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A B S T R A C T   

Around the world, metropolitan areas invest in infrastructure for traffic data collection, albeit 
focusing on highway networks, thus limiting the amount of data available on inner-city roads. For 
this purpose, various modelling techniques have been developed to interpolate traffic counts 
spatially and temporally across an entire road network. However, the predictive accuracy of these 
models depends on the quality and coverage of traffic count data. In this study, we extend the 
power of spatio-temporal interpolation models with vehicle detection from aerial images, 
developing a new approach to estimate Annual Average Daily Traffic (AADT) across all roads in 
an urban area. Using Google aerial images, we extracted the number of vehicles on a road 
segment and treated these values as observed traffic counts collected over a short period of time. 
This information was used as input and merged with traffic count data at stations with longer 
record lengths to predict traffic on all urban roads. This approach was compared against a hold- 
out sample of roads with observed traffic count data and images, indicating an R-squared (R2) =
90% and RMSE = 7675 between predicted and observed daily traffic counts and R2 = 58% and 
RMSE = 18918 between observed and predicted AADT. The higher prediction accuracy for daily 
traffic indicates the power of the proposed method for predicting daily values from images; while 
the lower accuracy of AADT prediction stresses the need for longer-term data to achieve accurate 
annual averages based on counts derived from images.   

1. Introduction 

Many metropolitan areas around the world collect vehicle counts on highways and a select number of major roads, yet with 
insufficient coverage due to the high costs of permanent ground-based traffic monitoring stations (Gastaldi et al., 2014). In addition to 
sparse but long-term traffic count stations in urban areas, short-term counts (on the order of a few days) typically have wider coverage, 
albeit representing a shorter time frame. Short-term traffic counts are usually collected by municipalities in the context of specific 
projects (traffic impact assessment or safety analysis) and can extend across many locations on the road network. For this reason, 
different approaches for traffic count prediction have been proposed in the literature, mostly capitalizing on the use of short-term 
traffic counts, merged with road and land use information to predict Annual Average Daily Traffic (AADT) using a range of inter-
polation methods (Wang & Kockelman, 2009; Gastaldi et al., 2014; Bagheri et al., 2015; Ganji et al., 2020a). The challenge with such 
methods is that traffic fluctuations on short time scales as well as time-of-day, day-of-week, and seasonal patterns, often distort the 
accuracy of the AADT estimates (Ganji et al., 2020a). The US Federal Highway Administration recommends that a traffic density 
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variation factor be applied to account for time-of-day, day-of-the-week, and monthly variations when using less-than-a-day counts to 
estimate AADT (US Federal Highway Administration, 2016). To overcome this challenge, in a few studies, the relationship between 
long-term and short-term traffic counts was captured (Bagheri et al., 2015; Kaack et al., 2019; Ganji et al., 2020a). Kaack et al. (2019) 
approximated the density variation factor from nearby regions where traffic was monitored. The authors estimated the factor as the 
conditional average of normalized hourly count values (the hourly count data divided by the mean of all hourly counts in the year). In 
Ganji et al. (2020a), a Traffic Emission Prediction scheme (TEPs) uses a long record of traffic counts to extend downstream daily traffic 
counts; a pattern recognition approach further identifies a coefficient to estimate AADT from daily values. This technique provides a 
unique basis to use short-term traffic counts (e.g., one day) for long-term average traffic prediction (AADT). Advances in such hybrid 
methods that rely on short and long-term traffic counts provide a promising avenue to improve traffic prediction models by harnessing 
all data collected in an urban network. 

Alternative ways of expanding the database of short-term counts include using satellite imagery (Larsen et al., 2009), GPS data from 
cell phones, and aerial imagery. These techniques capitalize on the use of various sources of information that are generally more 
ubiquitous than costly traffic counters and cameras (Larsen et al., 2009). With image processing, many roads can be covered, especially 
those not equipped with traffic sensors (Larsen et al., 2009). While the application of this technique in traffic prediction has been 
limited due to the short-term nature of the traffic captured in an image (Cao et al., 2016), the detection of vehicles in images has 
attracted extensive research focus in the past years (Hinz, 2004; Lenhart et al., 2008; Holt et al., 2009; Kozempel and Reulke, 2009; 
Larsen et al., 2009; Kembhavi et al., 2010; Li et al., 2021). Among these vehicle detection methods, Larsen et al. (2009) constructed a 
vehicle shadow mask to provide information on the type of vehicles and traffic counts. The proposed method overcomes the explicit 
segmentation methods, which may fail to capture vehicles of very low contrast to the local background, especially when the low 
contrast segments are only slightly brighter than the road. Recent progress in object detection in aerial images benefited largely from 
region-based convolutional neural networks (R-CNN) (Girshick et al., 2014; Girshick, 2015; Ren et al., 2015; Cheng et al., 2016; Deng 
et al., 2017; Long et al., 2017). The literature’s most successful aerial-based object detection research is based on the region proposal 
method (Uijlings et al., 2013) and R-CNNs (Girshick et al., 2014) that use bounding boxes as regions of interest (RoIs) and then rely on 

Fig. 1. Overall approach and sequence of data and modules, including image and traffic data (top), road and vehicle detection (upper left), neural 
networks for daily traffic prediction (upper right), transformation coefficients of daily to monthly traffic (lower left), AADT estimation on roads with 
no data nor images (lower right). 
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region features for category identification (Deng et al., 2017). Region proposal methods and R-CNNs have already been successfully 
applied to detect vehicles in satellite images (Chen et al., 2014; Jiang et al., 2015; Deng et al., 2017). 

