The Water We Drink

LAKESHORE SWARTZ WATER SYSTEM

Public Water Supply ID: LA1073071

We are pleased to present to you the Annual Water Quality Report for the year 2019. This report is designed to inform you about the quality of your water and services we deliver to you every day (Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien). Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water.

Our water system purchases water as listed below:

Buyer Name	Seller Name
LAKESHORE SWARTZ WATER SYSTEM	MONROE WATER SYSTEM

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include:

<u>Microbial Contaminants</u> - such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

<u>Inorganic Contaminants</u> - such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming.

Pesticides and Herbicides - which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.

<u>Organic Chemical Contaminants</u> – including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems.

Radioactive Contaminants – which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration regulations establish limits for contaminants in bottled water which must provide the same protection for public health. We want our valued customers to be informed about their water utility. If you have any questions about this report, want to attend any scheduled meetings, or simply want to learn more about your drinking water, please contact the office at 318-322-3741.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. LAKESHORE SWARTZ WATER SYSTEM is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested.

Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at <u>http://www.epa.gov/safewater/lead</u>.

The Louisiana Department of Health routinely monitors for constituents in your drinking water according to Federal and State laws. The tables that follow show the results of our monitoring during the period of January 1st to December 31st, 2019. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk.

In the tables below, you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms, we've provided the following definitions:

Parts per million (ppm) or Milligrams per liter (mg/L) – one part per million corresponds to one minute in two years or a single penny in \$10,000.

Parts per billion (ppb) or Micrograms per liter (ug/L) – one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.

Picocuries per liter (pCi/L) – picocuries per liter is a measure of the radioactivity in water.

<u>Nephelometric Turbidity Unit (NTU)</u> – nephelometric turbidity unit is a measure of the clarity of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

<u>Treatment Technique (TT)</u> – an enforceable procedure or level of technological performance which public water systems must follow to ensure control of a contaminant.

Action level (AL) – the concentration of a contaminant that, if exceeded, triggers treatment or other requirements that a water system must follow.

<u>Maximum contaminant level (MCL)</u> - the "Maximum Allowed" MCL is the highest level of a contaminant that is allowed in drinking water. MCL's are set as close to the MCLG's as feasible using the best available treatment technology.

<u>Maximum contaminant level goal (MCLG)</u> – the "Goal" is the level of a contaminant in drinking water below which there is no known or expected risk to human health. MCLG's allow for a margin of safety.

<u>Maximum residual disinfectant level (MRDL)</u> – The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

<u>Maximum residual disinfectant level goal (MRDLG)</u> – The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Level 1 assessment – A study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment – A very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

During the period covered by this report we had below noted violations of drinking water regulations.

Compliance Period	Analyte	Туре
1/1/2019 - 3/31/2019	TOTAL HALOACETIC ACIDS (HAA5)	MCL, LRAA
4/1/2019 - 6/30/2019	TOTAL HALOACETIC ACIDS (HAA5)	MCL, LRAA
4/1/2019 - 6/30/2019	TOTAL HALOACETIC ACIDS (HAA5)	MCL, LRAA
4/1/2019 - 6/30/2019	TOTAL HALOACETIC ACIDS (HAA5)	MCL, LRAA
7/1/2019 - 9/30/2019	TOTAL HALOACETIC ACIDS (HAA5)	MCL, LRAA
7/1/2019 - 9/30/2019	TOTAL HALOACETIC ACIDS (HAA5)	MCL, LRAA
7/1/2019 - 9/30/2019	TOTAL HALOACETIC ACIDS (HAA5)	MCL, LRAA
7/1/2019 - 9/30/2019	TOTAL HALOACETIC ACIDS (HAA5)	MCL, LRAA
10/1/2019 - 12/31/2019	TOTAL HALOACETIC ACIDS (HAA5)	MCL, LRAA
10/1/2019 - 12/31/2019	TOTAL HALOACETIC ACIDS (HAA5)	MCL, LRAA

10/1/2019 - 12/31/2019	TOTAL HALOACETIC ACIDS (HAA5)	MCL, LRAA
10/1/2019 - 12/31/2019	TOTAL HALOACETIC ACIDS (HAA5)	MCL, LRAA

Our water system tested a minimum of 10 samples per month in accordance with the Total Coliform Rule for microbiological contaminants. With the microbiological samples collected, the water system collects disinfectant residuals to ensure control of microbial growth.

