1MA1 Practice papers Set 6: Paper 1H (Regular) mark scheme – Version 1.0						
stion	Working	Answer	Mark	Notes		
			2	M1 for correct intersecting arcs		
				A1 for correct angle bisector		
	P: T: B = 1: 3: 6	32.40	3	M1 for 1 : 3 : 6 or any three numbers in the ratio 1:3:6 in any		
	$54\div10\times6$			order		
				M1 for $54 \div (1 + 3 + 6) \times 6$		
	OR			A1 for 32.4(0)		
				Alternative:		
	e.g.			M1 for 1: 3: 6 oe or P + 3P + 6P (=10P) oe,		
	T = 3P			e.g. $T/3 + T + 2T$ (=10T/3) or		
	B = 2T			e.g. $B/6 + B/2 + B$ (=10B/6) or 5.4(0) or 16.2(0) seen		
	So, $B = 2(3P) = 6P$			$\frac{\div' 10}{10}$		
	P+T+B=P+3P+6P=10P			M1 for $54 \div 10 \times 6$ or $[54 \ 3^{*}] \times 2$		
	$\mathbf{D} = 54 \cdot 10 = 65 \cdot 40$			$\frac{+^{\beta} 10}{-1}$		
	$P = 54 \div 10 = \pm 5.40$			or 54 6 oe		
	$\mathbf{B} = 6 \times \pounds 5.40$			A1 for 32.4(0)		
				OR		
				M1 for a partial decomposition of £54 in ratio 1:3:6, e.g. (£)5 +(£)15 + (£)30 (=(£)50)		
				M1 for a decomposition of the remaining amount in ratio 1:3:6, e.g. $40(p) + 120(p) + 240$ (=400(p))		
				A1 for 32.4(0)		
	stion	IMA1 Pradimeter sstion Working P: T: B = 1: 3: 6 54:10 × 6 P: T: B = 1: 3: 6 54:10 × 6 OR 6 e.g. T = 3P B = 2T So, B = 2(3P) = 6P P+T+B=P+3P+6P=10P P = 54:10 = £5.40 B = 6 × £5.40 B = 6 × £5.40	IMA1 Practice papers Set 6: Papers stion Working Answer stion P: T: B = 1: 3: 6 32.40 $54 \div 10 \times 6$ S4 32.40 6 OR S4 e.g. T = 3P So, B = 2(3P) = 6P P+T+B=P+3P+6P=10P P = 54 \div 10 = £5.40 S = 6 × £5.40	IMA1 Practice papers Set 6: Paper 1H (Romestion stion Working Answer Mark 2 2 2 2 2 2 2 2 1 P: T: B = 1: 3: 6 32.40 3 3 54÷10 × 6 3 0 R e.g. R a		

		1MA1 Pra	ctice papers Set 6: Pap	er 1H (R	egular) mark scheme – Version 1.0
Que	stion	Working	Answer	Mark	Notes
3			graph	3	(Table of values)
		x -2 -1 0 1 2 3 4 5			M1 for at least 2 correct attempts to find points
		y 6 5 4 3 2 1 0 -1			by substituting values of x
					M1 ft for plotting at least 2 of their points
					(any points plotted from their table
					must be correct)
					A1 for correct line between $x = -2$ and $x = 5$
					or
					(No table of values)
					M2 for at least 2 correct points (and no incorrect
					points) plotted
					or line segment of $x + y = 4$ drawn
					(ignore any additional incorrect segments)
					(M1 for at least 3 correct points plotted with
					no more than 2 incorrect)
					A1 for correct line between $x = -2$ and $x = 5$
					or
					(Use of $y = \mathbf{m}x + \mathbf{c}$)
					M2 for at least 2 correct points (and no
					incorrect points) plotted