In this paper, we propose to use image-based vehicle counts and long-term traffic data to generate AADT for all roads in an urban 
area. This approach overcomes the weakness of using solely satellite or aerial images for traffic count prediction due to short-term 
traffic fluctuations. Our image processing method is faster than remote sensing methods and uses Google aerial images instead of 
high-resolution satellite images, which are more computationally intensive (Bridgelall et al., 2016, Bowen et al., 2004). Google aerial 
images are generally taken at an appropriate resolution over time, making archiving possible (Ganji et al., 2020b). We also take 
advantage of recent advances in R-CNNs for vehicle detection in images. We propose a new method for traffic volume interpolation, 
treating vehicles detected in Google aerial images as short-term traffic counts and establishing relationships with long-term traffic 
count stations to correct the short-term prediction and estimate AADT. We also developed a method to extract road characteristics 
(width and directionality) from images. Compared to previous studies, this paper proposes innovations along multiple dimensions. We 
developed a novel technique to extract nearby traffic density factors (i.e., daily to monthly and yearly volumes) for roads that lack any 
traffic data. This is important since the counts derived from aerial images (which we use to complement other short-term counts) must 
use traffic density factors aligned with those of nearby roads (of the same category) to generate unbiased AADT values. In previous 
studies, when no information about traffic variation was available, the density factors were extracted from any available monitoring 
site. In this study, a monthly/seasonal traffic pattern is extracted for all roads with traffic counts to identify appropriate density factors 
for roads that only have aerial images. A nearest neighbor (NN) algorithm is used to extract the similarity in diurnal/seasonal traffic 
patterns. Furthermore, our proposed method can detect vehicles on each lane of road as well as differentiate between vehicles on the 
road and parked vehicles. This is a departure from previous studies (e.g. Kaack et al., 2019) which estimate the sum of ADDT in two 
directions. Our approach also includes a method to generate a time stamp for the images based on the shadow length and image 
coordinates. Finally, we use Kriging as a complementary prediction tool to generate predictions on roads that do not have images nor 
count data and hence complete the traffic predictions across the entire road network. 

This new approach was applied to traffic volume prediction in Toronto, which collects traffic data using different technologies: 
Short Period Traffic Counts (SPTCs), Turning Movement Counts (TMCs), and permanent traffic counts stations. The predicted traffic 
volumes and AADT values were validated against traffic counts collected over the entire city using a hold-out sample. 

2. Methodology 

The proposed modelling framework (Fig. 1) consists of a set of mathematical and statistical models presented in the following 
sections. The framework is driven by three different data inputs, including aerial images, long-term, and short-term traffic counts. The 
image processing module extracts the road characteristics from images, including the road width and direction and subsequently 
detects the number of vehicles on the road. Then, a neural network approach generates hourly and daily traffic volumes for each road 
based on vehicles extracted from images and road characteristics. To convert the hourly and daily image-based traffic counts to AADT, 
considering the traffic fluctuations across hours of the day and weeks, a nearest neighbor approach is used to generate coefficients of 
daily to yearly traffic volumes. These coefficients are then used to estimate AADT for roads with aerial images and/or short-term traffic 
counts. Finally, Regression Kriging and Support Vector Regression are used to extend the predicted AADT to those roads that do not 
have any aerial images (poor quality or image showing no traffic) nor traffic counts. 

2.1. Detection of vehicle and road characteristics 

2.1.1. Aerial images 
We downloaded Google aerial images with the associated metadata at 223 locations in Toronto. These locations correspond to the 

locations of permanent road counters in the city. The image size is 2048 × 2048 patches at zoom level 19 at scale 2, corresponding to 
4096 × 4096 pixels, and 72.24 × 72.24 cm. At this zoom level and assuming an average latitude of 43.6532 for Toronto and earth’s 
radius equal to 6,378,137 m, each image captures an area close to 880 × 880 m. 

2.1.2. Vehicle detection from aerial images 
We adopted a region-based convolutional neural network (R-CNN) that was trained by Ding et al. (2018) using more than 2806 

aerial images to detect 15 common object categories, including large and small vehicles (https://github.com/dingjiansw101/ 
AerialDetection). This large dataset for object detection in aerial images, known as DOTA, has lower biases when dealing with 
Google aerial images since it was collected from multiple sensors and platforms with multiple resolutions. The model was pre-trained 
with the DOTA database with mean Average Precision (mAP) of 0.808 and 0.798 for the horizontal and oriented object detections, 
respectively, as cited in the DOTA website (https://captain-whu.github.io/DOTA/results.html). The expanded DOTA is the largest 
dataset for object detection in Earth vision, to the best of our knowledge. The OBB annotations of DOTA provide a large-scale 
benchmark for object detection in Earth vision and pose interesting algorithmic questions and challenges to generalized object 
detection in computer vision. 

R-CNNs are a branch of CNNs, developed by LeCun et al. (1998) based on Artificial Neural Networks (ANNs). Compared to Artificial 
Neural Networks (ANNs), CNNs have a different architecture, which consists of layers including convolutional layers (that learn the 
convolutions and provide the best performance for each data category), pooling layers (govern overfitting, allow for stable conver-
sion), and the rectified linear unit (enhances the nonlinear properties of the network). Furthermore, CNN input data are images and/or 
are interpreted as images, significantly reducing the number of parameters and resulting in more rapid processing. R-CNNs follow the 
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region proposals method. This is a candidate detection set available to the detector. In contrast to CNNs that run the sliding windows 
over an entire image, R-CNNs select just a few windows or regions of an image. 

