

Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108)

SCIENCE -9 (CH-03- ATOMS & MOLECULES)

Question 1:

In a reaction, 5.3 g of sodium carbonate reacted with 6 g of acetic acid. The products were 2.2 g of carbon dioxide, 0.9 g water and 8.2 g of sodium acetate. Show that these observations are in agreement with the law of conservation of mass.

sodium carbonate + acetic acid → sodium acetate + carbon dioxide + water

Answer 1:

In the given reaction, sodium carbonate reacts with acetic acid to produce sodium acetate, carbon dioxide, and water.

sodium carbonate + acetic acid → sodium acetate + carbon-dioxide + water

Mass of sodium carbonate = 5.3 g (Given)

Mass of acetic acid = 6 g (Given)

Mass of sodium acetate = 8.2 g (Given)

Mass of carbon dioxide = 2.2 g (Given)

Mass of water = 0.9 g (Given)

Now, total mass before the reaction = (5.3 + 6) g

 $= 11.3 \, \text{a}$

And, total mass after the reaction = (8.2 + 2.2 + 0.9) g

= 11.3 g

:: Total mass before the reaction = Total mass after the reaction

Hence, the given observations are in agreement with the law of conservation of mass.

Question 2:

Hydrogen and oxygen combine in the ratio of 1:8 by mass to form water. What mass of oxygen gas would be required to react completely with 3 g of hydrogen gas?

Answer 2:

It is given that the ratio of hydrogen and oxygen by mass to form water is 1:8.

Then, the mass of oxygen gas required to react completely with 1 g of hydrogen gas is 8 g. Therefore, the mass of oxygen gas required to react completely with 3 g of hydrogen gas is 8×3 g = 24 g.

Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108)

Question 3:

Which postulate of Dalton's atomic theory is the result of the law of conservation of mass?

Answer 3:

The postulate of Dalton's atomic theory which is a result of the law of conservation of mass is: Atoms are indivisible particles, which can neither be created nor destroyed in a chemical reaction.

Question 4:

Which postulate of Dalton's atomic theory can explain the law of definite proportions?

Answer 4:

The postulate of Dalton's atomic theory which can explain the law of definite proportion is: The relative number and kind of atoms in a given compound remains constant.

Question 1:

Define the atomic mass unit.

Answer 1:

Mass unit equal to exactly one-twelfth $\left(\frac{1}{12^{th}}\right)$ the mass of one atom of carbon-12 is called one atomic mass unit. It is written as 'u'.

) Question 2:

Why is it not possible to see an atom with naked eyes?

Answer 2:

The size of an atom is so small that it is not possible to see it with naked eyes. Also, the atom of an element does not exist independently.

DPM CLASSES & COMPUTERS

Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108)

Question 1:

Write down the formulae of

- (i) sodium oxide
- (ii) aluminium chloride
- (iii) sodium sulphide
- (iv) magnesium hydroxide

Answer 1:

- (i) Sodium oxide →Na₂O
- (ii) Aluminium chloride → AlCl₃
- (iii) Sodium sulphide → Na₂S
- (iv) Magnesium hydroxide → Mg(OH)2

Question 2:

Write down the names of compounds represented by the following formulae:

- (i) $Al_2(SO_4)_3$
- (ii) CaCl₂
- (iii) K₂SO₄
- (iv) KNO₃
- (v) CaCO₃

Answer 2:

- (i) Al₂(SO₄)₃ → Aluminium sulphate
- (ii) CaCl₂ → Calcium chloride
- (iii) K₂SO₄ → Potassium sulphate
- (iv) KNO₃ → Potassium nitrate
- (v) CaCO₃ → Calcium carbonate

DPM CLASSES & COMPUTERS

Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108)

Question 3:

What is meant by the term chemical formula?

Answer 3:

The chemical formula of a compound means the symbolic representation of the composition of a compound. From the chemical formula of a compound, we can know the number and kinds of atoms of different elements that constitute the compound.