Disinfectant	Date	Highest RAA	Unit	Range	MRDL	MRDLG	Typical Source
CHLORAMINE	2019	1.9	ppm	0.33 - 3.4	4	4	Water additive used to control microbes.

In the tables below, we have shown the regulated contaminants that were detected. Chemical Sampling of our drinking water may not be required on an annual basis; therefore, information provided in this table refers back to the latest year of chemical sampling results.

Regulated Contaminants	Collection Date	Water System	Highest Value	Range	Unit	MCL	MCLG	Typical Source
ARSENIC	1/14/201 9	MONROE WATER SYSTEM	0.68	0.68	ppb	10	0	Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production wastes
ATRAZINE	7/31/201 9	MONROE WATER SYSTEM	0.34	0.31 - 0.34	ppb	3	3	Runoff from herbicide used on row crops
BARIUM	1/14/201 9	MONROE WATER SYSTEM	0.017	0.017	ppm	2	2	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits
FLUORIDE	1/14/201 9	MONROE WATER SYSTEM	0.051	0.051	ppm	4	4	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories
GROSS BETA PARTICLE ACTIVITY	1/14/201 9	MONROE WATER SYSTEM	2.64	2.64	pCi/l	50	0	Decay of natural and man-made deposits. Note: The gross beta particle activity MCL is 4 millirems/year annual dose equivalent to the total body or any internal organ. 50 pCi/L is used as a screening level.
HEXACHLOROCYC LOPENTADIENE	1/14/201 9	MONROE WATER SYSTEM	0.067	0 - 0.067	ppb	50	50	Discharge from chemical factories
NITRATE-NITRITE	1/14/201 9	MONROE WATER SYSTEM	0.1	0.1	ppm	10	10	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits

Lead and Copper	Date	90 TH Percentile	Range	Unit	AL	Sites Over AL	Typical Source
COPPER, FREE	2017 - 2019	0.3	0 - 0.4	ppm	1.3	0	Corrosion of household plumbing systems; Erosion of natural deposits; Leaching from wood preservatives
LEAD	2017 - 2019	1	0 - 17	ppb	15	1	Corrosion of household plumbing systems; Erosion of natural deposits

Disinfection Byproducts	Sample Point	Period	Highest LRAA	Range	Unit	MCL	MCLG	Typical Source
TOTAL HALOACETIC ACIDS (HAA5)	231 OLDS LN	2019	79	24.3 - 97.4	ppb	60	0	By-product of drinking water disinfection
TOTAL HALOACETIC ACIDS (HAA5)	96 WHIPPOORWILL DR	2019	75	33.8 - 99	ppb	60	0	By-product of drinking water disinfection
TOTAL HALOACETIC ACIDS (HAA5)	MCCAIN AND BALBOA	2019	64	18.9 - 88.7	ppb	60	0	By-product of drinking water disinfection
TOTAL HALOACETIC ACIDS (HAA5)	TOWN E DR	2019	74	39 - 95.4	ppb	60	0	By-product of drinking water disinfection

TTHM	231 OLDS LN	2019	58	46 - 67.5	ppb	80	0	By-product of drinking water chlorination
ттнм	96 WHIPPOORWILL DR	2019	51	47.4 - 57	ppb	80	0	By-product of drinking water chlorination
ттнм	MCCAIN AND BALBOA	2019	45	12.2 - 62	ppb	80	0	By-product of drinking water chlorination
ттнм	TOWN E DR	2019	47	30.9 - 53.1	ppb	80	0	By-product of drinking water chlorination

Secondary Contaminants	Collection Date	Water System	Highest Value	Range	Unit	SMCL
ALUMINUM	1/14/2019	MONROE WATER SYSTEM	0.59	0.59	MG /L	0.2
CHLORIDE	1/11/2016	MONROE WATER SYSTEM	12.7	12.7	MG /L	250
MANGANESE	1/14/2019	MONROE WATER SYSTEM	0.044	0.044	MG /L	0.05
РН	1/14/2019	MONROE WATER SYSTEM	7.9	7.9	PH	8.5
SULFATE	1/11/2016	MONROE WATER SYSTEM	23.2	23.2	MG /L	250
ZINC	1/14/2019	MONROE WATER SYSTEM	0.079	0.079	MG /L	5