In this study, the proposed R-CNN takes a Google aerial image and a set of object proposals as inputs. R-CNN initially starts with 
processing the entire Google aerial image using convolutional and max-pooling layers (calculate the maximum value for each feature 
patch) to produce a convolutional feature map. Given the feature map, a fixed-length feature vector is extracted from each object 
proposal using a region of interest (RoI) pooling layer. Assuming H and W as layer hyper-parameters, the RoI pooling later converts the 
features inside each RoI into a small feature vector with a fixed spatial extent of H £W. These feature vectors are inputs to a sequence 
of fully connected (fc) layers. The model has two output layers that produce four real-valued numbers for each K object class. Another 
one is the softmax probability estimates over K object classes plus a catch-all “background” class. Softmax classifies an object with 
probabilistic values between 0 and 1. 

We also computed a mean Average Precision (mAP) index (ranging between 0 and 1) using 100 random images extracted for the 
city of Toronto. The comparison was made against manual counting conducted by two separate research assistants. This test captures 
the number of vehicles on the road and therefore reflects the performance of the road detection and vehicle detection modules. Details 
and results of this method are provided in Appendix II. 

2.1.3. Road detection and extraction of road characteristics 
Road characteristics (road width, road type, lane numbers, and speed limit) are key factors to transfer the number of detected 

vehicles in the image to short-term traffic counts (e.g., hourly/daily traffic counts) since road characteristics provide information on 
road capacity. Our proposed approach for detecting road characteristics from aerial images is presented in Fig. 2. We initially extracted 
line segments and road centerlines in the Google aerial images. The Line Segment Detector (LSD) (Burns et al., 1984, Xia et al., 2017) 
was used to detect the centerline (Von Gioi et al., 2012). It is a self-control false detection algorithm (one false alarm is allowed per 
image during the detection) that can be used for any digital image and does not require tuning. The LSD technique works based on 
color gradient. For a road segment, the centerline is typically comprised of two parallel gray and dark portions, with the gray level 
changing from dark to light. The border between the dark and gray portions is called the level line. The level line and gray color 
gradient are the critical parameters for LSD analysis. LSD initially computes the level-line angle at each pixel of an image and produces 
a set of unit vector fields tangent to the level line, called the level-line field. Then, all pixels with the same level-line field angle are 
grouped into an individual region of pixels. This individual region is called the line support region, which can be determined as a line 
segment. To validate the detected lines, pixels that have the level-line angle corresponding to the angle of the line are counted. Then, a 
statistical test based on the contrario approach and the Helmholtz principle (Desolneux et al., 2000) was used to identify whether a 
detected feature had a sufficient number of aligned points to be considered a line. This procedure provides several lines for each road 
lane that are mostly parallel. Parallel lines detection is necessary for lane area detection, which is a key factor in filtering out parked 
vehicles from vehicles on a road lane and vehicles on other lanes. As a result, the slope and intercept are used to pair parallel lines. 

To identify parallel lines, we also used road shapefiles to filter out the detected parallel lines of a lane. For this purpose, an initial 
lane width was extracted from road shapefiles. Then, a K-means clustering technique was used to cluster parallel lines. Finally, we 
assigned the width range of a cluster to each pixel on road centerlines. This width range is viewed as the width of the corresponding 
lane segment. This method is designed to work on any digital image without parameter tuning. 

2.1.4. Timestamp of aerial images 
Considering that traffic counts fluctuate over different times of day, the date and time of an image are essential for transferring the 

image-detected vehicles to short-term traffic counts. Google aerial images lack the exact date and time of images. For this reason, we 

Fig. 2. Steps for detection of road characteristics.  
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identified a time and date for each image based on shadows in Google images and information about the sun movement and sunlight 
phases for specific coordinates and features on aerial images. Sandnes, (2011) used a similar method. Information about the sun’s 
movement and sunlight can be extracted from applications such as Sun Surveyor Lite (https://www.sunsurveyor.com/), LightTrac 
application (https://www.lighttracapp.com/), or SunCalc (https://suncalc.net/), which use sunlight tracking. These applications use 
Global Positioning Systems (GPS), the camera’s position, and the sun information to provide sunlight direction in a given area. We used 
SunCalc, which converts the time to the sun’s angle above the horizon and azimuth. Using this application to estimate angle, we used 
Google image shadows to find the closest match in the SunCalc outputs. For this, several object shadows were represented inside a 
study area using a path from the base of objects to the end of their shadows. The height of objects was also extracted from a Lidar data 
layer for the City of Toronto and used to estimate the sun’s angle. 

2.2. Prediction of traffic counts using images 

The number of detected vehicles and extracted road characteristics from Google aerial images were used to predict AADT in three 
different stages. In the first step, municipal traffic count data were prepared as a basis for model development and validation. In the 
second step, neural network models were trained to predict hourly and daily traffic counts based on counts derived from aerial images. 
The target values for neural network analysis were the observed traffic counts collected by the City of Toronto. In the third step, a novel 
approach was developed to generate AADT using neural network model outputs (daily traffic count) as well as traffic counts of the most 
similar nearby road. This approach generates and uses the nearby transformation coefficient of daily to yearly traffic counts to predict 
AADT on any road with a high-quality aerial image. 

Step 1. Municipal traffic count database. 