		1MA1 Pra	ctice papers Set 6: Pap	er 1H (R	egular) mark scheme – Version 1.0
Que	stion	Working	Answer	Mark	Notes
					(M1 for $y = 4 - x$ or line drawn with
					gradient of -1 or line drawn with a y
					intercept of 4 and a negative gradient)
					A1 for correct line between $x = -2$ and $x = 5$
4			Proof	4	M1 for setting up a correct equation in <i>x</i> ,
					eg. $3x - 2 = x + 1$
					M1 (dep) for a fully correct method to solve their equation or for $x = 1.5$
					M1 (dep) for ("1.5" + 1) × 4 or $(3 \times "1.5" - 2) \times 4$
					or $(3 \times "1.5" - 2) \times 2 + ("1.5" + 1) \times 2$
					C1 (dep on M3) for completing the proof resulting in a perimeter of 10
					OR
					M1 for setting up a correct equation in <i>x</i> ,
					eg. $2(3x-2) + 2(x+1) = 10$
					M1 (dep) for a fully correct method to solve their equation or for $x = 1.5$
					M1 (dep) for "1.5" + 1 and $3 \times$ "1.5" - 2
					C1 (dep on M3) for completing the proof resulting in a justification that the shape is a square

	1MA1 Practice papers Set 6: Paper 1H (Regular) mark scheme – Version 1.0						
Que	stion	Working	Answer	Mark	Notes		
5			9	4	M1 for method to find area of one rectangle,		
					eg 15 × 8 (=120) or 15 × 11 (=165)		
					M1 (dep) for subtracting from/by given area,		
					eg (138 – "120") (=18) or "165" – 138 (=27)		
					M1 for final step from complete method shown,		
					eg 15 – "18"÷ 3 or "27" ÷ 3		
					A1 cao		
					OR		
					M1 for a correct expression for the area of one rectangle,		
					eg $(8+3) \times (15-x)$ or $8 \times x$		
					M1 (dep) for a correct equation		
					eg $(8+3) \times (15-x) + 8 \times x = 138$		
					M1 for correct method to isolate <i>x</i> , eg $3x = 27$		
					A1 cao		

	1MA1 Practice papers Set 6: Paper 1H (Regular) mark scheme – Version 1.0					
Que	estion	Working	Answer	Mark	Notes	
6		$\frac{40000}{125} = \frac{8000}{25} = 320$ seconds	320	3	M1 for 40×1000 or $125 \div 1000$ or 40000 or 0.125 M1 for $\frac{40000'}{125}$ or $\frac{40}{0.125}$, A1 cao	
					OR	
					M1 for 1000 ÷ 125	
					M1 for '8' \times 40	
					A1 cao	

1MA1 Practice papers Set 6: Paper					egular) mark scheme – Version 1.0
Que	stion	Working	Answer	Mark	Notes
7	(a)	$\frac{8}{20} + \frac{5}{20}$	$\frac{13}{20}$		M1 for both fractions expressed with a suitable common denominator (multiple of 20) and at least one of the two fractions
	(b)	$\frac{25}{8} \times \frac{12}{5}$	$\frac{15}{2}$		correct A1 for $\frac{13}{20}$ oe or M1 for 0.4 + 0.25 A1 for 0.65 or M1 for table structure, all cells correct A1 for 13/20 oe M1 for a correct method to convert to improper fractions or $\frac{(3 \times 8 + 1)}{8}$ M1 (dep) for A1 for or $\frac{15}{2}$ or 7.5
					(SC: B2 for 7.5)

	1MA1 Practice papers Set 6: Paper 1H (Regular) mark scheme – Version 1.0							
Qu	estion	Working	Answer	Mark	Notes			
8	(a)	$\frac{3}{2+3+5}$	$\frac{3}{10}$	2	M1 for $\frac{3}{2+3+5}$ A1 for $\frac{3}{10}$ oe			
	(b)	$60 \div 5 = 12$ $12 \times 2 =$	24	3	10 M1 for $60 \div 5$ M1 for "12" $\times 2$ A1 for 24 cao			
		Alternative: Total sum = $60 \times 2 = 120$ Lillian = $\frac{2}{10}$ of $120 =$ $120 \times 2 \div 10$			Alternative: M1 for 60 × 2 = 120 seen M1 for 120 × 2 ÷ 10 A1 cao SC: B2 for 24, 36 and 60 SC: B1 for 36 on answer line			

