Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108) MATHS -10 (CH-06- TRIANGLES) #### MATHS -10 (CH-06-6.1- TRIANGLES) | _ | | | | - | | |---|------|------|----|---|---| | | 1110 | CT | On | | • | | | uc | J.O. | on | | | | Fill | in | the | blanks | using | correct | word | given | in | the | brackets: | - | |------|----|-----|--------|-------|---------|------|-------|----|-----|-----------|---| |------|----|-----|--------|-------|---------|------|-------|----|-----|-----------|---| - (i) All circles are ______. (congruent, similar) - (ii) All squares are ______. (similar, congruent) - (iii) All ______ triangles are similar. (isosceles, equilateral) - (iv) Two polygons of the same number of sides are similar, if (a) their corresponding angles are ______ and (b) their corresponding sides are ______ (equal, proportional) #### Answer 1: - (i) Similar - (ii) Similar - (iii) Equilateral - (iv) (a) Equal - (b) Proportional #### Question 2: Give two different examples of pair of - (i) Similar figures - (ii)Non-similar figures #### Answer 2: (i) Two equilateral triangles with sides 1 cm and 2 cm Two squares with sides 1 cm and 2 cm Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108) (ii) Trapezium and square Triangle and parallelogram ## Question 3: State whether the following quadrilaterals are similar or not: #### Answer 3: Quadrilateral PQRS and ABCD are not similar as their corresponding sides are proportional, i.e. 1:2, but their corresponding angles are not equal. MATHS -10 (CH-06-6.2- TRIANGLES) Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108) # Ouestion 1: In figure.6.17. (i) and (ii), DE || BC. Find EC in (i) and AD in (ii). (i) (ii) #### Answer 1: (i) Let EC = x cm It is given that DE || BC. By using basic proportionality theorem, we obtain $$\frac{AD}{DB} = \frac{AE}{EC}$$ $$\frac{1.5}{2} = \frac{1}{2}$$ $$x = \frac{3 \times 1}{1.5}$$ $$x = 2$$ # DPM CLASSES & COMPUTERS COMPUTERS # **DPM CLASSES & COMPUTERS** Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108) Let AD = x cm It is given that DE || BC. By using basic proportionality theorem, we obtain $$\frac{AD}{DB} = \frac{AE}{EC}$$ $$\frac{x}{7.2} = \frac{1.8}{5.4}$$ $$x = \frac{1.8 \times 7.2}{5.4}$$ $$x = 2.4$$ $$\therefore AD = 2.4 \text{ cm}$$ ## Question 2: E and F are points on the sides PQ and PR respectively of a Δ PQR. For each of the following cases, state whether EF || QR. (i) PE = 3.9 cm, EQ = 3 cm, PF = 3.6 cm and FR = 2.4 cm (ii) PE = 4 cm, QE = 4.5 cm, PF = 8 cm and RF = 9 cm (iii)PQ = 1.28 cm, PR = 2.56 cm, PE = 0.18 cm and PF = 0.63 cm ## Answer 2: Given that, PE = 3.9 cm, EQ = 3 cm, PF = 3.6 cm, FR = 2.4 cm $$\frac{PE}{EQ} = \frac{3.9}{3} = 1.3$$ $$\frac{PF}{FR} = \frac{3.6}{2.4} = 1.5$$ Hence, $$\frac{PE}{EQ} \neq \frac{PF}{FR}$$ Therefore, EF is not parallel to QR. Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108) PE = 4 cm, QE = 4.5 cm, PF = 8 cm, RF = 9 cm $$\frac{PE}{EQ} = \frac{4}{4.5} = \frac{8}{9}$$ $$\frac{PF}{FR} = \frac{8}{9}$$ Hence, $$\frac{PE}{EQ} = \frac{PF}{FR}$$ Therefore, EF is parallel to QR. PQ = 1.28 cm, PR = 2.56 cm, PE = 0.18 cm, PF = 0.36 cm $$\frac{PE}{PQ} = \frac{0.18}{1.28} = \frac{18}{128} = \frac{9}{64}$$ $$\frac{PF}{PR} = \frac{0.36}{2.56} = \frac{9}{64}$$ Hence, $$\frac{PE}{PQ} = \frac{PF}{PR}$$ Therefore, EF is parallel to QR. Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108) # Ouestion 3: In the following figure, if LM || CB and LN || CD, prove that $$\frac{AM}{AB} = \frac{AN}{AD}$$ #### Answer 3: In the given figure, LM || CB By using basic proportionality theorem, we obtain $$\frac{AM}{AB} = \frac{AL}{AC}$$ (i) Similarly, LN || CD $$\therefore \frac{AN}{AD} = \frac{AL}{AC}$$ (ii) From (i) and (ii), we obtain $$\frac{AM}{AB} = \frac{AN}{AD}$$ # Question 4: In the following figure, DE \parallel AC and DF \parallel AE. Prove that $$\frac{BF}{FE} = \frac{BE}{EC}$$ Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108) #### Answer 4: In AABC, DE || AC $$\therefore \frac{BD}{DA} = \frac{BE}{EC}$$ (Basic Proportionality Theorem) (i) In ΔBAE, DF || AE $$\therefore \frac{BD}{DA} = \frac{BF}{FE}$$ (Basic Proportionality Theorem) (ii) From(i) and (ii), we obtain $$\frac{BE}{EC} = \frac{BF}{FE}$$ ## Question 5: In the following figure, DE || OQ and DF || OR, show that EF || QR. Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108) #### Answer 5: In \triangle POQ, DE || OQ $$\therefore \frac{PE}{EQ} = \frac{PD}{DO}$$ (Basic proportionality theorem) (*i*) In ∆POR, DF || OR $$\therefore \frac{PF}{FR} = \frac{PD}{DO}$$ (Basic proportionality theorem) (ii) From (i) and (ii), we obtain $$\frac{PE}{EQ} = \frac{PF}{FR}$$ ∴ EF || QR (Converse of basic proportionality theorem) ## Question 6: In the following figure, A, B and C are points on OP, OQ and OR respectively such that AB \parallel PQ and AC \parallel PR. Show that BC \parallel QR. Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108) #### Answer 6: In △ POQ, AB || PQ $$\therefore \frac{OA}{AP} = \frac{OB}{BQ}$$ (Basic proportionality theorem) (*i*) In ΔPOR, AC∥PR $$\therefore \frac{OA}{AP} = \frac{OC}{CR}$$ (By basic proportionality theorem) (ii) From (i) and (ii), we obtain $$\frac{OB}{BQ} = \frac{OC}{CR}$$ ∴ BC || QR (By the converse of basic proportionality theorem) ## Question 7: Using Basic proportionality theorem, prove that a line drawn through the mid-points of one side of a triangle parallel to another side bisects the third side. (Recall that you have proved it in Class IX). Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108) #### Answer 7: Consider the given figure in which / is a line drawn through the mid-point P of line segment AB meeting AC at Q, such that $PQ \parallel BC$. By using basic proportionality theorem, we obtain $$\frac{AQ}{QC} = \frac{AP}{PB}$$ $$\frac{AQ}{QC} = \frac{1}{1}$$ (P is the mid-point of AB. : AP = PB) $$\Rightarrow$$ AQ = QC Or, Q is the mid-point of AC. ## Question 8: Using Converse of basic proportionality theorem, prove that the line joining the mid-points of any two sides of a triangle is parallel to the third side. (Recall that you have done it in Class IX). Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108) #### Answer 8: Consider the given figure in which PQ is a line segment joining the mid-points P and Q of line AB and AC respectively. i.e., AP = PB and AQ = QC It can be observed that $$\frac{AP}{PB} = \frac{1}{1}$$ and $$\frac{AQ}{QC} = \frac{1}{1}$$ $$\therefore \frac{AP}{PB} = \frac{AQ}{QC}$$ PB QC Hence by using basic proportionality Hence, by using basic proportionality theorem, we obtain $PQ\parallel BC$ # Question 9: ABCD is a trapezium in which AB || DC and its diagonals intersect each other at the point O. Show that $\frac{AO}{BO} = \frac{CO}{DO}$. #### Answer 9: # Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108) Draw a line EF through point O, such that EF || CD In ∆ADC, EO || CD By using basic proportionality theorem, we obtain $$\frac{AE}{ED} = \frac{AO}{OC}$$ In ∆ABD, OE || AB So, by using basic proportionality theorem, we obtain $$\frac{ED}{AB} = \frac{OD}{DB}$$ $$\overline{AE} = \overline{BO}$$ $$\Rightarrow \frac{AE}{ED} = \frac{BO}{OD}$$ From equations (1) and (2), we obtain $$\frac{AO}{OC} = \frac{BO}{OD}$$ $$\Rightarrow \frac{AO}{BO} = \frac{OC}{OD}$$ ## Question 10: The diagonals of a quadrilateral ABCD intersect each other at the point O such that $\frac{AO}{BO} = \frac{CO}{DO}$. Show that ABCD is a trapezium. #### Answer 10: Let us consider the following figure for the given question. Draw a line OE || AB # Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108) In ∆ABD, OE || AB By using basic proportionality theorem, we obtain $\frac{AE}{ED} = \frac{BO}{OD}$ (1) However, it is given that $\frac{AO}{OC} = \frac{OB}{OD}$ (2) From equations (1) and (2), we obtain $\frac{AE}{A} = \frac{AO}{AO}$ ⇒ EO || DC [By the converse of basic proportionality theorem] ⇒ AB || OE || DC ⇒ AB || CD .. ABCD is a trapezium. MATHS -10 (CH-06-6.3- TRIANGLES) # DPM CLASSES & COMPUTERS GWALIOR # **DPM CLASSES & COMPUTERS** Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108) # Question 1: State which pairs of triangles in the following figure are similar? Write the similarity criterion used by you for answering the question and also write the pairs of similar triangles in the symbolic form: (i) (ii) (iii) (iv) (v) # DPM CLASSES & COMPUTERS GWALIOR # **DPM CLASSES & COMPUTERS** # Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108) #### Answer 1: (i) $$\angle A = \angle P = 60^{\circ}$$ $$\angle B = \angle Q = 80^{\circ}$$ $$\angle C = \angle R = 40^{\circ}$$ Therefore, ΔABC ~ ΔPQR [By AAA similarity criterion] (ii) $$\frac{AB}{QR} = \frac{BC}{RP} = \frac{CA}{PQ}$$ ∴ ΔABC ~ ΔQRP [By SSS similarity criterion] (iii) The given triangles are not similar as the corresponding sides are not proportional. (iv) In \triangle MNL and \triangle QPR, we observe that, $$\frac{MN}{QP} = \frac{ML}{QR} = \frac{1}{2}$$ $$\angle M = \angle Q = 70^{\circ}$$ $\therefore \Delta MNL \sim \Delta QPR$ [By SAS similarity criterion] (v)The given triangles are not similar as the corresponding sides are not proportional. (vi) In ΔDEF, $$\angle D + \angle E + \angle F = 180^{\circ}$$ (Sum of the measures of the angles of a triangle is 180°.) $$70^{\circ} + 80^{\circ} + \angle F = 180^{\circ}$$ $$\angle F = 30^{\circ}$$ Similarly, in ΔPQR , $$\angle P + \angle Q + \angle R = 180^{\circ}$$ (Sum of the measures of the angles of a triangle is 180°.) $$/P = 70^{\circ}$$ In ΔDEF and ΔPQR, $\angle D = \angle P (Each 70^{\circ})$ $\angle E = \angle Q (Each 80^{\circ})$ $\angle F = \angle R \text{ (Each 30°)}$.: ΔDEF ~ ΔPQR [By AAA similarity criterion] #
Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108) # Question 2: In the following figure, \triangle ODC \sim \triangle OBA, \angle BOC = 125° and \angle CDO = 70°. Find \angle DOC, \angle DCO and \angle OAB #### Answer 2: DOB is a straight line. .. ∠DOC + ∠COB = 180° ⇒ ∠DOC = 180° - 125° = 55° In ADOC, \angle DCO + \angle CDO + \angle DOC = 180° (Sum of the measures of the angles of a triangle is 180°.) ⇒ ∠DCO + 70° + 55° = 180° ⇒ ∠DCO = 55° It is given that \triangle ODC \sim \triangle OBA. $\therefore \angle OAB = \angle OCD$ [Corresponding angles are equal in similar triangles.] ⇒ ∠OAB = 55° ## Question 3: Diagonals AC and BD of a trapezium ABCD with AB || DC intersect each other at the point O. Using a similarity criterion for two triangles, show that $\frac{AO}{OC} = \frac{OB}{OD}$ Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108) #### Answer 3: In ΔDOC and ΔBOA, ∠CDO = ∠ABO [Alternate interior angles as AB || CD] ∠DCO = ∠BAO [Alternate interior angles as AB || CD] ∠DOC = ∠BOA [Vertically opposite angles] .: ΔDOC ~ ΔBOA [AAA similarity criterion] $$\therefore \frac{DO}{BO} = \frac{OC}{OA}$$ $$\Rightarrow \frac{OA}{OC} = \frac{OB}{OD}$$ [Corresponding sides are proportional] ## Question 4: In the following figure, $\frac{QR}{QS} = \frac{QT}{PR}$ and $\angle 1 = \angle 2$. Show that $\Delta PQS \sim \Delta TQR$ Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108) #### Answer 4: In ∆PQR, ∠PQR = ∠PRQ Given, $\frac{QR}{QS} = \frac{QT}{PR}$ Using (i), we obtain $\frac{QR}{QS} = \frac{QT}{QP}$ (ii) In $\triangle PQS$ and $\triangle TQR$, $\frac{QR}{QS} = \frac{QT}{QP}$ $\left[\operatorname{Using}\left(ii\right)\right]$ $\angle Q = \angle Q$ ∴ ΔPQS ~ ΔTQR [SAS similarity criterion] ## Question 5: S and T are point on sides PR and QR of \triangle PQR such that \angle P = \angle RTS. Show that \triangle RPQ \sim \triangle RTS. #### Answer 5: In \triangle RPQ and \triangle RST, \angle RTS = \angle QPS (Given) $\angle R = \angle R$ (Common angle) .: ΔRPQ ~ ΔRTS (By AA similarity criterion) # DPM CLASSES & COMPUTERS GWALIOR # **DPM CLASSES & COMPUTERS** # Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108) ## Question 6: In the following figure, if $\triangle ABE \cong \triangle ACD$, show that $\triangle ADE \sim \triangle ABC$. #### Answer 6: It is given that $\triangle ABE \cong \triangle ACD$. ∴ AB = AC [By CPCT] (1) And, AD = AE [By CPCT] (2) In ΔADE and ΔABC, $\frac{AD}{AB} = \frac{AE}{AC}$ [Dividing equation (2) by (1)] $\angle A = \angle A$ [Common angle] .: ΔADE ~ ΔABC [By SAS similarity criterion] #### Question 7: In the following figure, altitudes AD and CE of \triangle ABC intersect each other at the point P. Show that: - (i) ΔAEP ~ ΔCDP - (ii) ΔABD ~ ΔCBE - (iii) ΔAEP ~ ΔADB - (v) ΔPDC ~ ΔBEC Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108) #### Answer 7: In \triangle AEP and \triangle CDP, \angle AEP = \angle CDP (Each 90°) \angle APE = \angle CPD (Vertically opposite angles) Hence, by using AA similarity criterion, \triangle AEP \sim \triangle CDP In \triangle ABD and \triangle CBE, \angle ADB = \angle CEB (Each 90°) \angle ABD = \angle CBE (Common) Hence, by using AA similarity criterion, \triangle ABD \sim \triangle CBE In \triangle AEP and \triangle ADB, \angle AEP = \angle ADB (Each 90°) \angle PAE = \angle DAB (Common) Hence, by using AA similarity criterion, \triangle AEP \sim \triangle ADB Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108) In \triangle PDC and \triangle BEC, \angle PDC = \angle BEC (Each 90°) \angle PCD = \angle BCE (Common angle) Hence, by using AA similarity criterion, \triangle PDC \sim \triangle BEC # Question 8: E is a point