The City of Toronto manages an extensive traffic monitoring network, with collected traffic counts since 1994. We used data from 
223 sites that contain long records of 15-min traffic counts in two different directions. These 223 sites have been collecting data from 
2006 to 2016. Traffic counts were extracted at each of the 223 stations for the same time that the only Google aerial image was 
captured. Small missing periods of traffic counts were imputed using interpolation techniques (less than 1-hr missing interval). Also, 
for the permanent stations, two trend analysis methods were used to detect and include trends in traffic volume modelling. In addition, 
the entire database of permanent and temporary traffic count stations was used to estimate a transformation coefficient of daily to 
yearly counts. Detail on the traffic count program for the City of Toronto can be found in Ganji et al. (2020a). The basic assumption 
about the automated traffic count equipment is that automatic equipment can collect accurate 48-hour volumes. Equipment error 
introduces bias which is not affected by sample size. Since we assume that equipment bias is normally distributed with a zero mean, no 
adjustment was conducted. 

Step 2. Hourly and daily traffic sub-model 

We developed a neural network model (Fig. 3) to predict hourly and daily traffic counts based on counts extracted from images. The 
model has one hidden layer with four neurons and an output layer with a single node representing traffic counts. The activation 
function of the hidden layers, the number of the hidden nodes, and the training epoch numbers were optimized based on the RMSE and 
the coefficient of determination between the observed (daily and hourly traffic counts) and predicted values. Daily traffic counts 
(target values) were estimated based on images extracted at 223 locations, coinciding with the 223 permanent traffic count stations. 
Neural network predictors include the number of detected vehicles, road characteristics, and aerial image timestamp extracted directly 
from aerial images. The activation function was set to a hyperbolic tangent sigmoid function, leading to the best model performance. 

Fig. 3. Schematic diagram of the hourly and daily traffic sub-model.  
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This also proved to be the best in depicting the nonlinearity of the modeled natural system, compared with linear and log sigmoid 
functions. 

Step 3. AADT prediction from daily traffic counts 

Short-term traffic counts and image-based traffic counts cannot be directly converted to AADT due to traffic fluctuations across 
different hours of the day and days of the week. Such problems have been addressed in the literature using pattern recognition 
techniques (Bagheri et al., 2015; Ganji et al., 2020a) that estimate a daily to yearly transformation coefficient. Ganji et al. (2020a) 
developed state-of-the-art statistical and mathematical models describing the spatial relationship of traffic counts over a network and 
transferring compiled and extended information from upstream traffic stations to downstream ones. Following Ganji et al. (2020a), we 
use a Pattern Recognition Traffic Counts (PRTC) approach, which uses information from nearby traffic count sites to estimate AADT 
using daily traffic counts predicted from images. Using PRTC, AADT is estimated for each road with a daily traffic count based on 
image-detected vehicles. Pattern recognition approaches typically rely on supervised and unsupervised classifications. In contrast to a 

Fig. 4. Schematic diagram to estimate day to year (Dik) transformation coefficient. MADT: Mean Annual Daily Traffic, ISTCijk: the available traffic 
counts of a short-term site at a specific date (i.e., at day i, month j and year k), DoM: the day to month transformation coefficient, GR: growth rate, 
AADTi : Annual Average Daily Traffic, MADTi : Monthly Average Daily Traffic, β: correction factor, GTCijk: image-based traffic count at day i, month 
j, and year k, NSP normalized seasonal patterns. 
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supervised classification that uses predefined classes to pool the patterns, unsupervised classification, such as clustering, pools patterns 
into unknown classes. The nearest neighbor (NN) algorithm is an example of a supervised classification method, which can be applied 
to find the similarity between a set of points in a multi-dimensional space, such as traffic count patterns. Cai et al., (2016) used the NN 
algorithm to generate forecasts of short-term traffic. In this study, we use a hierarchical supervised NN method to predict AADT from 
short-term traffic counts. Fig. 4. presents the algorithm. In a first step, the seasonal pattern of each permanent station is computed for 
different years. The data from permanent sites for different years are converted to the study year using a growth rate. In a second step, 
the seasonal pattern of the site with short-term traffic counts is obtained by converting the short-term count collected on a specific day 
of the week and month to its equivalent monthly volume. The seasonal pattern of the short-term site is then compared with the one 
from nearby permanent stations, one at a time, until a minimum difference between the short-term seasonal pattern and the permanent 
station seasonal pattern is reached. At this point, the permanent station day to year transformation coefficient is assigned to the short- 
term site. 

As indicated in Fig. 4, our approach estimates a transformation coefficient of day to year (Dik) using Equation (1) at nearby per-
manent sites surrounding each short-term count location. 

Dik =
AADT0∑n

Xij=1
TC(xXij)

n

∀Xij ∈ {(i, j)|i = 1,⋯, 7; j = 1,⋯, 12 }; n ≤ (nyear × 4) (1) 

In Eq. (1), AADT0 is the Annual Average Daily traffic at a permanent station, n represents the number of historical traffic counts (X) 
at day i and month j over a historical data horizon (nyear). 

In addition to Dik of nearby permanent sites, following the method proposed by Ganji et al. (2020a) and as indicated in Fig. 4, all 
available historical counts were used to estimate a seasonal pattern for both short-term (NSP) and permanent stations (NSP0). For this, 
an initial approximation of Annual Average Daily Traffic (AADTi) and Monthly Average Daily Traffic (MADTi) are estimated using Dik 
at nearby permanent sites, and the available traffic counts of a short-term site at a specific date (i.e., ISTCijk at day i, month j and year 
k), the day-to-month transformation coefficient (DoM), and growth rate (GR). Comparing the normalized seasonal patterns between 
short-term and permanent stations (NSP0 − NSP), a short-term station is assigned to a permanent station to estimate GR and Dik from 
the nearby permanent site. 