For example, from the chemical formula CO_2 of carbon dioxide, we come to know that one carbon atom and two oxygen atoms are chemically bonded together to form one molecule of the compound, carbon dioxide.

Question 4:

How many atoms are present in a

- (i) H2S molecule and
- (ii) PO₄3- ion?

Answer 4:

- (i) In an H₂S molecule, three atoms are present; two of hydrogen and one of sulphur.
- (ii) In a PO₄³⁻ ion, five atoms are present; one of phosphorus and four of oxygen.

Question 1:

Calculate the molecular masses of H₂, O₂, Cl₂, CO₂, CH₄, C₂H₆, C₂H₄, NH₃, CH₃OH.

Answer 1:

Molecular mass of $H_2 = 2 \times Atomic mass of H$

- $=2\times1$
- = 2 11

Molecular mass of $O_2 = 2 \times Atomic mass of O$

- $= 2 \times 16$
- = 32 11

Molecular mass of Cl₂ = 2 × Atomic mass of Cl

- $= 2 \times 35.5$
- = 71 u

Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108)

```
Molecular mass of CO_2 = Atomic mass of C+2 \times Atomic mass of O = 12+2 \times 16 = 44 \text{ u}  
Molecular mass of CO_4 = Atomic mass of C+4 \times Atomic mass of CO_4 = CO_4 =
```

Question 2:

Calculate the formula unit masses of ZnO, Na_2O , K_2CO_3 , given atomic masses of Zn = 65 u, Na = 23 u, K = 39 u, C = 12 u, and O = 16 u.

Answer 2:

```
Formula unit mass of ZnO = Atomic mass of Zn + Atomic mass of O = 65 + 16 = 81 \text{ u} Formula unit mass of Na<sub>2</sub>O = 2 \times Atomic mass of Na + Atomic mass of O = 2 \times 23 + 16 = 62 \text{ u} Formula unit mass of K<sub>2</sub>CO<sub>3</sub> = 2 \times Atomic mass of K + Atomic mass of C + 3 \times Atomic mass of O = 2 \times 39 + 12 + 3 \times 16 = 138 \text{ u}
```


Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108)

Question 1:

If one mole of carbon atoms weighs 12 grams, what is the mass (in grams) of 1 atom of carbon?

Answer 1:

One mole of carbon atoms weighs 12 g (Given) i.e., mass of 1 mole of carbon atoms = 12 g

Then, mass of 6.022×10^{23} number of carbon atoms = 12 g

Therefore, mass of 1 atom of carbon = $\frac{12}{6.022 \times 10^{23}}$ g
= 1.9926×10^{-23} g

Question 2:

Which has more number of atoms, 100 grams of sodium or 100 grams of iron (given, atomic mass of Na = 23 u, Fe = 56 u)?

Answer 2:

Atomic mass of Na = 23 u (Given)
Then, gram atomic mass of Na = 23 g
Now, 23 g of Na contains = 6.022×10^{23} number of atoms
Thus, 100 g of Na contains = $\frac{6.022 \times 10^{23}}{23} \times 100$ number of atoms
= 2.6182×10^{24} number of atoms
Again, atomic mass of Fe = 56 u(Given)
Then, gram atomic mass of Fe = 56 g
Now, 56 g of Fe contains = 6.022×10^{23} number of atoms

Thus, 100 g of Fe contains = $\frac{6.022 \times 10^{23}}{56} \times 100$ number of atoms

= 1.0753×10^{24} number of atoms

Therefore, 100 grams of sodium contain more number of atoms than 100 grams of iron.

Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108)

Question 1:

A 0.24 g sample of compound of oxygen and boron was found by analysis to contain 0.096 g of boron and 0.144 g of oxygen. Calculate the percentage composition of the compound by weight.

