at Williams’ REU, SMALL, where Colin Adams
and I generalized Seifert’s algorithm in order to
construct many spanning surfaces from a given
knot diagram. At the time, the construction
was new; the surfaces we constructed have since



become known as state surfaces. We solved
the geography problem in the alternating case:
given a knot K, the problem is to list all pairs
(s(F),P1(F)) realized by spanning surfaces F
for K. The geography problem remains open
for most classes of knots and is a fertile area for
future research. As an immediate corollary, our
classification gives the unoriented genus of any
alternating knot [K1]. Everything we did also
works for alternating links.

4.4. Average crosscap number of a 2-
bridge knot. A 2-bridge knot is a knot that
can be drawn with just two local maxima and
two local minima. There are rich correspon-
dences, via continued fractions, between these
knots and QN (—1,1) \ {0}. For example, the
Stevedore (61) knot is associated to the ratio-
nal number g, which can be represented as a
continued fraction in several ways, including
§: ! §: ! and§:1+ 21

9 1+1+%’9 - 9
4

=

The first (additive) representation describes K
via a braid diagram, while the second and third
(subtractive) ones describe 1- and 2-sided sur-
faces that K bounds. Something similar hap-
pens with each 2-bridge knot. My four coau-
thors and I used these three different types of
continued fraction representations to obtain a
formula for the average crosscap number of all
2-bridge knots with a given crossing number c.

5. OTHER PAPERS

Here are synopses of my those publications
and preprints that I have not yet mentioned,
roughly in reverse chronological order:

5.1. How essential is a spanning surface?
[K13]. A spanning surface F for a knot K C S3
is geometrically essential if it cannot be simpli-
fied by compression:

nor by kinking (see §2.2)), and F' is 7; -essential if
F is neither & nor & and the inclusion map
of the interior of F' into the knot complement
S$3 — K induces an injective map on fundamen-
tal groups. Essential surfaces are fundamental
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to our understanding of the topology and geom-
etry of 3-manifolds, but the two notions of “es-
sential” were rarely mentioned in the 20" cen-
tury, largely because they are equivalent for ori-
entable spanning surfaces. For example, Gabai
proved in 1983 that any plumbing of essential
Seifert surfaces is essential, no qualifier needed
[4]. In 2011, however, when Ozawa extended
Gabai’s result to all spanning surfaces, regard-
less of orientability, he needed to specify that
his surfaces were mi-essential [16]. The ques-
tion remained open whether plumbing likewise
respects the property of being geometrically es-
sential. My first main result answers this ques-
tion in the negative via this example:

The only hard part of the proof is showing that
the surface on the left is indeed geometrically
essential; I develop a new technique to do this.
The second main result extends Ozawa’s result
in another direction. T introduce a quantity that
measures “how essential” a spanning surface F'
is. I call it the essence of F, denoted ess(F);
F' is m-essential if and only if ess(F) > 2. 1
extend Ozawa’s theorem by proving that if F' is
a plumbing of mi-essential surfaces £} and Fb,
then ess(F') > min;—; 2 ess(F;).

5.2. Efficient multisections of odd-
dimensional tori [K7]. This is my one pa-
per, so far, that has nothing to do with knots.
Its main result is a construction regarding
piecewise-linear, or PL, manifolds, but most
of the hard work in the paper is combinato-
rial. In arbitrary odd dimension n = 2¢ — 1, 1
described a symmetric, efficient multisection
of the n-torus 7" = S' x --- x S! (n copies):
this is a decomposition into ¢ simple pieces
X, © € Z/VZ with the following intersection
property: for each I C Z,, the dimension and
complexity of X; = (1),c; X; depend only on |/
(namely, dim(X;) =n+1—|I|, and X can be
built from a ball of that dimension d by gluing
on “h-handles” B" x B%" along S"~! x B%"
for 1 <h < |I\)E| In particular, each X; is an
n-dimensional 1-handlebody, homeomorphic to
a “thickened up” wedge of some number, g, of
circlesﬂ g is called the genus of X;.

INotation: B" = {Z € R" : |# <1} and "' =9B" = {# e R" : |7 = 1}.
105 wedge of g circles is the space obtained from a disjoint union of g circles by choosing one point on each circle

and identifying the chosen points to a single point.