The growth rate or GR is typically estimated using two methods: a least-squares approach and an approximation method proposed 
by the World Bank (World Bank 2018). Then, given the known Dik values for the permanent and short-term stations and assuming x as a 
road with Google image-based vehicle counts, the nearest neighbour technique searches the nearby roads of the same classification 
with known Dik to identify Dik(x) for road x. Finally, the AADT for road x with image-based vehicle count is estimated using Eq. (2). 

AADT = β* GTCijk*Dij(x) × GR (2) 

In Eq. (2), GTCijk refers to an image-based traffic count at day i, month j, and year k, GR represents the traffic growth rate for the 
nearest stations of the same classification based on the nearest neighbor technique. A correction factor (β) is estimated using predicted 
and observed AADT at all permanent stations (Eq. (3)). 

β =

∑N
m=1

[
GTCijk*Dik

]

m
∑N

m=1[AADT0]m
(3) 

In Eq. (3), N is the number of permanent stations and AADTm represents the AADT at a permanent station which results from the 
long-term average of daily traffic counts. This technique is calibrated using the permanent stations to estimate a correction factor (β) 
and ensure acceptable performance. A long-term hourly average traffic count is used for each permanent site to predict AADT based on 
the nearby permanent stations, using Eq. (2). Then, Eq. (3) was used to find β. For model validation, the predicted AADTs based on 
Google aerial images at the permanent stations were also compared with those AADTs that were extracted directly from the permanent 
traffic count sites. After validation, the Dik and growth rate (GR) were estimated for all count stations with short-term/long-term traffic 
data and roads with images (last three steps in Fig. 4). 

2.3. Capturing the value-added of aerial images 

The use of permanent and short-term traffic data collected by the city helps generate daily to yearly factors that were used to 
convert the daily traffic counts predicted using neural networks based on images into AADT values. While this method generates 
predictions on all roads where aerial images are available, there is also a need to generate predictions on roads for which high-quality 
aerial images do not exist. Due to the generally low volumes on these roads, many local roads may also have images showing no 
vehicles at all. The availability of data from traffic count stations and images treated as short-term counts provides an opportunity to 
generate predictions on roads without counts nor images, using approaches such as regression kriging (RK) and support vector 
regression (SVR). For this, aerial images were used to predict daily traffic and AADT on more than 17,800 roads in Toronto that do not 
have any traffic count value. In turn, RK and SVR use these predictions to estimate AADT on roads where image-based traffic counts nor 
any observed counts are available. RK was used to predict AADT for major roads and highways, and SVR was used for most local roads. 
Ganji et al. (2020a) demonstrated that SVR is the most suitable tool for traffic prediction on local roads. SVR and RK modules are 
discussed in Appendix I and Ganji et al. (2020a). 

Since RK and SVR allow for predictions to be made on roads that do not have an image nor count data; we used this opportunity to 

A. Ganji et al.                                                                                                                                                                                                          



Transportation Research Part C 141 (2022) 103739

8

test the “value-added” of aerial images by using RK and SVR to generate predictions using the City of Toronto traffic count database 
only and compare the predictions with the approach of using the City of Toronto traffic count database augmented by the traffic counts 
derived by the images. This test is designed to demonstrate the potential of using aerial images to augment the data collected by cities 
while treating the counts extracted from images as short-term traffic counts. Fig. 5 summarizes the approach adopted to “augment” the 
city count database with images. Vehicles were detected in images and treated as short-term traffic counts; daily counts were obtained 
by associating these short-term counts with actual count data collected by the city. Then using the entire traffic count database, day to 
year coefficients were assigned to these images to predict AADT. This allows for AADT prediction on any road with an image. Using RK 
and SVR, the traffic count database collected by the city was used to generate predictions on roads that do not include any counts. This 
was done using two methods: with only the city collected data or by augmenting the city data with predictions at locations with aerial 
images. As a result, the city data and the image data become a large database that can be used to generate AADT predictions across the 
entire road network. 

Finally, we conducted two analyses that entail sub-samples to assess the benefit of the images. In these cases, we assume that counts 
are unavailable on a specific set of roads and test the output of the models that rely on counts from images, using the counts on the 
roads as ground truth. The first test evaluates the value of image-based counts for the reproduction of daily traffic counts for roads with 
both short-term and long-term records. In the second test, we evaluated image-based counts in the prediction of AADT on roads with 
short-term and long-term traffic counts. In this case, note that the AADT that is considered as ground truth may not be the actual count 
but the output of PRTC model. This is especially the case for roads with short-term records. 

3. Results 

This study first extracted aerial images at 223 traffic count stations selected from the City of Toronto database for this analysis. 

Fig. 5. Schematic diagram to estimate Average Annual Daily Traffic (AADT) with and without aerial images. Dik: transformation coefficient of 
day-to-year, PRTC: Pattern Recognition Traffic Counts, RK: regression Kriging, SVR: Support Vector Regression. 

Fig. 6. Locations of selected traffic monitoring stations (dots on the map).  
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These stations monitor traffic in two directions and include more than 20 years of data collection. Fig. 6 presents the distribution of 
these stations across the city. Vehicles were detected in each aerial image and paired with the hourly and daily traffic volume extracted 
from each city station for the same day and time as the image. 

