

Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108)

MATHS -9 (CH-07- TRIANGLES)

MATHS -9 (CH-07-7.1- TRIANGLES)

Question 1:

In quadrilateral ACBD, AC = AD and AB bisects $\angle A$ (See the given figure). Show that $\triangle ABC \cong \triangle ABD$. What can you say about BC and BD?

Answer 1:

In ΔABC and ΔABD,

AC = AD (Given)

 \angle CAB = \angle DAB (AB bisects \angle A)

AB = AB (Common)

 $\therefore \triangle ABC \cong \triangle ABD$ (By SAS congruence rule)

.. BC = BD (By CPCT)

Therefore, BC and BD are of equal lengths.

Question 2:

ABCD is a quadrilateral in which AD = BC and \angle DAB = \angle CBA (See the given figure). Prove that

- (i) $\triangle ABD \cong \triangle BAC$
- (ii) BD = AC
- (iii) ∠ABD = ∠BAC.

DPM CLASSES & COMPUTERS

Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108)

Answer 2:

In \triangle ABD and \triangle BAC, AD = BC (Given) \angle DAB = \angle CBA (Given) AB = BA (Common) \therefore \triangle ABD \cong \triangle BAC (By SAS congruence rule) \therefore BD = AC (By CPCT) And, \angle ABD = \angle BAC (By CPCT)

Question 3:

AD and BC are equal perpendiculars to a line segment AB (See the given figure). Show that CD bisects AB.

Answer 3:

In \triangle BOC and \triangle AOD, \angle BOC = \angle AOD (Vertically opposite angles) \angle CBO = \angle DAO (Each 90°) BC = AD (Given) \therefore \triangle BOC \cong \triangle AOD (AAS congruence rule) \therefore BO = AO (By CPCT) \Rightarrow CD bisects AB.

Question 4:

/ and m are two parallel lines intersected by another pair of parallel lines p and q (see the given figure). Show that $\triangle ABC \cong \triangle CDA$.

DPM CLASSES & COMPUTERS

Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108)

Answer 4:

In \triangle ABC and \triangle CDA, \angle BAC = \angle DCA (Alternate interior angles, as $p \parallel q$) AC = CA (Common) \angle BCA = \angle DAC (Alternate interior angles, as $I \parallel m$) $\therefore \triangle$ ABC $\cong \triangle$ CDA (By ASA congruence rule)

Question 5:

Line / is the bisector of an angle $\angle A$ and B is any point on /. BP and BQ are perpendiculars from B to the arms of $\angle A$ (see the given figure). Show that:

(i) $\triangle APB \cong \triangle AQB$

(ii) BP = BQ or B is equidistant from the arms of $\angle A$.

Answer 5:

In \triangle APB and \triangle AQB, \angle APB = \angle AQB (Each 90°) \angle PAB = \angle QAB (/is the angle bisector of \angle A) AB = AB (Common) \therefore \triangle APB \cong \triangle AQB (By AAS congruence rule) \therefore BP = BQ (By CPCT) Or, it can be said that B is equidistant from the arms of \angle A.

Question 6:

In the given figure, AC = AE, AB = AD and $\angle BAD = \angle EAC$. Show that BC = DE.

Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108)

Answer 6:

It is given that ∠BAD = ∠EAC

 $\angle BAD + \angle DAC = \angle EAC + \angle DAC$

∠BAC = ∠DAE

In ΔBAC and ΔDAE,

AB = AD (Given)

 $\angle BAC = \angle DAE$ (Proved above)

AC = AE (Given)

 $\therefore \triangle BAC \cong \triangle DAE$ (By SAS congruence rule)

∴ BC = DE (By CPCT)

Question 7:

AB is a line segment and P is its mid-point. D and E are points on the same side of AB such that \angle BAD = \angle ABE and \angle EPA = \angle DPB (See the given figure). Show that

(i) $\Delta DAP \cong \Delta EBP$

(ii) AD = BE

Answer 7:

It is given that $\angle EPA = \angle DPB$

⇒ ∠EPA + ∠DPE = ∠DPB + ∠DPE

⇒ ∠DPA = ∠EPB

In ADAP and AEBP,

 $\angle DAP = \angle EBP (Given)$

AP = BP (P is mid-point of AB)

∠DPA = ∠EPB (From above)

 $\Delta DAP \cong \Delta EBP$ (ASA congruence rule)

:. AD = BE (By CPCT)

Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108)

Question 8:

In right triangle ABC, right angled at C, M is the mid-point of hypotenuse AB. C is joined to M and produced to a point D such that DM = CM. Point D is joined to point B (see the given figure). Show that:

- (i) $\triangle AMC \cong \triangle BMD$
- (ii) ∠DBC is a right angle.
- (iii) ΔDBC ≅ ΔACB
- (iv) CM = $\frac{1}{2}$ AB

Answer 8:

(i) In ΔAMC and ΔBMD,

AM = BM (M is the mid-point of AB)

∠AMC = ∠BMD (Vertically opposite angles)

CM = DM (Given)

- ∴ \triangle AMC \cong \triangle BMD (By SAS congruence rule)
- ∴ AC = BD (By CPCT)

And, $\angle ACM = \angle BDM$ (By CPCT)

(ii) $\angle ACM = \angle BDM$

However, ∠ACM and ∠BDM are alternate interior angles.

Since alternate angles are equal,

It can be said that DB || AC

- ⇒ ∠DBC + ∠ACB = 180° (Co-interior angles)
- ⇒ ∠DBC + 90° = 180°
- ⇒ ∠DBC = 90°

(iii) In ΔDBC and ΔACB,

DB = AC (Already proved)

∠DBC = ∠ACB (Each 90°)

BC = CB (Common)

∴ ΔDBC ≅ ΔACB (SAS congruence rule)

(iv) $\triangle DBC \cong \triangle ACB$

:. AB = DC (By CPCT)

 \Rightarrow AB = 2 CM

 \therefore CM = $\frac{1}{2}$ AB

Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108)

MATHS -9 (CH-07-7.2- TRIANGLES)

Question 1:

In an isosceles triangle ABC, with AB = AC, the bisectors of \angle B and \angle C intersect each other at O. Join A to O. Show that:

(i) OB = OC (ii) AO bisects ∠A

Answer 1:

(i) It is given that in triangle ABC, AB = AC

⇒ ∠ACB = ∠ABC (Angles opposite to equal sides of a triangle are equal)

$$\Rightarrow \frac{1}{2} \angle ACB = \frac{1}{2} \angle ABC$$

⇒ ∠OCB = ∠OBC

⇒ OB = OC (Sides opposite to equal angles of a triangle are also equal)

(ii) In ΔOAB and ΔOAC,

AO = AO (Common)

AB = AC (Given)

OB = OC (Proved above)

Therefore, $\triangle OAB \cong \triangle OAC$ (By SSS congruence rule)

 \Rightarrow \angle BAO = \angle CAO (CPCT)

⇒ A0 bisects / A.

Question 2:

In \triangle ABC, AD is the perpendicular bisector of BC (see the given figure). Show that \triangle ABC is an isosceles triangle in which AB = AC.

DPM CLASSES & COMPUTERS

Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108)

Answer 2:

In △ADC and △ADB,

AD = AD (Common)

∠ADC =∠ADB (Each 90°)

CD = BD (AD is the perpendicular bisector of BC)

∴ △ADC ≅ △ADB (By SAS congruence rule)

∴AB = AC (By CPCT)

Therefore, ABC is an isosceles triangle in which AB = AC.

Question 3:

ABC is an isosceles triangle in which altitudes BE and CF are drawn to equal sides AC and AB respectively (see the given figure). Show that these altitudes are equal.

Answer 3:

In \triangle AEB and \triangle AFC, \angle AEB and \angle AFC (Each 90°) \angle A = \angle A (Common angle) AB = AC (Given) \therefore \triangle AEB \cong \triangle AFC (By AAS congruence rule) \Rightarrow BE = CF (By CPCT)

Question 4:

ABC is a triangle in which altitudes BE and CF to sides AC and AB are equal (see the given figure). Show that

- (i) $\triangle ABE \cong \triangle ACF$
- (ii) AB = AC, i.e., ABC is an isosceles triangle.