	1MA1 Practice papers Set 6: Paper 1H (Regular) mark scheme – Version 1.0							
Que	estion	Working	Answer	Mark	Notes			
9	(a)	11 + 3 = 6y + 4y $14 = 10y$	1.4	2	M1 for collecting the y terms or the numbers on one side of equation, eg 11 = $6y - 3 + 4y$ or $11 - 4y + 3 = 6y$ A1 for 1.4 or $\frac{14}{10}$ oe			
	(b)	(x-8)(x+5)	8, -5	3	M2 for $(x - 8)(x + 5)$ (M1 for $(x \pm 8)(x \pm 5)$ A1 cao 8 and -5			
		OR			OR			
		$\frac{-(-3) \pm \sqrt{(-3)^2 - 4 \times 1 \times -40}}{2 \times 1}$			M1 for correct substitution in formula of $a = 1, b = \pm 3$ and $c = \pm 40$			
		$\frac{3 \pm \sqrt{169}}{2} = \frac{3 \pm 13}{2}$			M1 for reduction to $\frac{3 \pm \sqrt{169}}{2}$ A1 cao 8 and -5			

		1MA1 Pra	ctice papers Set 6: Pap	er 1H (Re	egular) mark scheme – Version 1.0
Que	stion	Working	Answer	Mark	Notes
10		$\left(\frac{6}{11} \times \frac{2}{10}\right) + \left(\frac{2}{11} \times \frac{6}{10}\right)$ $= \frac{12}{110} + \frac{12}{110}$	<u>24</u> 110	4	B1 for $\frac{2}{10}$ or $\frac{6}{10}$ oe seen as the 2 nd probability M1 for $(\frac{6}{11} \times \frac{2}{10})$ or $(\frac{2}{11} \times \frac{6}{10})$ oe M1 for $(\frac{6}{11} \times \frac{2}{10}) + (\frac{2}{11} \times \frac{6}{10})$ o.e. A1 for $\frac{24}{110}$ oe
					Tree diagram method B1 for $\frac{2}{10}$ or $\frac{6}{10}$ oe seen as the 2 nd probability M1 for $(\frac{6}{11} \times \frac{2}{10})$ or $(\frac{2}{11} \times \frac{6}{10})$ oe M1 for $(\frac{6}{11} \times \frac{2}{10}) + (\frac{2}{11} \times \frac{6}{10})$ oe A1 for $\frac{24}{110}$ oe

		1MA1 Pra	egular) mark scheme – Version 1.0		
Que	stion	Working	Answer	Mark	Notes
					Alternative scheme for replacement B0 for $\frac{6}{11}$ or $\frac{2}{11}$ seen as the 2 nd probability M1 for $(\frac{6}{11} \times \frac{2}{11})$ or $(\frac{2}{11} \times \frac{6}{11})$ oe M1 for $(\frac{6}{11} \times \frac{2}{11}) + (\frac{2}{11} \times \frac{6}{11})$ oe A0 for $\frac{24}{121}$ Special Cases SC: Award B2 for $\frac{24}{121}$ or $\frac{10}{110}$ oe or $\frac{20}{110}$ oe SC: Award B1 for $\frac{10}{121}$ or $\frac{20}{121}$
11		180 <i>- x</i>	$\frac{180 - x}{2}$ Or $90 - \frac{x}{2}$	2	M1 for $180 - x$ seen (eg $180 - x \div 2$) A1 correct expression

	1MA1 Practice papers Set 6: Paper 1H (Regular) mark scheme – Version 1.0								
Que	stion	Worl	king	Answer	Mark	Notes			
12	(a)			3	1	B1 for 3 (accept ± 3 , but not -3 alone)			
	(b)			$\frac{1}{2}$	1	B1 for $\frac{1}{2}$ (= 0.5)			
	(c)			4	1	B1 cao			
	(d)			6	3	M1 for using $8 = 2^3$			
						M1 for deriving a correct equation in m			
						A1 cao			
13		Boys	Girls	Comparison of	4	B1 for correct median for girls or boys			
		Median: 115	112	data		B1 for any correct range or IQR			
		Range: 41	33			C1 for a correct comparison of the medians			
		IQR: 17	9			C1 ft for a correct comparison of the ranges or IQRs			
						For the award of both C marks at least one of the comparisons made must be in the context of the question and all figures used for comparisons correct.			
						OR			
						B2 for an accurately drawn boxplot (superimposed)			
						C1 for a correct comparison of the medians			
						C1 for a correct comparison of the ranges or IQRs			
						For the award of both C marks at least one of the comparisons made must be in the context of the question			