3.1. Detected vehicles and road characteristics 

Fig. 7 presents examples of vehicle detection using R-CNN with RoI transformers under different conditions. The parked vehicles in 
Fig. 7 were detected by including road characteristics such as road width. The mAP value for R-CNN is 0.71, which is close to what has 
been proposed by Ding et al and cited by the DOTA website for this methodology (mAPs of 0.808 and 0.798 for the horizontal and 
oriented object detections, respectively). Fig. 7 shows that the vehicle detection model had an acceptable performance in different 
situations such as dense residential areas with nearby trees, local roads, parking, and near high-rise buildings with extended shadows 
and during congestion and fast-moving vehicles on highways. 

Fig. 8 presents the steps of identifying the road centerline, edges, and direction of traffic. Fig. 8a and 8b present the Google aerial 
images as well as level-line and road borders after LSD analysis. Fig. 8c presents a road shapefile that was used to filter out undesirable 
segments. The width of the road in the shapefile represents the possible search area for parallel border lines, which were estimated 
using the geospatial information of the shapefile. Fig. 8d presents the parallel lines that remained after filtering out the low coverage 
parallel lines. These parallel lines help detect the lanes as well as on-road vehicles as indicated in Fig. 8e. Fig. 8f identifies the road 
direction that has been extracted from the road shapefile. As a result of these steps, all vehicles in the different lanes and directions are 
extracted and the road widths are also identified. 

Fig. 7. Detected vehicles using region-based Convolutional Neural Network (R-CNN) model for different types of built environments. The detected 
vehicles are highlighted using a rectangular border. 
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We also calculated the mAP using 100 random images extracted for the city of Toronto. The comparison was made against manual 
counting conducted by two separate research assistants. The mAP values for all detected vehicles are around 85%. Details and results of 
this method are provided in Appendix II. 

Fig. 8. Road and vehicle detection steps include (a) image extraction, (b) level-line field and line segment extraction, (c) filtering the segments by 
road shapefile, (d) identifying the parallel and low coverage lines, (e) vehicles detection on roads and (f) traffic direction. 
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3.2. Prediction of traffic counts 

3.2.1. Hourly and daily traffic sub-model 
Fig. 9 presents the results for neural network training, validation, and testing. Using the number of vehicles detected in each image, 

the target values are the hourly traffic counts extracted for the 223 different roads (in two directions) from the Toronto traffic count 

Fig. 9. Artificial Neural Network (ANN) for hourly traffic count prediction: Target represents the desired ANN response; Output represents the 
neural network response, which guides the learning process involving the changes in weights. 

Fig. 10. Comparing the predicted and observed hourly traffic count distributions using Artificial Neural Network (ANN).  
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database. The Levenberg–Marquardt (LM) training approach had the best performance for hourly values. The output represents the 
estimated hourly traffic counts based on the number of detected vehicles in the image, the road characteristics, and the timestamp of 
each image. Correlations between observed and predicted traffic counts in the model training and testing phase were around 75%. 

Fig. 11. Bayesian Regularization Artificial Neural Network (BR-ANN) for daily counts prediction: Target represents the desired ANN response; 
output represents the neural network response, which guides the learning process involving the changes in weights. 

Fig. 12. Comparing the predicted and observed daily traffic count distributions using Bayesian Regularization Artificial Neural Network (BR-ANN).  
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Fig. 10 compares the frequency distributions of predicted and observed hourly traffic counts. This figure indicates a modest but non- 
significant increase in the 50th percentile of predicted traffic counts compared to the observed values. 

In addition to hourly counts, a neural network model was trained using Bayesian regularization (BR) to predict daily traffic counts 
based on the vehicles detected in the images. For this, the detected vehicle counts from Google aerial images are paired with the daily 
traffic counts at nearby monitoring sites. The BR method had a better performance for daily traffic count prediction than LM, which 
worked better for hourly traffic count prediction. Fig. 11 presents the results for training and testing of the ANN model for daily traffic 
count prediction. The R2 values for the training, testing and validation stages are higher than 85% and are close to 95% for the whole 
dataset. The RMSE for the whole dataset is 7675. Comparing the predicted and observed daily counts distribution in Fig. 12 also shows 
small differences in the frequency distributions. 

Based on the training results, the BR neural network model was used to predict daily counts on 17,800 roads that do not have any 
traffic data but extracted aerial images. The prediction results are presented in Fig. 13 for two different road directions, i.e., North/East 
and South/West directions. As indicated in these figures, the predicted values showed higher values on highways and major roads and 
lower values on minor roads. 

3.2.2. AADT prediction 
Fig. 14 illustrates the results of the PRTC model by comparing predicted AADT values with those extracted from permanent traffic 

count stations for both east/north and west/south road directions. As indicated in Fig. 14, the model can accurately regenerate the 
AADT at permanent stations. This means that the PRTC parameters, including estimated Dij are appropriate to predict AADT. 
Furthermore, to assess the performance of the model for AADT prediction based on the aerial images/short-term traffic counts, we 
compared predicted AADT from images at the permanent sites with their corresponding AADT values (extracted from long-term traffic 
data) in Fig. 15. The AADT values for the permanent sites were estimated by averaging long-term daily values over a year. All 

Fig. 13. Estimated daily traffic counts using Google aerial images for 2016 for different traffic directions.  
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permanent sites with more than 274 days of continuous daily traffic counts were used for this analysis. Fig. 15 compares the AADT 
values predicted using image-based vehicle counts with the observed AADT values at permanent stations for 2016. This figure indicates 
that the predicted AADT values are comparable with observed AADT at permanent sites (R2 = 0.58). While most points follow the ideal 
one–one line between predicted and observed data, some points occasionally show a departure from the ideal line. These anomalies 
could be due to image quality, vehicle detection approach, and/or inherent uncertainty of a snapshot itself for traffic prediction. 
However, the One-One line doesn’t show a systematic bias in prediction, which means that the predicted values were not over/ 
underestimated in any domain. This is important since comparing the spatial distribution of traffic counts before and after including 
Google aerial images, will provide valuable insights for possible improvements in traffic prediction. This also helps us identify loca-
tions that may need further data collection to better estimate AADT in the future. 