Special for Math's & Science
By - Er. Dharmendra Sir (9584873492,7974073108)

Answer 4:

(i) In \triangle ABE and \triangle ACF, \angle AEB = \angle AFC (Each 90°) \angle A = \angle A (Common angle) BE = CF (Given) \therefore \triangle ABE \cong \triangle ACF (By AAS congruence rule) (ii) It has already been proved that \triangle ABE \cong \triangle ACF \Rightarrow AB = AC (By CPCT)

Question 5:

ABC and DBC are two isosceles triangles on the same base BC (see the given figure). Show that \angle ABD = \angle ACD.

Answer 5:

Let us join AD. In \triangle ABD and \triangle ACD, AB = AC (Given) BD = CD (Given) AD = AD (Common side)

 $\triangle \triangle ABD \cong \triangle ACD$ (By SSS congruence rule)

⇒ ∠ABD = ∠ACD (By CPCT)

DPM CLASSES & COMPUTERS

Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108)

Question 6:

 \triangle ABC is an isosceles triangle in which AB = AC. Side BA is produced to D such that AD = AB (see the given figure). Show that \angle BCD is a right angle.

Answer 6:

In AABC,

AB = AC (Given)

 \Rightarrow \angle ACB = \angle ABC (Angles opposite to equal sides of a triangle are also equal)

In ΔACD,

AC = AD

 \Rightarrow \angle ADC = \angle ACD (Angles opposite to equal sides of a triangle are also equal)

In ΔBCD,

 \angle ABC + \angle BCD + \angle ADC = 180° (Angle sum property of a triangle)

⇒ ∠ACB + ∠ACB +∠ACD + ∠ACD = 180°

 \Rightarrow 2(\angle ACB + \angle ACD) = 180°

⇒ 2(∠BCD) = 180°

⇒ ∠BCD = 90°

MATHS -9 (CH-07-7.3- TRIANGLES)

Question 1:

 \triangle ABC and \triangle DBC are two isosceles triangles on the same base BC and vertices A and D are on the same side of BC (see the given figure). If AD is extended to intersect BC at P, show that

- (i) $\triangle ABD \cong \triangle ACD$
- (ii) ΔABP ≅ ΔACP
- (iii) AP bisects ∠A as well as ∠D.
- (iv) AP is the perpendicular bisector of BC.

Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108)

Answer 1:

```
(i) In ΔABD and ΔACD,
AB = AC (Given)
BD = CD (Given)
AD = AD (Common)
\therefore \triangle ABD \cong \triangle ACD (By SSS congruence rule)
\Rightarrow \angle BAD = \angle CAD (By CPCT)
\Rightarrow \angle BAP = \angle CAP \dots (1)
(ii) In ΔABP and ΔACP,
AB = AC (Given)
\angle BAP = \angle CAP [From equation (1)]
AP = AP (Common)
\therefore \triangle ABP \cong \triangle ACP (By SAS congruence rule)
\Rightarrow BP = CP (By CPCT) ... (2)
(iii) From equation (1),
∠BAP = ∠CAP
Hence, AP bisects ∠A.
In ΔBDP and ΔCDP.
BD = CD (Given)
DP = DP (Common)
BP = CP [From equation (2)]
\therefore \triangle BDP \cong \triangle CDP (By S.S.S. Congruence rule)
\Rightarrow \angleBDP = \angleCDP (By CPCT) ... (3)
Hence, AP bisects ∠D.
(iv) \triangle BDP \cong \triangle CDP
∴ ∠BPD = ∠CPD (By CPCT) .... (4)
```

Question 2:

AD is an altitude of an isosceles triangles ABC in which AB = AC. Show that (i) AD bisects BC (ii) AD bisects $\angle A$.

From equations (2) and (5), it can be said that AP is the perpendicular bisector of BC.