	1MA1 Practice papers Set 6: Paper 1H (Regular) mark scheme – Version 1.0							
Question		Working	Answer	Mark	Notes			
14	(a)		820 000	1	B1 cao			
	(b)		$3.76 imes 10^{-4}$	1	B1 cao			
	(c)		$5 imes 10^8$	2	M1 for $2.3 \div 4.6 \times 10^{12-3}$ oe or 500 000 000 or 0.5×10^9			
					A1 cao (accept 5.0×10^8			
15			$\frac{3\mathbf{b}-\mathbf{c}}{\mathbf{c}}$	4	M1 for $\overrightarrow{CD} = \overrightarrow{CO} + \overrightarrow{OB} + \overrightarrow{BD}$			
			4		M1 (indep) for $\overrightarrow{CO} + \overrightarrow{OB} = -\mathbf{c} + \mathbf{b}$			
					or $\overrightarrow{BA} = -\mathbf{b} + 3\mathbf{c}$			
					M1 for $-c + b + \frac{1}{4}(-b + 3c)$			
					A1 for $\frac{3\mathbf{b}-\mathbf{c}}{4}$			
					OR			
					M1 for $\overrightarrow{CD} = \overrightarrow{CA} + \overrightarrow{AD}$			
					M1 (indep) for $\overrightarrow{CA} = 2\mathbf{c}$ or $\overrightarrow{AB} = -3\mathbf{c} + \mathbf{b}$			
					M1 for $2c + \frac{3}{4}(-3c + b)$			
					A1 for $\frac{3\mathbf{b}-\mathbf{c}}{4}$			
16	(a)	1-0.3	0.7	1	B1 0.7 oe			
	(b)	0.3 + 0.5	0.8	1	B1 0.8 oe			
	(c)	0.2 imes 0.4 = 0.08	Not independent	2	M1 for 0.2×0.4 (= 0.08)			

1MA1 Practice papers Set 6: Paper 1H (Regular) mark scheme – Version 1.0								
Que	estion Working	Answer	Mark	Notes				
	$0.08 \neq 0.06$	with reason		C1 for 0.08 and stating events not independent				
17	$\frac{(2x-1)(x+5)}{(2x-1)(3x-1)}$	$\frac{x+5}{3x-1}$	3	M1 for factorizing the numerator correctly M1 for factorizing the denominator correctly A1 for $\frac{x+5}{3x-1}$				
18	$ACB = 90^{\circ}$ angle in a semi circle $CBD = 180 - ACB$ co- interior angles add to 180° $CBD = 90^{\circ}$ $DCB = CDB =$ $(180^{\circ} - 90^{\circ}) \div 2$ base angles of an isosceles triangles	45	4	 B1 ACB = 90 (could be on the diagram) or 45 seen in a correct position on the diagram B1 answer of 45 B1 angle in a <u>semicircle</u> = 90 B1 base angles <u>isosceles</u> triangle are equal or <u>alternate angles</u> are equal 				
19		E, B, F, C, D, A	3	B3 all correct (B2 4,5 correct) (B1 2 or 3 correct)				
20	$3-\sqrt{2}+3\sqrt{2}-\sqrt{2}\sqrt{2}$	$1+2\sqrt{2}$	2	M1 for 4 terms correct ignoring signs or 3 out of no more than 4 terms correct A1 cao				