on the side AD produced of a parallelogram ABCD and BE intersects CD at F. Show that $\Delta \text{ABE} \sim \Delta \text{CFB}$ #### Answer 8: In $\triangle ABE$ and $\triangle CFB$, $\angle A = \angle C$ (Opposite angles of a parallelogram) $\angle AEB = \angle CBF$ (Alternate interior angles as AE || BC) $\therefore \triangle ABE \sim \triangle CFB$ (By AA similarity criterion) ## Question 9: In the following figure, ABC and AMP are two right triangles, right angled at B and M respectively, prove that: (i) $\triangle ABC \sim \triangle AMP$ (ii) $$\frac{CA}{PA} = \frac{BC}{MP}$$ # Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108) #### Answer 9: In ΔABC and ΔAMP, ∠ABC = ∠AMP (Each 90°) $\angle A = \angle A$ (Common) .: ΔABC ~ ΔAMP (By AA similarity criterion) $$\Rightarrow \frac{CA}{PA} = \frac{BC}{MP}$$ (Corresponding sides of similar triangles are proportional) #### Question 10: CD and GH are respectively the bisectors of \angle ACB and \angle EGF such that D and H lie on sides AB and FE of \triangle ABC and \triangle EFG respectively. If \triangle ABC \sim \triangle FEG, Show that: (i) $$\frac{CD}{GH} = \frac{AC}{FG}$$ #### Answer 10: It is given that $\triangle ABC \sim \triangle FEG$. $\therefore \angle A = \angle F, \angle B = \angle E, \text{ and } \angle ACB = \angle FGE$ ∠ACB = ∠FGE ∴ ∠ACD = ∠FGH (Angle bisector) And, $\angle DCB = \angle HGE$ (Angle bisector) In ΔACD and ΔFGH, $\angle A = \angle F$ (Proved above) ∠ACD = ∠FGH (Proved above) .: ΔACD ~ ΔFGH (By AA similarity criterion) $$\Rightarrow \frac{\text{CD}}{\text{GH}} = \frac{\text{AC}}{\text{FG}}$$ In $\triangle DCB$ and $\triangle HGE$, ∠DCB = ∠HGE (Proved above) $\angle B = \angle E$ (Proved above) ∴ ΔDCB ~ ΔHGE (By AA similarity criterion) In ΔDCA and ΔHGF, \angle ACD = \angle FGH (Proved above) $\angle A = \angle F$ (Proved above) .: ΔDCA ~ ΔHGF (By AA similarity criterion) # Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108) #### Question 11: In the following figure, E is a point on side CB produced of an isosceles triangle ABC with AB = AC. If AD \perp BC and EF \perp AC, prove that \triangle ABD \sim \triangle ECF #### Answer 11: It is given that ABC is an isosceles triangle. ∴ AB = AC ⇒ ∠ABD = ∠ECF In ΔABD and ΔECF, ∠ADB = ∠EFC (Each 90°) ∠ABD = ∠ECF (Proved above) .: ΔABD ~ ΔECF (By using AA similarity criterion) ## Question 12: Sides AB and BC and median AD of a triangle ABC are respectively proportional to sides PQ and QR and median PM of Δ PQR (see the given figure). Show that Δ ABC \sim Δ PQR. #### Answer 12: # Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108) Median divides the opposite side. $$\therefore$$ BD= $\frac{BC}{2}$ and QM= $\frac{QR}{2}$ Given that, $$\frac{AB}{PQ} = \frac{BC}{QR} = \frac{AD}{PM}$$ $$\Rightarrow \frac{AB}{PQ} = \frac{\frac{1}{2}BC}{\frac{1}{2}QR} = \frac{AD}{PM}$$ $$\Rightarrow \frac{AB}{PQ} = \frac{BD}{QM} = \frac{AD}{PM}$$ In ΔABD and ΔPQM, $$\frac{AB}{PQ} = \frac{BD}{QM} = \frac{AD}{PM}$$ (Proved above) .: ΔABD ~ ΔPQM (By SSS similarity criterion) ⇒ ∠ABD = ∠PQM (Corresponding angles of similar triangles) In ΔABC and ΔPQR, ∠ABD = ∠PQM (Proved above) $$\frac{AB}{PQ} = \frac{BC}{QR}$$ $\therefore \Delta ABC \sim \Delta PQR$ (By SAS similarity criterion) #### Question 13: D is a point on the side BC of a triangle ABC such that $\angle ADC = \angle BAC$. Show that $CA^2 = CB.CD$. #### Answer 13: In ΔADC and ΔBAC, $$\angle ADC = \angle BAC$$ (Given) $$\angle$$ ACD = \angle BCA (Common angle) ∴ ∆ADC ~ ∆BAC (By AA similarity criterion) We know that corresponding sides of similar triangles are in proportion. $$\therefore \frac{CA}{CB} = \frac{CD}{CA}$$ $$\Rightarrow$$ CA² = CB×CD # DPM CLASSES & COMPUTERS GWALIOR # **DPM CLASSES & COMPUTERS** # Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108) #### Question 14: Sides AB and AC and median AD of a triangle ABC are respectively proportional to sides PQ and PR and median PM of another triangle PQR. Show that $\triangle ABC \sim \triangle PQR$ #### Answer 14: Given that, $$\frac{AB}{PQ} = \frac{AC}{PR} = \frac{AD}{PM}$$ Let us extend AD and PM up to point E and L respectively, such that AD = DE and PM = ML. Then, join B to E, C to E, Q to L, and R to L. We know that medians divide opposite sides. Therefore, BD = DC and QM = MR Also, AD = DE (By construction) And, PM = ML (By construction) In quadrilateral ABEC, diagonals AE and BC bisect each other at point D. Therefore, quadrilateral ABEC is a parallelogram. : AC = BE and AB = EC (Opposite sides of a parallelogram are equal) Similarly, we can prove that quadrilateral PQLR is a parallelogram and PR = QL, PQ = LR It was given that $$\frac{AB}{PQ} = \frac{AC}{PR} = \frac{AD}{PM}$$ $$\Rightarrow \frac{AB}{PQ} = \frac{BE}{QL} = \frac{2A}{2R}$$ $$\Rightarrow \frac{AB}{PQ} = \frac{BE}{QL} = \frac{2AD}{2PM}$$ $$\Rightarrow \frac{AB}{PQ} = \frac{BE}{QL} = \frac{AE}{PL}$$ $\cdot \cdot \Delta \text{ABE} \sim \Delta \text{PQL}$ (By SSS similarity criterion) # Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108) We know that corresponding angles of similar triangles are equal. Similarly, it can be proved that $\triangle AEC \sim \triangle PLR$ and Adding equation (1) and (2), we obtain $$\angle BAE + \angle CAE = \angle QPL + \angle RPL$$ $$\Rightarrow \angle CAB = \angle RPQ \dots (3)$$ In ΔABC and ΔPQR, $$\frac{AB}{PQ} = \frac{AC}{PR}$$ (Given) \angle CAB = \angle RPQ [Using equation (3)] .: ΔABC ~ ΔPQR (By SAS similarity criterion) ## Question 15: A vertical pole of a length 6 m casts a shadow 4m long on the ground and at the same time a tower casts a shadow 28 m long. Find the height of the tower. #### Answer 15: Let AB and CD be a tower and a pole respectively. Let the shadow of BE and DF be the shadow of AB and CD respectively. At the same time, the light rays from the sun will fall on the tower and the pole at the same angle. Therefore, $\angle DCF = \angle BAE$ And, $\angle DFC = \angle BEA$