 \angle BPD + \angle CPD = 180 \circ (Linear pair angles)

2∠BPD = 180∘ [From equation (4)]

∠BPD + ∠BPD = 180 °

∠BPD = 90° ... (5)

Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108)

Answer 2:

(i) In ΔBAD and ΔCAD,

 \angle ADB = \angle ADC (Each 90° as AD is an altitude)

AB = AC (Given)

AD = AD (Common)

 $∴\Delta BAD \cong \Delta CAD$ (By RHS Congruence rule)

 \Rightarrow BD = CD (By CPCT)

Hence, AD bisects BC.

(ii) Also, by CPCT,

∠BAD = ∠CAD

Hence, AD bisects ∠A.

Question 3:

Two sides AB and BC and median AM of one triangle ABC are respectively equal to sides PQ and QR and median PN of Δ PQR (see the given figure). Show that:

(i) $\triangle ABM \cong \triangle PQN$

(ii) $\triangle ABC \cong \triangle PQR$

Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108)

Answer 3:

(i) In ΔABC, AM is the median to BC.

$$\therefore BM = \frac{1}{2}BC$$

In \triangle PQR, PN is the median to QR.

$$\therefore QN = \frac{1}{2}QR$$

However, BC = QR

$$\therefore \frac{1}{2}BC = \frac{1}{2}QR$$

In $\triangle ABM$ and $\triangle PQN$,

AB = PQ (Given)

BM = QN [From equation (1)]

AM = PN (Given)

∴ ΔABM ≅ ΔPQN (SSS congruence rule)

∠ABM = ∠PQN (By CPCT)

$$\angle ABC = \angle PQR ... (2)$$

(ii) In ΔABC and ΔPQR,

AB = PQ (Given)

 $\angle ABC = \angle PQR$ [From equation (2)]

BC = QR (Given)

 $\Rightarrow \triangle ABC \cong \triangle PQR$ (By SAS congruence rule)

Question 4:

BE and CF are two equal altitudes of a triangle ABC. Using RHS congruence rule, prove that the triangle ABC is isosceles.

Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108)

Answer 4:

In ΔBEC and ΔCFB,

∠BEC = ∠CFB (Each 90°)

BC = CB (Common)

BE = CF (Given)

 $\therefore \triangle BEC \cong \triangle CFB$ (By RHS congruency)

 $\Rightarrow \angle BCE = \angle CBF (By CPCT)$

: AB = AC (Sides opposite to equal angles of a triangle are equal)

Hence, \triangle ABC is isosceles.

Question 5:

ABC is an isosceles triangle with AB = AC. Drawn AP \perp BC to show that \angle B = \angle C.

Answer 5:

In ΔAPB and ΔAPC,

∠APB = ∠APC (Each 90°)

AB =AC (Given)

AP = AP (Common)

 $\therefore \triangle APB \cong \triangle APC$ (Using RHS congruence rule)

 $\Rightarrow \angle B = \angle C$ (By using CPCT)

Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108)

MATHS -9 (CH-07-7.4- TRIANGLES)

Question 1:

Show that in a right angled triangle, the hypotenuse is the longest side.

Answer 1:

Let us consider a right-angled triangle ABC, right-angled at B.

In ΔABC,

 $\angle A + \angle B + \angle C = 180^{\circ}$ (Angle sum property of a triangle)

∠A + 90° + ∠C = 180°

 $\angle A + \angle C = 90^{\circ}$

Hence, the other two angles have to be acute (i.e., less than 90°).

∴ ∠B is the largest angle in ΔABC.

 $\Rightarrow \angle B > \angle A$ and $\angle B > \angle C$

⇒ AC > BC and AC > AB

[In any triangle, the side opposite to the larger (greater) angle is longer.]

Therefore, AC is the largest side in \triangle ABC.

However, AC is the hypotenuse of \triangle ABC. Therefore, hypotenuse is the longest side in a right-angled triangle.

Question 2:

In the given figure sides AB and AC of \triangle ABC are extended to points P and Q respectively. Also, \angle PBC < \angle QCB. Show that AC > AB.

Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108)

Answer 2:

```
In the given figure,
\angle ABC + \angle PBC = 180^{\circ} \text{ (Linear pair)}
\Rightarrow \angle ABC = 180^{\circ} - \angle PBC \dots (1)
Also,
\angle ACB + \angle QCB = 180^{\circ}
\angle ACB = 180^{\circ} - \angle QCB \dots (2)
As \angle PBC < \angle QCB,
\Rightarrow 180^{\circ} - \angle PBC > 180^{\circ} - \angle QCB
\Rightarrow \angle ABC > \angle ACB \text{ [From equations (1) and (2)]}
\Rightarrow AC > AB \text{ (Side opposite to the larger angle is larger.)}
```

Question 3:

In the given figure, $\angle B < \angle A$ and $\angle C < \angle D$. Show that AD < BC.

Answer 3:

```
In \triangleAOB, \angleB < \angleA \Rightarrow AO < BO (Side opposite to smaller angle is smaller) ... (1) In \triangleCOD, \angleC < \angleD \Rightarrow OD < OC (Side opposite to smaller angle is smaller) ... (2) On adding equations (1) and (2), we obtain AO + OD < BO + OC AD < BC
```

DPM CLASSES & COMPUTERS

Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108)

Ouestion 4:

AB and CD are respectively the smallest and longest sides of a quadrilateral ABCD (see the given figure). Show that $\angle A > \angle C$ and $\angle B > \angle D$.

Answer 4:

Let us join AC.

In AABC,

AB < BC (AB is the smallest side of quadrilateral ABCD)

 \therefore \angle 2 < \angle 1 (Angle opposite to the smaller side is smaller) ... (1) In \triangle ADC,

AD < CD (CD is the largest side of quadrilateral ABCD)

 $\therefore \angle 4 < \angle 3$ (Angle opposite to the smaller side is smaller) ... (2)

On adding equations (1) and (2), we obtain

 $\angle 2 + \angle 4 < \angle 1 + \angle 3$

 $\Rightarrow \angle C < \angle A$

DPM CLASSES & COMPUTERS

Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108)

 \Rightarrow \angle A > \angle C Let us join BD.

In ΔABD,

AB < AD (AB is the smallest side of quadrilateral ABCD)

 \therefore $\angle 8$ < $\angle 5$ (Angle opposite to the smaller side is smaller) ... (3)

In ΔBDC,

BC < CD (CD is the largest side of quadrilateral ABCD)

 \therefore \angle 7 < \angle 6 (Angle opposite to the smaller side is smaller) ... (4)

On adding equations (3) and (4), we obtain

∠8 + ∠7 < ∠5 + ∠6

 $\Rightarrow \angle D < \angle B$

 $\Rightarrow \angle B > \angle D$

Question 5:

In the given figure, PR > PQ and PS bisects ∠QPR. Prove that ∠PSR >∠PSQ.

Answer 5:

As PR > PQ

 $\therefore \angle PQR > \angle PRQ$ (Angle opposite to larger side is larger) ... (1)

PS is the bisector of ∠QPR.

∴∠QPS = ∠RPS ... (2)

 \angle PSR is the exterior angle of \triangle PQS.

 $\therefore \angle PSR = \angle PQR + \angle QPS \dots (3)$

 \angle PSQ is the exterior angle of \triangle PRS.

 $\therefore \angle PSQ = \angle PRQ + \angle RPS \dots (4)$

Adding equations (1) and (2), we obtain

 $\angle PQR + \angle QPS > \angle PRQ + \angle RPS$

 \Rightarrow \angle PSR > \angle PSQ [Using the values of equations (3) and (4)]

Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108)

Question 6:

Show that of all line segments drawn from a given point not on it, the perpendicular line segment is the shortest.

Answer 6:

Let us take a line / and from point P (i.e., not on line I), draw two line segments PN and PM. Let PN be perpendicular to line / and PM is drawn at some other angle.

Ιη ΔΡΝΜ.

