

## ALP Trust Science 2020

#### Language for Learning

Through the activities in this topic, pupils should **understand and use key scientific words precisely** - spelling these words correctly. This includes - words with precise scientific meanings (e.g. weight and mass), words with different meanings in scientific and everyday contexts (e.g. drag) and words relating to scientific enquiry (e.g. variable).

|               | Key Scientific Words                                                                     |
|---------------|------------------------------------------------------------------------------------------|
| Key Word      | Definition (Meaning)                                                                     |
| Sound         | A vibration in a substance – we can hear some of these vibrations with our ears          |
| Vibrate       | To move backwards and forwards                                                           |
| Frequency     | The number of times an object vibrates in a second                                       |
| Loudness      | How loud a sound is (the volume of a sound)                                              |
| Loud          | A sound with a high loudness                                                             |
| Quiet         | A sound with a low loudness                                                              |
| Pitch         | How high or low a note sounds                                                            |
| High          | A sound with a high frequency                                                            |
| Low           | A sound with a low frequency                                                             |
| Data Logger   | A meter which can be used to measure the loudness of a sound                             |
| decibel (dB)  | The unit of measurement for loudness                                                     |
| Medium        | A substance that sound (or something else) travels through                               |
| Vacuum        | An empty space with no particles                                                         |
| Echo          | A repeat of a sound                                                                      |
| Echolocation  | A method of sensing objects using sound (For example, used by bats, whales and dolphins) |
| Hearing Range | The range of pitch (frequency) that an animal can hear                                   |
| Tuningfork    | An instrument that vibrates at a specific frequency                                      |

### **Key Concepts**

Sounds are made when things vibrate.

The vibrations are passed on by substances.

Sound needs a substance **(a medium)** to travel through. A **vacuum** is an empty place without a substance. Sound cannot travel through a vacuum.



Sound travels in all directions and spreads out.

We detect sounds when they enter the ear

The pitch of a sound is how high (like a bird's tweet) or low (like a dog's woof) the sound is.

The loudness of a sound is how loud or quiet a sound is.

We can **measure** how loud a sound is by using a **data logger** or sound intensity meter. This is a piece of equipment which measures the loudness of a sound in **decibels (dB)** 



# <u>Year 4 – Sound</u>

## ALP Trust Science 2020

## **Key Concepts**

#### **Changing Pitch**

The **pitch of a sound can be changed** by changing the features of the object that produces the sound

For example, the shorter a string on a musical instrument the higher the pitch



## **Changing Loudness**

The **loudness of a sound can be changed** by changing the **strength** of the vibrations that produce the sound

For example, if you strike a drum **harder** - the strength of the vibrations will be **greater** and the sound will be **louder** 



## Absorbing Sound

Soft materials can absorb ('take in') sound.

Soft materials are used in soundproofing and for making ear protectors.





As sound energy travels away from a **sound source** it becomes more **spread out** and is **absorbed**.

As a result, sounds get fainter as the distance from the sound source increases