\angle CDF = \angle ABE (Tower and pole are vertical to the ground) .: ΔABE ~ ΔCDF (AAA similarity criterion) $$\Rightarrow \frac{AB}{CD} = \frac{BE}{DF}$$ $$\Rightarrow \frac{AB}{6 \text{ m}} = \frac{28}{4}$$ → AR – 42 m Therefore, the height of the tower will be 42 metres. # Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108) ## Question 16: If AD and PM are medians of triangles ABC and PQR, respectively where $$\Delta ABC \sim \Delta PQR \text{ prove tha } t \frac{AB}{PQ} = \frac{AD}{PM}$$ #### Answer 16: It is given that $\triangle ABC \sim \triangle PQR$ We know that the corresponding sides of similar triangles are in proportion. $$\therefore \frac{AB}{PQ} = \frac{AC}{PR} = \frac{BC}{QR} \dots (1)$$ Also, $\angle A = \angle P$, $\angle B = \angle Q$, $\angle C = \angle R$... (2) Since AD and PM are medians, they will divide their opposite sides. $$\therefore$$ BD= $\frac{BC}{2}$ and QM= $\frac{QR}{2}$... (3) From equations (1) and (3), we obtain $$\frac{AB}{PQ} = \frac{BD}{QM} \dots (4)$$ In $\triangle ABD$ and $\triangle PQM$. $\angle B = \angle Q$ [Using equation (2)] $$\frac{AB}{PQ} = \frac{BD}{QM}$$ [Using equation (4)] .: ΔABD ~ ΔPQM (By SAS similarity criterion) $$\Rightarrow \frac{AB}{PQ} = \frac{BD}{QM} = \frac{AD}{PM}$$ MATHS -10 (CH-06-6.4- TRIANGLES) # Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108) # Question 1: Let $\triangle ABC \sim \triangle DEF$ and their areas be, respectively, 64 cm² and 121 cm². If EF = 15.4 cm, find BC. #### Answer 1: It is given that $$\triangle ABC \sim \triangle DEF$$. $$\therefore \frac{\text{ar}(\triangle ABC)}{\text{ar}(\triangle DEF)} = \left(\frac{AB}{DE}\right)^2 = \left(\frac{BC}{EF}\right)^2 = \left(\frac{AC}{DF}\right)^2$$ Given that, $EF = 15.4 \text{ cm}$, $\text{ar}(\triangle ABC) = 64 \text{ cm}^2$, $\text{ar}(\triangle DEF) = 121 \text{ cm}^2$ $$\therefore \frac{\text{ar}(\triangle ABC)}{\text{ar}(DEF)} = \left(\frac{BC}{EF}\right)^2$$ $$\Rightarrow \left(\frac{64 \text{ cm}^2}{121 \text{ cm}^2}\right) = \frac{BC^2}{(15.4 \text{ cm})^2}$$ $$\Rightarrow \frac{BC}{15.4} = \left(\frac{8}{11}\right) \text{cm}$$ $$\Rightarrow BC = \left(\frac{8 \times 15.4}{11}\right) \text{cm} = (8 \times 1.4) \text{cm} = 11.2 \text{ cm}$$ # Question 2: Diagonals of a trapezium ABCD with AB || DC intersect each other at the point O. If AB = 2CD, find the ratio of the areas of triangles AOB and COD. Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108) #### Answer 2: Since AB || CD, $\therefore \angle OAB = \angle OCD$ and $\angle OBA = \angle ODC$ (Alternate interior angles) In ΔAOB and ΔCOD, ∠AOB = ∠COD (Vertically opposite angles) ∠OAB = ∠OCD (Alternate interior angles) ∠OBA = ∠ODC (Alternate interior angles) .: ΔAOB ~ ΔCOD (By AAA similarity criterion) $$\therefore \frac{\operatorname{ar}(\Delta AOB)}{\operatorname{ar}(\Delta COD)} = \left(\frac{AB}{CD}\right)^2$$ Since AB = 2 CD, $$\therefore \frac{\text{ar}(\Delta AOB)}{\text{ar}(\Delta COD)} = \left(\frac{2 \text{ CD}}{\text{CD}}\right)^2 = \frac{4}{1} = 4:1$$ #### Question 3: In the following figure, ABC and DBC are two triangles on the same base BC. If AD intersects BC at O, show that $\frac{\text{area}\left(\Delta ABC\right)}{\text{area}\left(\Delta DBC\right)} = \frac{AO}{DO}$ # Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108) #### Answer 3: Let us draw two perpendiculars AP and DM on line BC. We know that area of a triangle = $\frac{1}{2} \times Base \times Height$ $$\therefore \frac{\text{ar}(\Delta ABC)}{\text{ar}(\Delta DBC)} = \frac{\frac{1}{2}BC \times AP}{\frac{1}{2}BC \times DM} = \frac{AP}{DM}.$$ In ΔAPO and ΔDMO, ∠AOP = ∠DOM (Vertically opposite angles) .: ΔΑΡΟ ~ ΔDMO (By AA similarity criterion) $$\therefore \frac{AP}{DM} = \frac{AO}{DO}$$ $$\Rightarrow \frac{ar(\Delta ABC)}{ar(\Delta DBC)} = \frac{AO}{DO}$$ #### Question 4: If the areas of two similar triangles are equal, prove that they are congruent. #### Answer 4: Let us assume two similar triangles as $\Delta ABC \sim \Delta PQR$. $$\frac{\operatorname{ar}(\Delta ABC)}{\operatorname{ar}(\Delta PQR)} = \left(\frac{AB}{PQ}\right)^2 = \left(\frac{BC}{QR}\right)^2 = \left(\frac{AC}{PR}\right)^2 \tag{1}$$ Given that, ar (ΔABC) = ar (ΔPQR) $$\Rightarrow \frac{\operatorname{ar}(\Delta ABC)}{\operatorname{ar}(\Delta PQR)} = 1$$ Putting this value in equation (1), we obtain $$1 = \left(\frac{AB}{PQ}\right)^2 = \left(\frac{BC}{QR}\right)^2 = \left(\frac{AC}{PR}\right)^2$$ $$\Rightarrow$$ AB = PQ, BC = QR, and AC = PR $$\therefore \Delta ABC \cong \Delta PQR$$ (By SSS congruence criterion) # Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108) #### Question 5: D, E and F are respectively the mid-points of sides AB, BC and CA of \triangle ABC. Find the ratio of the area of \triangle DEF and \triangle ABC. #### Answer 5: D and E are the mid-points of $\triangle ABC$. ∴ DE || AC and DE = $$\frac{1}{2}$$ AC In \triangle BED and \triangle BCA, ∠BED = ∠BCA (Corresponding angles) ∠BDE = ∠BAC (Corresponding angles) ∠EBD = ∠CBA (Common angles) ∴ \triangle BED ~ \triangle BCA (AAA similarity criterion) $$\frac{\text{ar}(\triangle BED)}{\text{ar}(\triangle BCA)} = \left(\frac{DE}{AC}\right)^2$$ $$\Rightarrow \frac{\text{ar}(\triangle BED)}{\text{ar}(\triangle BCA)} = \frac{1}{4}$$ $$\Rightarrow \text{ar}(\triangle BED) = \frac{1}{4}\text{ar}(\triangle BCA)$$ Similarly, $\text{ar}(\triangle CFE) = \frac{1}{4}\text{ar}(\triangle CBA)$ and $\text{ar}(\triangle ADF) = \frac{1}{4}\text{ar}(\triangle ABC)$ Also, $\text{ar}(\triangle DEF) = \text{ar}(\triangle ABC) - \left[\text{ar}(\triangle BED) + \text{ar}(\triangle CFE) + \text{ar}(\triangle ADF)\right]$ $$\Rightarrow \text{ar}(\triangle DEF) = \text{ar}(\triangle ABC) - \frac{3}{4}\text{ar}(\triangle ABC) = \frac{1}{4}\text{ar}(\triangle ABC)$$ $$\Rightarrow \frac{\text{ar}(\triangle DEF)}{\text{ar}(\triangle ABC)} = \frac{1}{4}$$ # Question 6: Prove that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding medians. # DPM CLASSES & COMPUTERS GWALIOR # **DPM CLASSES & COMPUTERS** # Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108) #### Answer 6: Let us assume two similar triangles as $\Delta ABC \sim \Delta PQR.$ Let AD and PS be the medians of these triangles. $$\therefore \frac{AB}{PQ} = \frac{BC}{QR} = \frac{AC}{PR} ...(1)$$ $$\angle A = \angle P$$, $\angle B = \angle Q$, $\angle C = \angle R$... (2) Since AD and PS are medians, $$\therefore$$ BD = DC = $\frac{BC}{2}$ And, QS = SR = $$\frac{QR}{2}$$ Equation (1) becomes $$\frac{AB}{PQ} = \frac{BD}{QS} = \frac{AC}{PR} \dots (3)$$ In ΔABD and ΔPQS, $\angle B = \angle Q$ [Using equation (2)] And, $$\frac{AB}{PO} = \frac{BD}{OS}$$ [Using equation (3)] \div $\Delta \text{ABD} \sim \Delta \text{PQS}$ (SAS similarity criterion) Therefore, it can be said that $$\frac{AB}{PQ} = \frac{BD}{QS} = \frac{AD}{PS} \dots (4)$$ $$\frac{ar\left(\Delta ABC\right)}{ar\left(\Delta PQR\right)} = \left(\frac{AB}{PQ}\right)^2 = \left(\frac{BC}{QR}\right)^2 = \left(\frac{AC}{PR}\right)^2$$ From equations (1) and (4), we may find that $$\frac{AB}{PQ} = \frac{BC}{QR} = \frac{AC}{PR} = \frac{AD}{PS}$$ And hence, $$\frac{\operatorname{ar}(\Delta ABC)}{\operatorname{ar}(\Delta PQR)} = \left(\frac{AD}{PS}\right)^2$$ ## Question 7: Prove that the area of an equilateral triangle described on one side of a square is equal to half the area of the equilateral triangle described on one of its