Unregulated Contaminants	Collection Date	Average Concentration	Range	Unit
Germanium	7/02/2019; 10/02/2019	<0.300	<0.300	ug/L
Manganese	7/02/2019; 10/02/2019	60.63	40.7-83.6	ug/L
1-Butanol	7/02/2019; 10/02/2019	<2.00	<2.00	ug/L
2-Methoxyethanol	7/02/2019; 10/02/2019	<0.400	<0.400	ug/L
2-Propen-1-ol	7/02/2019; 10/02/2019	<0.500	<0.500	ug/L
Bromochloroacetic acid	7/02/2019; 10/02/2019	5.85	2.70-7.77	ug/L
Bromodichloroacetic acid	7/02/2019; 10/02/2019	3.19	0.957-6.03	ug/L
Chlorodibromoacetic acid	7/02/2019; 10/02/2019	0.183	<0.300-0.544	ug/L
Dibromoacetic acid	7/02/2019; 10/02/2019	0.320	<0.300-0.652	ug/L
Dichloroacetic acid	7/02/2019; 10/02/2019	45.58	12.9-77.9	ug/L
Monobromoacetic acid	7/02/2019; 10/02/2019	<0.300	<0.300-0.632	ug/L
Monochloroacetic acid	7/02/2019; 10/02/2019	4.40	<2.00-11.6	ug/L
Tribromoacetic acid	7/02/2019; 10/02/2019	<2.00	<2.00	ug/L
Trichloroacetic acid	7/02/2019; 10/02/2019	24.61	7.49-50.7	ug/L

Butylated hydroyanisole	7/02/2019;	<0.030	<0.030	ug/L
	10/02/2019			
o-Toluidine	7/02/2019;	<0.00700	<0.00700	ug/L
	10/02/2019			
Quinoline	7/02/2019;	<0.0200	<0.0200	ug/L
	10/02/2019			
alpha-Hexachlorocyclohexane	7/02/2019;	<0.0100	<0.0100	ug/L
	10/02/2019			
Chlorpyrifos	7/02/2019;	<0.0300	<0.0300	ug/L
	10/02/2019			
Dimethipin	7/02/2019;	<0.200	<0.200	ug/L
	10/02/2019			
Ethoprop	7/02/2019;	<0.0300	<0.0300	ug/L
	10/02/2019			
Oxyfluorfen	7/02/2019;	<0.0500	<0.0500	ug/L
	10/02/2019			
Profenofos	7/02/2019;	<0.300	<0.300	ug/L
	10/02/2019			
Tebuconazole	7/02/2019;	<0.200	<0.200	ug/L
	10/02/2019			
Permethrin, cis & trans	7/02/2019;	<0.0400	<0.0400	ug/L
	10/02/2019			
Tribufos	7/02/2019;	<0.0700	<0.0700	ug/L
	10/02/2019			
Anatoxin-a	7/02/2019;	<0.0300	<0.0300	ug/L
	8/05/2019;			
	9/03/2019;			
	10/02/2019			
Cylindrospermopsin	7/02/2019;	<0.0900	<0.0900	ug/L
	8/05/2019;			
	9/03/2019;			
	10/02/2019			
Total Microcystins & Nodularins	7/02/2019;	<0.300	<0.300	ug/L
	8/05/2019;			
	9/03/2019;			
	10/02/2019			
Percent CV	7/02/2019;	1.92	0.100-5.10	%
	8/05/2019;			
	9/03/2019;			
	10/02/2019			

Additional Required Health Effects Language:

Some people who drink water containing haloacetic acids in excess of the MCL over many years may have an increased risk of getting cancer.

There are no additional required health effects violation notices.

Thank you for allowing us to continue providing your family with clean, quality water this year. In order to maintain a safe and dependable water supply we sometimes need to make improvements that will benefit all of our customers.

We at the LAKESHORE SWARTZ WATER SYSTEM work around the clock to provide top quality drinking water to every tap. We ask that all our customers help us protect and conserve our water sources, which are the heart of our community, our way of life, and our children's future. Please call our office if you have questions.