Answer 1:

Mass of boron = 0.096 g (Given)

Mass of oxygen = 0.144 g (Given)

Mass of sample = 0.24 g (Given)

Thus, percentage of boron by weight in the compound = $\frac{0.096}{0.24} \times 100\%$

= 40%

And, percentage of oxygen by weight in the compound = $\frac{0.144}{0.24} \times 100\%$

= 60%

Question 2:

When 3.0 g of carbon is burnt in 8.00 g oxygen, 11.00 g of carbon dioxide is produced. What mass of carbon dioxide will be formed when 3.00 g of carbon is burnt in 50.00 g of oxygen? Which law of chemical combinations will govern your answer?

Answer 2:

Carbon + Oxygen ____ Carbon dioxide

3 g of carbon reacts with 8 g of oxygen to produce 11 g of carbon dioxide.

If 3 g of carbon is burnt in 50 g of oxygen, then 3 g of carbon will react with 8 g of oxygen. The remaining 42 g of oxygen will be left un-reactive.

In this case also, only 11 g of carbon dioxide will be formed.

The above answer is governed by the law of constant proportions.

DPM CLASSES & COMPUTERS

Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108)

Question 1:

A 0.24 g sample of compound of oxygen and boron was found by analysis to contain 0.096 g of boron and 0.144 g of oxygen. Calculate the percentage composition of the compound by weight.

Answer 1:

Mass of boron = 0.096 g (Given)

Mass of oxygen = 0.144 g (Given)

Mass of sample = 0.24 g (Given)

Thus, percentage of boron by weight in the compound = $\frac{0.096}{0.24} \times 100\%$

= 40%

And, percentage of oxygen by weight in the compound = $\frac{0.144}{0.24} \times 100\%$

= 60%

Question 2:

When 3.0 g of carbon is burnt in 8.00 g oxygen, 11.00 g of carbon dioxide is produced. What mass of carbon dioxide will be formed when 3.00 g of carbon is burnt in 50.00 g of oxygen? Which law of chemical combinations will govern your answer?

Answer 2:

Carbon + Oxygen ____ Carbon dioxide

3 g of carbon reacts with 8 g of oxygen to produce 11 g of carbon dioxide.

If 3 g of carbon is burnt in 50 g of oxygen, then 3 g of carbon will react with 8 g of oxygen. The remaining 42 g of oxygen will be left un-reactive.

In this case also, only 11 g of carbon dioxide will be formed.

The above answer is governed by the law of constant proportions.

Question 3:

What are polyatomic ions? Give examples?

Answer 3:

A polyatomic ion is a group of atoms carrying a charge (positive or negative). For example, ammonium ion (NH_4^+) , hydroxide ion (OH^-) , carbonate ion (CO_3^{2-}) , sulphate ion (SO_4^{2-}) .

DPM CLASSES & COMPUTERS

Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108)

Question 4:

Write the chemical formulae of the following:

- (a) Magnesium chloride
- (b) Calcium oxide
- (c) Copper nitrate
- (d) Aluminium chloride
- (e) Calcium carbonate

Answer 4:

- (a) Magnesium chloride → MgCl₂
- (b) Calcium oxide → CaO
- (c) Copper nitrate → Cu (NO₃)₂
- (d) Aluminium chloride → AlCl₃
- (e) Calcium carbonate → CaCO₃

Question 5:

Give the names of the elements present in the following compounds:

- (a) Quick lime
- (b) Hydrogen bromide
- (c) Baking powder
- (d) Potassium sulphate

Answer 5:

Compound	Chemical formula	Elements present
Quick lime	CaO	Calcium, Oxygen
Hydrogen bromide	HBr	Hydrogen, Bromine
Baking powder	NaHCO ₃	Sodium, Hydrogen, Carbon, Oxygen
Potassium sulphate	K ₂ SO ₄	Potassium, Sulphur, Oxygen

Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108)

Question 6:

Calculate the molar mass of the following substances:

- (a) Ethyne, C2H2
- (b) Sulphur molecule, S₈
- (c) Phosphorus molecule, P4 (atomic mass of phosphorus = 31)
- (d) Hydrochloric acid, HCl
- (e) Nitric acid, HNO₃