diagonals. # Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108) #### Answer 7: Let ABCD be a square of side a. Therefore, its diagonal $=\sqrt{2}a$ Two desired equilateral triangles are formed as $\triangle ABE$ and $\triangle DBF$. Side of an equilateral triangle, $\triangle ABE$, described on one of its sides = a Side of an equilateral triangle, $\triangle DBF$, described on one of its diagonals $=\sqrt{2}a$ We know that equilateral triangles have all its angles as 60° and all its sides of the same length. Therefore, all equilateral triangles are similar to each other. Hence, the ratio between the areas of these triangles will be equal to the square of the ratio between the sides of these triangles. $$\frac{\text{Area of } \triangle \text{ABE}}{\text{Area of } \triangle \text{DBF}} = \left(\frac{a}{\sqrt{2}a}\right)^2 = \frac{1}{2}$$ ## Question 8: ABC and BDE are two equilateral triangles such that D is the mid-point of BC. Ratio of the area of triangles ABC and BDE is (A) 2:1 (B) 1:2 (C) 4:1 (D) 1:4 # Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108) #### Answer 8: We know that equilateral triangles have all its angles as 60° and all its sides of the same length. Therefore, all equilateral triangles are similar to each other. Hence, the ratio between the areas of these triangles will be equal to the square of the ratio between the sides of these triangles. Let side of $\triangle ABC = x$ Therefore, side of $\triangle BDE = \frac{x}{2}$ $$\therefore \frac{\operatorname{area}(\Delta \operatorname{ABC})}{\operatorname{area}(\Delta \operatorname{BDE})} = \left(\frac{x}{\frac{x}{2}}\right)^2 = \frac{4}{1}$$ Hence, the correct answer is (C). #### Question 9: Sides of two similar triangles are in the ratio 4:9. Areas of these triangles are in the ratio (A) 2:3 (B) 4:9 (C) 81:16 (D) 16:81 #### Answer 9: If two triangles are similar to each other, then the ratio of the areas of these triangles will be equal to the square of the ratio of the corresponding sides of these triangles. It is given that the sides are in the ratio 4:9. Therefore, ratio between areas of these triangles = $\left(\frac{4}{9}\right)^2 = \frac{16}{81}$ Hence, the correct answer is (D). MATHS -10 (CH-06-6.5- TRIANGLES) # Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108) #### Question 1: Sides of triangles
are given below. Determine which of them are right triangles? In case of a right triangle, write the length of its hypotenuse. - (i) 7 cm, 24 cm, 25 cm - (ii) 3 cm, 8 cm, 6 cm - (iii) 50 cm, 80 cm, 100 cm - (iv) 13 cm, 12 cm, 5 cm #### Answer 1: (i) It is given that the sides of the triangle are 7 cm, 24 cm, and 25 cm. Squaring the lengths of these sides, we will obtain 49, 576, and 625. 49 + 576 = 625 Or, $7^2 + 24^2 = 25^2$ The sides of the given triangle are satisfying Pythagoras theorem. Therefore, it is a right triangle. We know that the longest side of a right triangle is the hypotenuse. Therefore, the length of the hypotenuse of this triangle is 25 cm. (ii) It is given that the sides of the triangle are 3 cm, 8 cm, and 6 cm. Squaring the lengths of these sides, we will obtain 9, 64, and 36. However, 9 + 36 ≠ 64 Or. $3^2 + 6^2 \neq 8^2$ Clearly, the sum of the squares of the lengths of two sides is not equal to the square of the length of the third side. Therefore, the given triangle is not satisfying Pythagoras theorem. Hence, it is not a right triangle. (iii) Given that sides are 50 cm, 80 cm, and 100 cm. Squaring the lengths of these sides, we will obtain 2500, 6400, and 10000. However, 2500 + 6400 ≠ 10000 Or. $50^2 + 80^2 \neq 100^2$ Clearly, the sum of the squares of the lengths of two sides is not equal to the square of the length of the third side. Therefore, the given triangle is not satisfying Pythagoras theorem. Hence, it is not a right triangle. # Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108) (iv)Given that sides are 13 cm, 12 cm, and 5 cm. Squaring the lengths of these sides, we will obtain 169, 144, and 25. Clearly, 144 +25 = 169 Or, $12^2 + 5^2 = 13^2$ The sides of the given triangle are satisfying Pythagoras theorem. Therefore, it is a right triangle. We know that the longest side of a right triangle is the hypotenuse. Therefore, the length of the hypotenuse of this triangle is 13 cm. ## Question 2: PQR is a triangle right angled at P and M is a point on QR such that PM \perp QR. Show that PM² = QM \times MR. #### Answer 2: ``` Let \angle MPR = x In AMPR. \angle MRP = 180^{\circ} - 90^{\circ} - x \angle MRP = 90^{\circ} - x Similarly, in AMPQ, \angle MPQ = 90^{\circ} - \angle MPR =90^{\circ}-x \angle MOP = 180^{\circ} - 90^{\circ} - (90^{\circ} - x) \angle MQP = x In \triangle QMP and \trianglePMR, \angle MPQ = \angle MRP \angle PMQ = \angle RMP \angle MQP = \angle MPR (By AAA similarity criterion) ∴ ∆QMP ~ ∆PMR \Rightarrow \frac{QM}{PM} = \frac{MP}{MR} \Rightarrow PM² = QM×MR ``` # DPM CLASSES & COMPUTERS GWALIOR # **DPM CLASSES & COMPUTERS** # Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108) ### Question 3: In the following figure, ABD is a triangle right angled at A and AC \perp BD. Show that (i) $$AB^2 = BC \times BD$$ (ii) $$AC^2 = BC \times DC$$ (iii) $$AD^2 = BD \times CD$$ #### Answer 3: (i) In ΔADB and ΔCAB, $$\angle DAB = \angle ACB$$ (Each 90°) $$\angle ABD = \angle CBA$$ (Common angle) $$\Rightarrow \frac{AB}{CB} = \frac{BD}{AB}$$ $$\Rightarrow AB^2 = CB \times BD$$ (ii) Let $\angle CAB = x$ InΔCBA, $$\angle CBA = 180^{\circ} - 90^{\circ} - x$$ $$\angle CBA = 90^{\circ} - x$$ Similarly, in∆CAD, $$\angle CAD = 90^{\circ} - \angle CAB$$ $$=90^{\circ}-x$$ $$\angle CDA = 180^{\circ} - 90^{\circ} - (90^{\circ} - x)$$ $$\angle CDA = x$$ In Δ CBA and Δ CAD, $$\angle CBA = \angle CAD$$ $$\angle CAB = \angle CDA$$ $$\angle ACB = \angle DCA$$ $$\Rightarrow \frac{AC}{DC} = \frac{BC}{AC}$$ $$\Rightarrow AC^2 = DC \times BC$$ ## Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108) (iii) In $\triangle DCA$ and $\triangle DAB$, $\angle DCA = \angle DAB$ (Each 90°) $\angle CDA = \angle ADB$ (Common angle) $\therefore \triangle DCA \sim \triangle DAB$ (AA similarity criterion) $\Rightarrow \frac{DC}{DA} = \frac{DA}{DB}$ $\Rightarrow AD^2 = BD \times CD$ ### Question 4: ABC is an isosceles triangle right angled at C. prove that $AB^2 = 2 AC^2$. #### Answer 4: Given that \triangle ABC is an isosceles triangle. Applying Pythagoras theorem in \triangle ABC (i.e., right-angled at point C), we obtain $$AC^{2} + CB^{2} = AB^{2}$$ $\Rightarrow AC^{2} + AC^{2} = AB^{2}$ (AC=CB) $\Rightarrow 2AC^{2} = AB^{2}$ ### Question 5: ABC is an isosceles triangle with AC = BC. If AB^2 = 2 AC^2 , prove that ABC is a right