∠N = 90°

 $\angle P + \angle N + \angle M = 180^{\circ}$ (Angle sum property of a triangle)

 $\angle P + \angle M = 90^{\circ}$

Clearly, ∠M is an acute angle.

 $\therefore \angle M < \angle N$

⇒ PN < PM (Side opposite to the smaller angle is smaller)

Similarly, by drawing different line segments from P to I, it can be proved that PN is smaller in comparison to them.

Therefore, it can be observed that of all line segments drawn from a given point not on it, the perpendicular line segment is the shortest.

MATHS -9 (CH-07-7.5- TRIANGLES)

Question 1:

ABC is a triangle. Locate a point in the interior of \triangle ABC which is equidistant from all the vertices of \triangle ABC.

Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108)

Answer 1:

Circumcentre of a triangle is always equidistant from all the vertices of that triangle. Circumcentre is the point where perpendicular bisectors of all the sides of the triangle meet together.

In \triangle ABC, we can find the circumcentre by drawing the perpendicular bisectors of sides AB, BC, and CA of this triangle. O is the point where these bisectors are meeting together. Therefore, O is the point which is equidistant from all the vertices of \triangle ABC.

Question 2:

In a triangle locate a point in its interior which is equidistant from all the sides of the triangle.

Answer 2:

The point which is equidistant from all the sides of a triangle is called the incentre of the triangle. Incentre of a triangle is the intersection point of the angle bisectors of the interior angles of that triangle.

Here, in \triangle ABC, we can find the incentre of this triangle by drawing the angle bisectors of the interior angles of this triangle. I is the point where these angle bisectors are intersecting each other. Therefore, I is the point equidistant from all the sides of \triangle ABC.

Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108)

Question 3:

In a huge park people are concentrated at three points (see the given figure)

B• **C**

A: where there are different slides and swings for children,

B: near which a man-made lake is situated,

C: which is near to a large parking and exit.

Where should an ice-cream parlour be set up so that maximum number of persons can approach it?

(Hint: The parlor should be equidistant from A, B and C)

Answer 3:

Maximum number of persons can approach the ice-cream parlour if it is equidistant from A, B and C. Now, A, B and C form a triangle. In a triangle, the circumcentre is the only point that is equidistant from its vertices. So, the ice-cream parlour should be set up at the circumcentre O of Δ ABC.

In this situation, maximum number of persons can approach it. We can find circumcentre O of this triangle by drawing perpendicular bisectors of the sides of this triangle.

Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108)

Question 4:

Complete the hexagonal and star shaped *rangolies* (see the given figures) by filling them with as many equilateral triangles of side 1 cm as you can. Count the number of triangles in each case. Which has more triangles?

Answer 4:

It can be observed that hexagonal-shaped rangoli has 6 equilateral triangles in it.

Area of
$$\triangle OAB = \frac{\sqrt{3}}{4} (side)^2 = \frac{\sqrt{3}}{4} (5)^2$$

$$=\frac{\sqrt{3}}{4}(25)=\frac{25\sqrt{3}}{4}\text{ cm}^2$$

Area of hexagonal-shaped $rangoli = 6 \times \frac{25\sqrt{3}}{4} = \frac{75\sqrt{3}}{2} \text{ cm}^2$

Area of equilateral triangle having its side as 1 cm = $\frac{\sqrt{3}}{4}(1)^2 = \frac{\sqrt{3}}{4}$ cm²

Number of equilateral triangles of 1 cm side that can be filled $75\sqrt{3}$

in this hexagonal-shaped
$$rangoli = \frac{\frac{75\sqrt{3}}{2}}{\frac{\sqrt{3}}{4}} = 150$$

Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108)

Star-shaped rangoli has 12 equilateral triangles of side 5 cm in it.

Area of star-shaped rangoli = $12 \times \frac{\sqrt{3}}{4} \times (5)^2 = 75\sqrt{3}$

Number of equilateral triangles of 1 cm side that can be filled

in this star-shaped rangoli =
$$\frac{75\sqrt{3}}{\frac{\sqrt{3}}{4}}$$
 = 300

Therefore, star-shaped rangoli has more equilateral triangles in it.