It should also be noted that Fig. 14 is developed based on a long-term mean hourly traffic count, which increases the accuracy of the 
method. In contrast, Fig. 15 presents AADT estimated based on PRTC and images (instead of long-term mean hourly traffic count) at 
permanent stations, reducing the model performance for AADT prediction. 

3.3. Augmenting city count data with counts derived from images 

Fig. 16 shows the predicted AADT for all roads in the City of Toronto in two different directions (North/East and South/West). To 
better understand the impact of image-based vehicle counts as a new source of information, the predicted AADT values in Fig. 16 are 
further compared by those estimated without the aid of Google aerial images (abbreviated GAI in the figure); estimated using a 

Fig. 14. Comparing observed (x-axis) and predicted AADTs (y-axis) at permanent station locations.  

Fig. 15. Comparing observed (x-axis) and image-based predicted AADTs (y-axis) at permanent station locations for 2016.  
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combination of PRTC, RK and SVR. The boxplots of Fig. 17 compare the distributions of predicted traffic counts across the entire city 
using the City of Toronto database only (without Google aerial images) against the distribution of predictions using both the City of 
Toronto database and Google aerial images. While it is not possible to compare these predictions against ground truth since they occur 
across the entire network, including locations without images nor counts, we observe that the AADTs predicted with Google aerial 
images have a higher variability but with smaller values for different quantiles compared to the predictions made without Google 
aerial images. The largest effect of images occurs in the prediction of AADT along expressways. Overall, Fig. 17 demonstrates that using 
image-based vehicle counts as a new source of information offers lower AADT values for the roads without counts than interpolation- 
based models such as the Kriging model. Fig. 18 further visualizes the percentage change in AADT along all roads in the city. 

Finally, the results for independent samples are presented in Figs. 19 and 20. First, an analysis was performed to show the neural 
network performance for daily traffic count prediction using a hold-out sample (Fig. 19). In this analysis, a set of daily traffic data was 
excluded from the training and validation process, and they were used as an independent dataset to show how the neural network can 
reproduce the daily values based on the image counts and road characteristics. The model exhibits a good performance even for those 
datasets that were never used for model development (R2 = 0.72 and RMSE = 4881). We also compared the image-based AADT for 
roads that do not have any counts (Fig. 20). Here, we took a sample of roads for which short-term and long-term traffic counts are 
available and used this data as ground truth. It is important to keep in mind that it is not the short-term counts that are considered as 

Fig. 16. Estimated Annual Average Daily Traffic (AADT) for points without counts using Google aerial images for 2016 for different 
traffic directions. 
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Fig. 17. Comparing Annual Average Daily Traffic (AADT) predictions with and without aerial images for different types of roads (GAI: Google 
Aerial Image). 

Fig. 18. Percent change in predicted AADT after adding the Google aerial images. The negative values show a decrease in predicted values after 
adding the aerial images in percentage. 
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ground truth, but rather the AADT. So the short-term counts are first converted to AADT using the appropriate coefficients derived 
from the PRTC model. We compare the output with the AADT derived from image-based counts and PRTC and obtain R2 = 0.83 and 
RMSE = 4950. 

4. Conclusion 

In this study, we developed a model of AADT prediction based on vehicle detection and road characteristics extraction from Google 
aerial images. We used R-CNN for vehicle detection since, among the CNN algorithms for vehicle detection tested in the literature, R- 
CNN exhibited higher predictive power (Deng et al., 2017; Li and Wang, 2017; Long et al., 2017; Ding et al., 2018). Since the oriented 
bounding boxes R-CNN has reported even higher detection performance (Ding et al., 2018), we also used the oriented bounding boxes 
as regions of interests (RoIs) to eliminate the mismatch of objects from Google aerial images. 

Vehicle and road characteristics were captured from Google aerial images for more than 17,800 roads using image detection al-
gorithms. We developed methods to extract road area, road width, road direction and captured the time stamp for the aerial image. The 
detected vehicles were used to estimate hourly and daily traffic counts. The results were validated against observed traffic counts, 
showing the high accuracy of the proposed method. 

Furthermore, because of the availability of Google aerial images, the geographic coverage of vehicle count estimation can be 

Fig. 19. Performance of neural network approach in predicting daily traffic based on images using a hold-out sample of short-term and long-term 
traffic count sites. 
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expanded in areas where traffic counts are not available. As a benefit to those models that use only observed traffic counts (Ganji et al., 
2020a), the integration of images with observed traffic data provides an accurate resource since municipalities do not frequently 
update their datasets. This is especially the case in metropolitan areas such as Toronto, which has more than 65,000 roads. 

We also compared the performance of the ANN model and regression model for daily traffic volume prediction based on the 
detected vehicles from Google aerial images and road characteristics. Although both ANN and regression models minimize the mean 
squared error between the observed and predicted (target) values, the form of modeling leads to different performances between these 
two approaches. The regression approach assumes a pre-defined mathematical functional form with several statistical assumptions (e. 
g., normality, independent predictors). In contrast, the ANN model can model undefined nonlinear relationships between the input and 
output variables. However, it should be noted that a major issue for ANN techniques is the potential for overfitting and overtraining, 
which leads to a fitting of the noise and a loss of generalization of the network. In this research, Bayesian Regularization was used to 
reduce the potential for overfitting. 