Rubinstein and Tillmann had introduced
multisections shortly before this [19], as a natu-
ral generalization of an important construction
in 3-, and more recently 4-dimensions [6]. They
proved that every PL manifold of arbitrary (fi-
nite) dimension has a multisection. Yet, their
construction tends to produce handlebodies of
very large genus, even for simple manifolds. By
contrast, the multisections that I constructed
for T" were efficient in the sense that each Xj;
has genus n, which I proved is minimal. Each
multisection is also symmetric with respect to
both the permutation action of .S,, on the indices
and the Z, translation action along the main di-
agonal. I also constructed a related trisection of
T4, lifted all symmetric multisections of tori to
certain cubulated manifolds, and obtained two
combinatorial identities as corollaries[]

5.3. Alternating links have representativ-
ity 2. [K4]. Gromov defined the distortion
5(7) of a rectifiable curve v C R3 by consid-
ering how many times farther apart two points
are along the curve than in space:

d(p,q)
( ) pacy dr3 (Pa Q)

Gromov asked whether knots have arbitrarily
large distortion [9]. To show that they do, Par-
don established a lower bound for distortion,
1606(L) > r(L), in terms of what is now called
the representativity of L [I8]:

r(L) = max min [0X NL|.
FeFr XEXp

Here, F7, is the set of positive genus closed sur-
faces containing L, and X is the set of com-
pressing disks for F. Ozawa computed the
representativity of certain pretzel links and all
torus and 2-bridge links, and conjectured that
alternating links have representativity 2 [17]. I
used Menasco’s crossing ball structures to con-
firm Ozawa’s conjecture:

Theorem 5.1. If L C S® is an alternating
link and F is a closed surface that contains L
(without crossings), then F' has a compressing
disk whose boundary intersects F' in at most two
points.

Hpor example, for any n = 2¢ — 1, we have

)2 ()5

ig=2 ig=4—19 i3=6—1i9—i1

5.4. Heegaard diagrams corresponding to
Turaev surfaces (with Cody Armond and
Nathan Druivenga) [K2]. One builds a Tu-
raev surface from a link diagram D on S? C
S3 by pushing the all-A and all-B states of D to
opposite sides of S?, joining them with a cobor-
dism whose saddle points occur precisely at the
crossings of D, and capping off each state circle
with a disk:

T g

Dasbach, Futer, Kalfagianni, Lee, and Stolzfus
showed that the resulting surface X is a Hee-
gaard surface for S3, on which D forms an alter-
nating diagram [3]. Our main theorem proved
a converse to this fact, providing a correspon-
dence between Turaev surfaces and certain link-
adapted Heegaard diagrams [K2].

6. CONCLUSION

If you would consider taking a closer look at
one or more of my research papers, I recommend
[K14], [K8], or [K9]. The first is of broadest
interest, the second is most readable, and the
third has garnered the most interest.

I have plans for many research projects in-
volving spanning surfaces which I have not de-
scribed in this statement. Most of these plans
would ideally involve students at either the un-
dergraduate or graduate level. I would be de-
lighted to describe any of these specifically if 1
am so fortunate as to be invited to interview
with you, but here is a rough overview of some
of my near-term research plans:

Some plans involve translating insights and
questions about surfaces into purely linearly al-
gebraic problems, like the approach I took with
John and my co-advisors in [K14]. Some involve
translating diagrammatic questions into ques-
tions about spanning surfaces, like the approach
I took in [K9]. Some, like [K9, K8, [K13], involve
Murasugi sums of spanning surfaces. Some, like
my current project with Tristan, apply knot the-
ory to the natural and physical sciences. Some,
like [K5] and my current project with Isaias, are
computational. Some, like [K3| K12, K10, K11],
involve Khovanov homology or virtual knots.

nfzeisi'
i ) j=0"% 0—3 .
n—i—i1| Z n_Zj:OZj

. . b

12 le—1

. 0—3
1272:257272],=0 ij

which also equals the number of spanning trees| of the complete bipartite graph Ky, [15].


https://oeis.org/A068087

One will require techniques from computa-
tional geometry. I would like, in the next few
years, to teach a course in this subject and then
advise a student on this problem. Hopefully,
this experience would open doors to further re-
search in computational geometry, which would
not necessarily have anything to do with knots.