Answer 6:

- (a) Molar mass of ethyne, $C_2H_2 = 2 \times 12 + 2 \times 1 = 26 \text{ g}$
- (b) Molar mass of sulphur molecule, $S_8 = 8 \times 32 = 256$ g
- (c) Molar mass of phosphorus molecule, P₄ = 4 × 31 = 124 g
- (d) Molar mass of hydrochloric acid, HCl = 1 + 35.5 = 36.5 g
- (e) Molar mass of nitric acid, $HNO_3 = 1 + 14 + 3 \times 16 = 63 \text{ g}$

Question 7:

What is the mass of --

- (a) 1 mole of nitrogen atoms?
- (b) 4 moles of aluminium atoms (Atomic mass of aluminium = 27)?
- (c) 10 moles of sodium sulphite (Na₂SO₃)?

Answer 7:

- (a) The mass of 1 mole of nitrogen atoms is 14 g.
- (b) The mass of 4 moles of aluminium atoms is (4 × 27) g = 108 g
- (c) The mass of 10 moles of sodium sulphite (Na₂SO₃) is
- $10 \times [2 \times 23 + 32 + 3 \times 16]$ g = 10×126 g = 1260 g

DPM CLASSES & COMPUTERS

Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108)

Question 8:

Convert into mole.

- (a) 12 g of oxygen gas
- (b) 20 g of water
- (c) 22 g of carbon dioxide

Answer 8:

(a) 32 g of oxygen gas = 1 mole

Then, 12 g of oxygen gas = $\frac{12}{32}$ mole = 0.375 mole

(b) 18 g of water = 1 mole

Then, 20 g of water = $\frac{20}{18}$ mole = 1.11 moles (approx)

(c) 44 g of carbon dioxide = 1 mole

Then, 22 g of carbon dioxide = $\frac{22}{44}$ mole = 0.5 mole

Question 9:

What is the mass of:

- (a) 0.2 mole of oxygen atoms?
- (b) 0.5 mole of water molecules?

Answer 9:

(a) Mass of one mole of oxygen atoms = 16 g

Then, mass of 0.2 mole of oxygen atoms = 0.2 × 16g = 3.2 g

(b) Mass of one mole of water molecule = 18 g

Then, mass of 0.5 mole of water molecules = $0.5 \times 18 g = 9 g$

DPM CLASSES & COMPUTERS

Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108)

Question 10:

Calculate the number of molecules of sulphur (S₈) present in 16 g of solid sulphur.

Answer 10:

1 mole of solid sulphur (S₈) = 8 × 32 g = 256 g i.e., 256 g of solid sulphur contains = 6.022×10^{23} molecules Then, 16 g of solid sulphur contains = $\frac{6.022 \times 10^{23}}{256} \times 16$ molecules = 3.76×10^{22} molecules (approx)

Question 11:

Calculate the number of aluminium ions present in 0.051 g of aluminium oxide. (*Hint*: The mass of an ion is the same as that of an atom of the same element. Atomic mass of AI = 27 u)

Answer 11:

1 mole of aluminium oxide (Al $_2$ O $_3$) = 2 × 27 + 3 × 16 = 102 g i.e., 102 g of Al $_2$ O $_3$ = 6.022 × 10²³ molecules of Al $_2$ O $_3$ Then, 0.051 g of Al $_2$ O $_3$ contains = $\frac{6.022 \times 10^{23}}{102} \times 0.051$ molecules = 3.011 × 10²⁰ molecules of Al $_2$ O $_3$ The number of aluminium ions (Al $^{3+}$) present in one molecule of aluminium oxide is 2. Therefore, the number of aluminium ions (Al $^{3+}$) present in 3.011 × 10²⁰ molecules (0.051 g) of aluminium oxide (Al $_2$ O $_3$) = 2 × 3.011 × 10²⁰ = 6.022 × 10²⁰