triangle. # Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108) #### Answer 5: Given that, $$AB^{2} = 2AC^{2}$$ $$\Rightarrow AB^{2} = AC^{2} + AC^{2}$$ $$\Rightarrow AB^{2} = AC^{2} + BC^{2} \text{ (As AC = BC)}$$ The triangle is satisfying the pythagoras theorem. Therefore, the given triangle is a right - angled triangle. #### Question 6: ABC is an equilateral triangle of side 2a. Find each of its altitudes. #### Answer 6: Let AD be the altitude in the given equilateral triangle, \triangle ABC. We know that altitude bisects the opposite side. $$\therefore$$ BD = DC = a $$\angle ADB = 90^{\circ}$$ Applying pythagoras theorem, we obtain $$AD^2 + DB^2 = AB^2$$ $$\Rightarrow$$ AD² + $a^2 = (2a)^2$ $$\Rightarrow$$ AD² + a^2 = $4a^2$ $$\Rightarrow AD^2 = 3a^2$$ $$\Rightarrow$$ AD = $a\sqrt{3}$ In an equilateral triangle, all the altitudes are equal in length. Therefore, the length of each altitude will be $\sqrt{3}a$. ## Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108) #### Question 7: Prove that the sum of the squares of the sides of rhombus is equal to the sum of the squares of its diagonals. #### Answer 7: Ιη ΔΑΟΒ, ΔΒΟC, ΔCOD, ΔΑΟD, Applying Pythagoras theorem, we obtain $$AB^2 = AO^2 + OB^2$$... (1) $$BC^2 = BO^2 + OC^2$$... (2) $$CD^2 = CO^2 + OD^2$$... (3) $$AD^2 = AO^2 + OD^2$$... (4) Adding all these equations, we obtain $$AB^2 + BC^2 + CD^2 + AD^2 = 2(AO^2 + OB^2 + OC^2 + OD^2)$$ $$=2\left[\left(\frac{AC}{2}\right)^2+\left(\frac{BD}{2}\right)^2+\left(\frac{AC}{2}\right)^2+\left(\frac{BD}{2}\right)^2\right]$$ (Diagonals bisect each other) $$=2\left(\frac{\left(AC\right)^{2}}{2}+\frac{\left(BD\right)^{2}}{2}\right)$$ $$= (AC)^2 + (BD)^2$$ # Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108) ## Question 8: In the following figure, O is a point in the interior of a triangle ABC, OD \perp BC, OE \perp AC and OF \perp AB. Show that (i) $$OA^2 + OB^2 + OC^2 - OD^2 - OE^2 - OF^2 = AF^2 + BD^2 + CE^2$$ (ii) $$AF^2 + BD^2 + CE^2 = AE^2 + CD^2 + BF^2$$ #### Answer 8: Join OA, OB, and OC. (i) Applying Pythagoras theorem in $\triangle AOF$, we obtain $OA^2 = OF^2 + AF^2$ Similarly, in ABOD, $OB^2 = OD^2 + BD^2$ Similarly, in ACOE, $OC^2 = OE^2 + EC^2$ Adding these equations, $$OA^{2} + OB^{2} + OC^{2} = OF^{2} + AF^{2} + OD^{2} + BD^{2} + OE^{2} + EC^{2}$$ $$OA^{2} + OB^{2} + OC^{2} - OD^{2} - OE^{2} - OF^{2} = AF^{2} + BD^{2} + EC^{2}$$ (ii) From the above result, $$AF^{2} + BD^{2} + EC^{2} = (OA^{2} - OE^{2}) + (OC^{2} - OD^{2}) + (OB^{2} - OF^{2})$$ $$AF^2 + BD^2 + EC^2 = AE^2 + CD^2 + BF^2$$ # DPM CLASSES & COMPUTERS GWALIOR # **DPM CLASSES & COMPUTERS** ## Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108) ### Question 9: A ladder 10 m long reaches a window 8 m above the ground. Find the distance of the foot of the ladder from base of the wall. #### Answer 9: Let OA be the wall and AB be the ladder. Therefore, by Pythagoras theorem, $$AB^2 = OA^2 + BO^2$$ $$(10 \text{ m})^2 = (8 \text{ m})^2 + \text{OB}^2$$ $$100 \text{ m}^2 = 64 \text{ m}^2 + \text{OB}^2$$ $$OB^2 = 36 \text{ m}^2$$ $$OB = 6 \text{ m}$$ Therefore, the distance of the foot of the ladder from the base of the wall is 6 m. ### Question 10: A guy wire attached to a vertical pole of height 18 m is 24 m long and has a stake attached to the other end. How far from the base of the pole should the stake be driven so that the wire will be taut? ### Answer 10: Let OB be the pole and AB be the wire. By Pythagoras theorem, $$AB^2 = OB^2 + OA^2$$ $$(24 \text{ m})^2 = (18 \text{ m})^2 + \text{OA}^2$$ $$OA^2 = (576 - 324) m^2 = 252 m^2$$ $$OA = \sqrt{252} \text{ m} = \sqrt{6 \times 6 \times 7} \text{ m} = 6\sqrt{7} \text{ m}$$ Therefore, the distance from the base is $6\sqrt{7}$ m. # Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108) ### Question 11: An aeroplane leaves an airport and flies due north at a speed of 1,000 km per hour. At the same time, another aeroplane leaves the same airport and flies due west at a speed of 1,200 km per hour. How far apart will be the two planes after $1\frac{1}{2}$ hours? #### Answer 11: Distance travelled by the plane flying towards north in $1\frac{1}{2}$ hrs = 1,000×1 $\frac{1}{2}$ = 1,500 km Similarly, distance travelled by the plane flying towards west in $1\frac{1}{2}$ hrs = 1,200×1 $\frac{1}{2}$ = 1,800 km Let these distances be represented by OA and OB respectively. Applying Pythagoras theorem, Distance between these planes after $1\frac{1}{2}$ hrs, AB = $\sqrt{OA^2 + OB^2}$ $$= \left(\sqrt{(1,500)^2 + (1,800)^2}\right) \text{km} = \left(\sqrt{2250000 + 3240000}\right) \text{km}$$ $$= \left(\sqrt{5490000}\right) \text{km} = \left(\sqrt{9 \times 610000}\right) \text{km} = 300\sqrt{61} \text{ km}$$ Therefore, the distance between these planes will be $300\sqrt{61}$ km after $1\frac{1}{2}$ hrs. ## Question 12: Two poles of heights 6 m and 11 m stand on a plane ground. If the distance between the feet of the poles is 12 m, find the distance between their tops. Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108) #### Answer 12: Let CD and AB be the poles of height 11 m and 6 m. Therefore, CP = 11 - 6 = 5 m From the figure, it can be observed that AP = 12m Applying Pythagoras theorem for \triangle APC, we obtain $$AP^2 + PC^2 = AC^2$$ $$(12 \text{ m})^2 + (5 \text{ m})^2 = AC^2$$ $$AC^2 = (144 + 25) m^2 = 169 m^2$$ $$AC = 13 \text{ m}$$ Therefore, the distance between their tops is 13 m. #### Question 13: D and E are points on
the sides CA and CB respectively of a triangle ABC right angled at C. Prove that $AE^2 + BD^2 = AB^2 + DE^2$ #### Answer 13: Applying Pythagoras theorem in \triangle ACE, we obtain $$AC^2 + CE^2 = AE^2$$... (1 Applying Pythagoras theorem in ΔBCD, we obtain $$BC^2 + CD^2 = BD^2 \qquad ... (2)$$ Using equation (1) and equation (2), we obtain $$AC^2 + CE^2 + BC^2 + CD^2 = AE^2 + BD^2$$... (3) Applying Pythagoras theorem in ΔCDE , we obtain $$DE^2 = CD^2 + CE^2$$ Applying Pythagoras theorem in ΔABC, we obtain $$AB^2 = AC^2 + CB^2$$ Putting the values in equation (3), we obtain $$DE^2 + AB^2 = AE^2 + BD^2$$ # DPM CLASSES & COMPUTERS GWALIOR # **DPM CLASSES & COMPUTERS** # Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108) ## Question 14: The perpendicular from A on side BC of a \triangle ABC intersect BC at D such that DB = 3 CD. Prove that $2 \text{ AB}^2 = 2 \text{ AC}^2 + \text{BC}^2$ #### Answer 14: Applying Pythagoras theorem for Δ ACD, we obtain $$AC^2 = AD^2 + DC^2$$ $$AD^2 = AC^2 - DC^2$$... (1) Applying Pythagoras theorem in $\triangle ABD$, we obtain $$AB^2 = AD^2 + DB^2$$ $$AD^2 = AB^2 - DB^2 \qquad ... ($$ From equation (1) and equation (2), we obtain $$AC^2 - DC^2 = AB^2 - DB^2$$... (3 It is given that 3DC = DB $$\therefore DC = \frac{BC}{4} \text{ and } DB = \frac{3BC}{4}$$ Putting these values in equation (3), we obtain $$AC^2 - \left(\frac{BC}{4}\right)^2 = AB^2 - \left(\frac{3BC}{4}\right)^2$$ $$AC^2 - \frac{BC^2}{16} = AB^2 - \frac{9BC^2}{16}$$ $$16AC^2 - BC^2 = 16AB^2 - 9BC^2$$ $$16AB^2 - 16AC^2 = 8BC^2$$ $$2AB^2 = 2AC^2 + BC^2$$ ### Question 15: In an equilateral triangle ABC, D is a point on side BC such that BD = $\frac{1}{3}$ BC. Prove that 9 AD² = 7 AB². # Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108) #### Answer 15: Let the side of the equilateral triangle be a, and AE be the altitude of \triangle ABC. $$\therefore BE = EC = \frac{BC}{2} = \frac{a}{2}$$ And, AE = $$\frac{a\sqrt{3}}{2}$$ Given that, BD = $$\frac{1}{3}$$ BC $$\therefore BD = \frac{a}{3}$$ DE = BE - BD = $$\frac{a}{2} - \frac{a}{3} = \frac{a}{6}$$ Applying Pythagoras theorem in AADE, we obtain $$AD^2 = AE^2 + DE^2$$ $$AD^{2} = \left(\frac{a\sqrt{3}}{2}\right)^{2} + \left(\frac{a}{6}\right)^{2}$$ $$= \left(\frac{3a^{2}}{4}\right) + \left(\frac{a^{2}}{36}\right)$$ $$= \frac{28a^{2}}{36}$$ $$= \frac{7}{9}AB^{2}$$ $$\Rightarrow 9 AD^{2} = 7 AB^{2}$$ ### Question 16: In an equilateral triangle, prove that three times the square of one side is equal to four times the square of one of its altitudes. Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108) #### Answer 16: Let the side of the equilateral triangle be a, and AE be the altitude of \triangle ABC. $$\therefore BE = EC = \frac{BC}{2} = \frac{a}{2}$$ Applying Pythagoras theorem in $\triangle ABE$, we obtain $$AB^2 = AE^2 + BE^2$$ $$a^2 = AE^2 + \left(\frac{a}{2}\right)^2$$ $$AE^2 = a^2 - \frac{a^2}{4}$$ $$AE^2 = \frac{3a^2}{4}$$ $$4AE^2 = 3a^2$$ \Rightarrow 4 × (Square of altitude) = 3 × (Square of one side) ## Question 17: Tick the correct answer and justify: In \triangle ABC, AB = $6\sqrt{3}$ cm, AC = 12 cm and BC = 6 cm. The angle B is: - (A) 120° (B) 60° - (C) 90° (D) 45° Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108) #### Answer 17: Given that, AB = $6\sqrt{3}$ cm, AC = 12 cm, and BC = 6 cm It can be observed that $AB^2 = 108$ $AC^2 = 144$ And, $BC^2 = 36$ $AB^2 + BC^2 = AC^2$ The given triangle, $\triangle ABC$, is satisfying Pythagoras theorem. Therefore, the triangle is a right triangle, right-angled at B. .. ∠B = 90° Hence, the correct answer is (C). MATHS -10 (CH-06-6.6- TRIANGLES) Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108) ## Question 1: In the given figure, PS is the bisector of $\angle QPR$ of $\triangle PQR$. Prove that $\frac{QS}{SR} = \frac{PQ}{PR}$. #### Answer 1: Let us draw a line segment RT parallel to SP which intersects extended line segment QP at point T. Given that, PS is the angle bisector of ∠QPR. By construction, ∠SPR = ∠PRT (As PS || TR) ... (2) ∠QPS = ∠QTR (As PS || TR) ... (3) Using these equations, we obtain By construction, PS || TR By using basic proportionality theorem for ΔQTR, $$\begin{array}{l} \frac{QS}{SR} = \frac{QP}{PT} \\ \Rightarrow \frac{QS}{SR} = \frac{PQ}{PR} \end{array} \quad (:: PT = PR) \end{array}$$ ## Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108) ### Question 2: In the given figure, D is a point on hypotenuse AC of \triangle ABC, DM \perp BC and DN \perp AB, Prove that: - (i) $DM^2 = DN.MC$ - (ii) $DN^2 = DM.AN$ #### Answer 2: (i)Let us join DB. We have, DN || CB, DM || AB, and $\angle B = 90^{\circ}$ - .. DMBN is a rectangle. - .. DN = MB and DM = NB The condition to be proved is the case when D is the foot of the perpendicular drawn from B to AC. .. ∠CDB = 90° \Rightarrow \angle 2 + \angle 3 = 90° ... (1) # DPM CLASSES & COMPUTERS GWALIOR # **DPM CLASSES & COMPUTERS** # Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108) ``` In ACDM, ∠1 + ∠2 + ∠DMC = 180° \Rightarrow \angle 1 + \angle 2 = 90^{\circ} ... (2) In \Delta DMB. \angle 3 + \angle DMB + \angle 4 = 180^{\circ} \Rightarrow \angle 3 + \angle 4 = 90^{\circ} \dots (3) From equation (1) and (2), we obtain From equation (1) and (3), we obtain \angle 2 = \angle 4 In \triangle DCM and \triangle BDM, \angle 1 = \angle 3 (Proved above) \angle 2 = \angle 4 (Proved above) .: ΔDCM ~ ΔBDM (AA similarity criterion) \Rightarrow \frac{BM}{BM} = \frac{DM}{BM} DM MC \Rightarrow \frac{\mathrm{DN}}{\mathrm{DM}} = \frac{\mathrm{DM}}{\mathrm{MC}} (BM = DN) \Rightarrow DM² = DN \times MC (ii) In right triangle DBN, \angle 5 + \angle 7 = 90^{\circ} \dots (4) In right triangle DAN, \angle 6 + \angle 8 = 90^{\circ} \dots (5) D is the foot of the perpendicular drawn from B to AC. .: ∠ADB = 90° \Rightarrow \angle 5 + \angle 6 = 90^{\circ} \dots (6) From equation (4) and (6), we obtain \angle 6 = \angle 7 From equation (5) and (6), we obtain ∠8 = ∠5 In \triangleDNA and \triangleBND, \angle 6 = \angle 7 (Proved above) \angle 8 = \angle 5 (Proved above) .: ΔDNA ~ ΔBND (AA similarity criterion) \Rightarrow \frac{AN}{DN} = \frac{DN}{NB} ``` \Rightarrow DN² = AN × NB \Rightarrow DN² = AN × DM (As NB = DM) # DPM CLASSES & COMPUTERS GWALIOR # **DPM CLASSES & COMPUTERS** # Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108) ### Question 3: In the given figure, ABC is a triangle in which \angle ABC> 90° and AD \perp CB produced. Prove that AC² = AB² + BC² + 2BC.BD. #### Answer 3: Applying Pythagoras theorem in $\Delta \text{ADB},$ we obtain $AB^2 = AD^2 + DB^2 ... (1)$ Applying Pythagoras theorem in ΔACD , we obtain $AC^2 = AD^2 + DC^2$ $AC^2 = AD^2 + (DB + BC)^2$ $AC^2 = AD^2 + DB^2 + BC^2 + 2DB \times BC$ $AC^2 = AB^2 + BC^2 + 2DB \times BC$ [Using equation (1)] ### Question 4: In the given figure, ABC is a triangle in which \angle ABC < 90° and AD \perp BC. Prove that AC² = AB² + BC² - 2BC.BD. #### Answer 4: Applying Pythagoras theorem in $\Delta \text{ADB},$ we obtain $AD^2 + DB^2 = AB^2$ \Rightarrow AD² = AB² - DB² ... (1) Applying Pythagoras theorem in AADC, we obtain $AD^2 + DC^2 = AC^2$ $AB^2 - BD^2 + DC^2 = AC^2$ [Using equation (1)] $AB^2 - BD^2 + (BC - BD)^2 = AC^2$ $AC^2 = AB^2 - BD^2 + BC^2 + BD^2 - 2BC \times BD$ $= AB^2 + BC^2 - 2BC \times BD$ # Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108) ## Question 5: In the given figure, AD is a median of a triangle ABC and AM \perp BC. Prove that: (i) $$AC^2 = AD^2 + BC.DM + \left(\frac{BC}{2}\right)^2$$ (ii) $$AB^2 = AD^2 - BC.DM + \left(\frac{BC}{2}\right)^2$$ (iii) $$AC^2 + AB^2 = 2AD^2 + \frac{1}{2}BC^2$$ #### Answer 5: (i) Applying Pythagoras theorem in Δ AMD, we obtain $$AM^2 + MD^2 = AD^2 ... (1)$$ Applying Pythagoras theorem in AAMC, we obtain $$AM^2 + MC^2 = AC^2$$ $$AM^2 + (MD + DC)^2 = AC^2$$ $$(AM^2 + MD^2) + DC^2 + 2MD.DC = AC^2$$ $$AD^2 + DC^2 + 2MD.DC = AC^2$$ [Using equation (1)] Using the result, $DC = \frac{BC}{2}$, we obtain $$AD^{2} + \left(\frac{BC}{2}\right)^{2} + 2MD \cdot \left(\frac{BC}{2}\right) = AC^{2}$$ $$AD^2 + \left(\frac{BC}{2}\right)^2 + MD \times BC = AC^2$$ (ii) Applying Pythagoras theorem in ΔABM, we obtain $$AB^2 = AM^2 + MB^2$$ $$= (AD^2 - DM^2) + MB^2$$ $$= (AD^2 - DM^2) + (BD - MD)^2$$ $$= AD^2 - DM^2 + BD^2 + MD^2 - 2BD \times MD$$ $$= AD^2 + BD^2 - 2BD \times MD$$ $$= AD^2 + \left(\frac{BC}{2}\right)^2 - 2\left(\frac{BC}{2}\right) \times MD$$ $$= AD^2 + \left(\frac{BC}{2}\right)^2 - BC \times MD$$ # Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108) (iii)Applying Pythagoras theorem in ΔABM, we obtain $$AM^2 + MB^2 = AB^2 ... (1)$$ Applying Pythagoras theorem in \triangle AMC, we obtain $$AM^2 + MC^2 = AC^2 ... (2)$$ Adding equations (1) and (2), we obtain $$2AM^2 + MB^2 + MC^2 = AB^2 + AC^2$$ $$2AM^2 + (BD - DM)^2 + (MD + DC)^2 = AB^2 + AC^2$$ $$2AM^2+BD^2+DM^2-2BD.DM+MD^2+DC^2+2MD.DC=AB^2+AC^2$$ $$2AM^2 + 2MD^2 + BD^2 + DC^2 + 2MD (-BD + DC) = AB^2 + AC^2$$ $$2(AM^2 + MD^2) + (\frac{BC}{2})^2 + (\frac{BC}{2})^2 + 2MD(-\frac{BC}{2} + \frac{BC}{2}) = AB^2 + AC^2$$ $$2AD^2 + \frac{BC^2}{2} = AB^2 + AC^2$$ #### Question 6: Prove that the sum of the squares of the diagonals of parallelogram is equal to the sum of the squares of its sides. #### Answer 6: # Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108) Let ABCD be a parallelogram. Let us draw perpendicular DE on extended side AB, and AF on side DC. Applying Pythagoras theorem in ΔDEA, we obtain $$DE^2 + EA^2 = DA^2 ... (i)$$ Applying Pythagoras theorem in ΔDEB, we obtain $$DE^2 + EB^2 = DB^2$$ $$DE^{2} + (EA + AB)^{2} = DB^{2}$$ $$(DE^2 + EA^2) + AB^2 + 2EA \times AB = DB^2$$ $$DA^2 + AB^2 + 2EA \times AB = DB^2 ... (ii)$$ Applying Pythagoras theorem in AADF, we obtain $$AD^2 =
AF^2 + FD^2$$ Applying Pythagoras theorem in ΔAFC, we obtain $$AC^2 = AF^2 + FC^2$$ $$= AF^2 + (DC - FD)^2$$ $$= AF^2 + DC^2 + FD^2 - 2DC \times FD$$ $$= (AF^2 + FD^2) + DC^2 - 2DC \times FD$$ $$AC^2 = AD^2 + DC^2 - 2DC \times FD \dots (iii)$$ Since ABCD is a parallelogram, $$AB = CD \dots (iv)$$ $$\angle DEA = \angle AFD$$ (Both 90°) $$\angle EAD = \angle ADF (EA || DF)$$ $\Delta \Delta \Delta \Delta \Delta \Delta \simeq \Delta \Delta \Delta \Delta \Delta \Delta \simeq \Delta \Delta \Delta \Delta \simeq \Delta \Delta \Delta \Delta \simeq \Delta \Delta \Delta \simeq \Delta \Delta \Delta \simeq \Delta \Delta \Delta \simeq \simeq$ Adding equations (i) and (iii), we obtain $$DA^{2} + AB^{2} + 2EA \times AB + AD^{2} + DC^{2} - 2DC \times FD = DB^{2} + AC^{2}$$ $$DA^{2} + AB^{2} + AD^{2} + DC^{2} + 2EA \times AB - 2DC \times FD = DB^{2} + AC^{2}$$ $$BC^{2} + AB^{2} + AD^{2} + DC^{2} + 2EA \times AB - 2AB \times EA = DB^{2} + AC^{2}$$ [Using equations (iv) and (vi)] $$AB^2 + BC^2 + CD^2 + DA^2 = AC^2 + BD^2$$ # Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108) ## Question 7: In the given figure, two chords AB and CD intersect each other at the point P. prove that: - (i) ΔAPC ~ ΔDPB - (ii) AP.BP = CP.DP #### Answer 7: Let us join CB. (i) In ΔAPC and ΔDPB, \angle APC = \angle DPB (Vertically opposite angles) \angle CAP = \angle BDP (Angles in the same segment for chord CB) ΔAPC ~ ΔDPB (By AA similarity criterion) (ii) We have already proved that $\triangle APC \sim \triangle DPB$ We know that the corresponding sides of similar triangles are proportional. $$\therefore \frac{AP}{DP} = \frac{PC}{PB} = \frac{CA}{BD}$$ $$\Rightarrow \frac{AP}{DP} = \frac{PC}{PB}$$ # Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108) #### Question 8: In the given figure, two chords AB and CD of a circle intersect each other at the point P (when produced) outside the circle. Prove that (i) $\Delta PAC \sim \Delta PDB$ (ii) PA.PB = PC.PD #### Answer 8: (i) In ΔPAC and ΔPDB, $\angle P = \angle P$ (Common) \angle PAC = \angle PDB (Exterior angle of a cyclic quadrilateral is \angle PCA = \angle PBD equal to the opposite interior angle) ∴ ΔPAC ~ ΔPDB (ii)We know that the corresponding sides of similar triangles are proportional. $$\therefore \frac{PA}{PD} = \frac{AC}{DB} = \frac{PC}{PB}$$ $$\Rightarrow \frac{PA}{PD} = \frac{PC}{PB}$$ ∴ PA.PB = PC.PD ### Question 9: In the given figure, D is a point on side BC of \triangle ABC such that $\frac{BD}{CD} = \frac{AB}{AC}$. Prove that AD is the bisector of \angle BAC. Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108) #### Answer 9: Let us extend BA to P such that AP = AC. Join PC. It is given that, $$\frac{BD}{CD} = \frac{AB}{AC}$$ $$\Rightarrow \frac{BD}{CD} = \frac{AP}{AC}$$ By using the converse of basic proportionality theorem, we obtain AD $\mid\mid$ PC \Rightarrow \angle BAD = \angle APC (Corresponding angles) ... (1) And, $\angle DAC = \angle ACP$ (Alternate interior angles) ... (2) By construction, we have AP = AC \Rightarrow \angle APC = \angle ACP ... (3) On comparing equations (1), (2), and (3), we obtain $\angle BAD = \angle APC$ \Rightarrow AD is the bisector of the angle BAC. # Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108) ## Question 10: Nazima is fly fishing in a stream. The tip of her fishing rod is 1.8 m above the surface of the water and the fly at the end of the string rests on the water 3.6 m away and 2.4 m from a point directly under the tip of the rod. Assuming that her string (from the tip of her rod to the fly) is taut, ho much string does she have out (see Fig. 6.64)? If she pulls in the string at the rate of 5 cm per second, what will be the horizontal distance of the fly from her after 12 seconds? #### Answer 10: Let AB be the height of the tip of the fishing rod from the water surface. Let BC be the horizontal distance of the fly from the tip of the fishing rod. Then, AC is the length of the string. AC can be found by applying Pythagoras theorem in \triangle ABC. $AC^2 = AB^2 + BC^2$ $AB^2 = (1.8 \text{ m})^2 + (2.4 \text{ m})^2$ $AB^2 = (3.24 + 5.76) \text{ m}^2$ $AB^2 = 9.00 \text{ m}^2$ \Rightarrow AB = $\sqrt{9}$ m = 3 m Thus, the length of the string out is 3 m. # DPM CLASSES & COMPUTERS GWALIOR # **DPM CLASSES & COMPUTERS** ## Special for Math's & Science By - Er. Dharmendra Sir (9584873492,7974073108) She pulls the string at the rate of 5 cm per second. Therefore, string pulled in 12 seconds = $12 \times 5 = 60$ cm = 0.6 m Let the fly be at point D after 12 seconds. Length of string out after 12 seconds is AD. AD = AC - String pulled by Nazima in 12 seconds = (3.00 - 0.6) m = 2.4 m In Δ ADB, AB² + BD² = AD² $(1.8 \text{ m})^2$ + BD² = $(2.4 \text{ m})^2$ BD² = (5.76 - 3.24) m² = 2.52 m² BD = 1.587 m Horizontal distance of fly = BD + 1.2 m - = (1.587 + 1.2) m - $= 2.787 \, \mathrm{m}$ - $= 2.79 \, \mathrm{m}$