1MA1 practice paper 1H (Set 6) mark scheme: Version 1.0

1MA1 Practice papers Set 6: Paper 1H (Regular) mark scheme – Version 1.0										
Que	stion	Working	Answer Mark		Notes					
21	(a)	$(a+1)^2 = a^2 + 2a + 1$	Correctly shown	2	M1 for $(a+1)^2 = a^2 + 2a + 1$ or $a^2 + a + a + 1$ (Expansion must					
		$\neq a^2 + 1$			be correct but may not be simplified)					
		OR			A1 for statement that $a^2 + 2a + 1 \neq a^2 + 1$ (eg. they are different)					
		Pick any non-zero value of								
		<i>a</i> and show that LHS \neq			OR					
		KHS			M1 for correct substitution of any integer into both expressions					
		OR			eg. $(2+1)^2$ and 2^2+1					
		$(a+1)^2 = a^2 + 2a + 1$			A1 for correct evaluation of both expressions and statement th					
		Solves $a^2 + 2a + 1 - a^2 + 1$			they are not equal (eg. they are different)					
		to get $a = 0$ and indicates a			OR					
		contradiction			M1 $(a+1)^2 = a^2 + 2a + 1$ or $a^2 + a + a + 1$					
					A1 Solves $a^2 + 2a + 1 = a^2 + 1$ to get $a = 0$ and indicates a contradiction					
	(b)	$a^{2} + 2a + 1 + b^{2} + 2b + 1 = c^{2}$	AG	3	M1 use of Pythagoras in either triangle – one of					
					$a^{2} + b^{2} = c^{2}$ or $(a + 1)^{2} + (b + 1)^{2} = (c + 1)^{2}$					
		But $a^2 + b^2 = c^2$			A1 $a^2 + 2a + 1 + b^2 + 2b + 1 = c^2 + 2c + 1$ and $a^2 + b^2 = c^2$					
		So $2a + 2b + 1 = 2c$			A1 $2a + 2b + 1 = 2c$					
	(c)	LHS is odd, RHS is even	Explanation	1	B1 eg. LHS is odd, RHS is even or one side is odd and the other side is even oe					

National performance data from Results Plus

	Original source of questions						Mean score of students achieving grade:							
			Session			Max								
Qn	Spec	Paper	YYMM	Qn	Торіс	score	ALL	A *	Α	В	С	D	Е	
1	2540	1F	0811	Q25	Constructions	2	0.15				0.36	0.12	0.05	
2	1380	1F	1106	Q27	Ratio	3	0.27				0.75	0.29	0.10	
3	1380	1F	1011	Q21	Graphs of linear equations	3	0.59				1.45	0.48	0.12	
4	5MM1	1H	1411	Q09	Solve linear equations	4	2.07	3.57	2.93	2.47	1.52	0.77	0.20	
5	1MA0	1H	1411	Q07	Perimeter and area	4	1.38	3.85	3.56	2.93	1.51	0.68	0.29	
6	1380	1H	906	Q10	Compound measures	3	2.20	2.86	2.57	2.20	1.88	1.49	0.99	
7	5MM1	1H	1311	Q13	Fractions	5	2.87	4.72	4.20	3.32	2.20	0.93	0.12	
8	1387	31	0711	Q13	Ratio	5	2.48			4.30	3.07	1.65	0.78	
9	5MM1	1H	1211	Q15	Solve quadratic equations	5	2.32	4.94	4.63	3.62	1.47	0.47	0.00	
10	5MM1	1H	1206	Q20	Selection with or without replacement	4	1.68	3.65	2.88	1.74	0.51	0.17	0.00	
11	5MM1	1H	1111	Q11	Angles	2	0.80	1.50	1.73	0.98	0.18	0.00	0.00	
12	5MM1	1H	1411	Q17	Index laws	6	2.32	5.70	3.87	2.33	1.30	0.52	0.10	
13	1MA0	1H	1611	Q18	Box plots	4	Data to be added January 2017							
14	1MA0	1H	1303	Q16	Standard form	4	1.18	3.27	2.48	1.68	0.91	0.35	0.09	
15	5MM1	1H	1411	Q23	Vectors	4	1.10	3.85	2.12	1.03	0.17	0.03	0.00	
16	5MM1	1H	1211	Q23	Venn diagrams	4	1.03	1.82	1.33	0.87	0.57	0.40	0.00	
17	5MM1	1H	1411	Q22	Simplify algebraic fractions	3	0.70	2.96	1.68	0.37	0.02	0.00	0.00	
18	1380	1H	1111	Q19	Circle theorems	4	0.93	3.21	2.33	1.39	0.55	0.18	0.11	
19	1380	1H	1203	Q20	Graphs of trigonometric functions	3	0.67	2.14	1.26	0.70	0.38	0.23	0.19	
20	1MA0	1H	1411	Q21	Surds	2	0.28	1.85	1.58	0.83	0.16	0.03	0.01	
21	1380	1H	1203	Q24	Algebraic proof	6	0.54	2.55	1.27	0.56	0.16	0.03	0.02	
					TOTAL	80								