All of the plans I just described, however,
pertain to knots and surfaces in three dimen-
sions, but my most important aspiration as a
researcher is to continue to broaden my mathe-
matical reach. As noted above, computational
geometry and applications to the sciences are
two of the areas into which I plan to extend my
research. I want to conclude by discussing one
more such area: higher dimensions, especially
dimension four.

After T finished [KT7], several questions have
lingered with me about the distinctions between
the PL and smooth categories. In dimensions
four and below, the smooth and PL categories
are equivalent, but Milnor’s exotic 7-spheres re-
veal that “by” dimension seven they are dis-
tinct. Are they distinct in dimension six? Five?
In particular, both PL structures and smooth
structures give rise to handle decompositions,
for which the PL and smooth types are distin-
guished by the nature of their attaching maps.
It might be interesting to find examples PL han-
dle decompositions that are not smoothable and
use them to develop obstructions to smootha-
bility, and then use these obstructions to exam-
ine characterize (specifically) how the PL and
smooth categories do or do not differ in, say,
dimensions five through seven.

Whereas the biggest problem in 3-
dimensional topology was solved two decades
ago, the biggest problems in 4-dimensional
topology—in the PL/smooth category—remain
wide open: e.g. the (smooth 4-dimensional)
Poincare conjecture, the Schoenflies problem
(does every smooth 3-sphere in S* bound a
smoothly embedded 4-ball?), the slice-ribbon
conjecture, does any nontrivially knotted sur-
face S C S* have 71 (S*\ S) = Z?

This past summer, after six years of trying,
I finally connected with a great 4-manifolds re-
search project. What makes it great, first and
foremost, is my collaborators: Maggie Miller,
Seungwon Kim, Patrick Naylor, and Homayun
Karimi. They all have greater 4-manifolds ex-
pertise than I do, but in our meetings they gen-
erously encourage my naive questions. The sec-
ond factor that makes this project a great fit
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for me is what I bring to it: I suggested the
research question—can we adapt Murasugi sum
(plumbing) to an operation on spanning solids
for knotted surfaces in 4-space?’—and my naive
questions often lead useful places, because many
phenomena, facts, and arguments in dimension
3 translate to dimension 4, but with a caveat or
two per sentence. Our whole project aims, in a
nutshell, to take my usual research perspective
and bump it up a dimension.

A constant concern for the project, then, is to
stay sufficiently narrow in our inquiry. To this
point, my vantage point has allowed me to an-
ticipate the risk of our inquiry sprawling and to
suggest specific delimitations for our conversa-
tion. For example, one of our aims is to use our
adapted notion of Murasugi sum to construct
many new examples of knotted surfaces. This
would add value to the field because most knot-
ted surfaces to date have been constructed by
“deformed” versions of a certain spinning con-
struction, and this lack of diversity reduces the
usefulness of empirical approaches. Yet, “many
new examples” is an amorphous goal, so I sug-
gested a refinement: adapt the classical notion
of “arborescent” knots to knotted surfaces. This
narrowing of the problem has helped focus our
exploration. I hope that it also helps us draw a
circle around a cohesive set of ideas for a first
paper, sooner rather than later, because the
overall ambitions of our exploration are vast.

I have found that almost every aspect of clas-
sical knot theory can be understood from the
perspective of spanning surfaces, and this per-
spective has already, several times in my young
career, led to fundamental insights regarding
well-trodden material. My hope is that study-
ing knotted surfaces in 4-space from the per-
spective of their spanning solids might prove
similarly fruitful. In any case, it seems like
a promising long-term strategy in my research
program.

My main strategy, though, is much more ba-
sic. Stay curious. Ask questions, especially
naive ones. Listen closely and connect with
other humans. Pursue interesting questions,
knowing that there are two good ways to rec-
ognize them—one comes from the inside and is
borne from experience, while the other is more
fundamental: a question is interesting if some-
one else thinks about it deeply and finds it cap-
tivating.
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