Since the proposed methodology works based on the observed traffic counts and images, using relationships extracted directly from 
the data, it is transferable to other cities. It is important to note that this approach requires a database of short and long-term traffic 
counts as a foundation and cannot be solely based on images. Although alternative image databases have been used in the literature to 
predict traffic volume, most previous studies tend to multiply the detected vehicles with time to estimate long-term traffic volumes. 
This is a significant limitation because long-term traffic volume prediction from short-term counts needs a robust coefficient of 
transformation that must be extracted from nearby sites using advanced statistical methods. This stresses the importance of city- 
specific traffic counts. This paper introduces a novel methodology, which consists of a pattern recognition submodule to estimate 
the coefficient of transformation for image-based traffic counts. Our validation results using the Google Aerial Images indicate that the 
predicted AADT values are not biased systematically, and they are close to observed values. 
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Fig. 20. Performance of modelling approach in predicting AADT traffic based on images using a hold-out sample of short-term and long-term traffic 
count sites. 
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Appendix I  

1. Regression kriging (RK) 

RK uses nearby AADT values as input and interpolation techniques to estimate AADT at locations without traffic monitoring 
stations. This method outperforms other interpolation techniques such as ordinary kriging and co-kriging (Ganji et al., 2020a). RK 
estimator function (Z = β0 + X1β1 + ... + Xkβk + ε) is a linear regression equation plus residuals which are respectively considered as 
deterministic and stochastic parts of the model. Z is the vector of AADT values in this estimator, and X and b represent the land use 
predictors and regression parameters, respectively. In this study, predictors are land-use values specific to the road segment where the 
monitoring station is located, such as the number of lanes, population density within a buffer of 200 m, and speed limit. Except for 
population, which varies with the year of analysis, all independent variables were extracted from 2011 land use databases. The re-
sidual part of the model is a function of the covariance of the residuals, which can be estimated from a semi-variogram of the residual 
part; however, it also depends on the regression parameters (β). Ganji et al., (2020a) proposed a generalized least squares equation to 
estimate β (Eq. (4)). 

P(Z; s) = X(s)T β+ σ(θ)T Σ(θ)− 1
(Z(s) − X(s)β) (4) 

In Eq. (4), P represents the predicted AADT, and a Generalized Least Square (GLS) method was proposed to estimate β as follows: 

β =
(
X(s)T Σ(θ)− 1X(s)

)− 1
X(s)T Σ(θ)− 1Z(s) (5) 

Since β is a function of θ, the steps presented in Fig. I–1 are proposed by Ganji et al., (2020a) to estimate βandθ: 
In Fig. I–1, semi-variogram represents the relationship between distances and the spatial correlation of residuals. The distance 

represents the network distances extracted using the shortest path algorithm. In this study, the regression predictors are land-use 
within a 300 m buffer around the roads, including residential, commercial, industrial, as well as population density, number of 
lanes, speed limit, and road types (highways, major and minor arterial roads, local road, and collectors). Following up Ganji et al., 
(2020a), The performance of the RK model is evaluated by comparing the predicted and observed AADT scatter plot (with 1–1 
reference line plot), the correlation between observed and predicted values, predicted and observed histograms and a map of relative 
errors over the entire study area.  

2. Support vector regression (SVR) 

SVR, which works based on Support Vector Machine (SVM) (Ganji et al., 2020a), estimates annual average daily traffic (AADT) at 
locations where counts are not available. SVR develops a relationship between land use characteristics and traffic counts on local 
roads. Assuming a set of predictors (Φ(x)), the generic SVR function can be represented as follow: 

f (x) = (w.Φ(x) )+ b (6)  

where wandb are the parameters are estimated by minimizing the expressed in Eq. (7). 

Lost =
1
2
||w| |2 +C

∑
Γ(f (xi) − yi ) (7)  

where C is a constant value and Γ
(
f(xi) − yi

)
is a cost function. The appropriate form of cost function has been presented in Ganji et al., 

(2020a). Equation (7) can be minimized by solving a quadratic optimization problem as follows: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1
2
∑l

i,j=1
(α*

i − αi)(α*
j − αj)k(xi, xj) −

∑l

i=1
(α*

i (yi − ε) − αi (yi − ε)

s.t.
∑l

i=1
(α*

i − αi) = 0α*
i ,αi ∈ [0,C]

(8) 

Fig. I–1. Proposed steps to estimate AADT using regression kriging.  
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α*
i ,αi in Eq. (8) are the Lagrange multipliers and represent solutions to the above quadratic problem, acting as forces pushing 

predictions toward a target value. In SVR, the predictors included land-use within a 300 m buffer around the roads, including resi-
dential, commercial, industrial, as well as population density, number of lanes, speed limit and road types (highways, major and minor 
arterial roads, local road, and collectors). Also, all estimated and observed AADT for the major roads were integrated within 300 m 
buffers around the local roads and used as predictors in the SVR model. SVR performance was evaluated by comparing observed and 
predicted scatter plots with 1–1 reference line plot and statistical indices for the estimated SVR parameters. 

Appendix II 

mAP (mean Average Precision) for Object Detection. 
Average precision (AP) is a well-known index of object detectors such as R-CNN. AP computes the average precision value, which 

varies between 0 and 1, and it measures what percentage of predictions are correct (Table A1–II). 

Precision = TP/(TP+FP)

where TP and FP reflect the true and False positives, respectively. A list of 100 random images from Toronto was analyzed to compute 

Table A1–II 
mAP for 100 random images extracted City of Toronto images database.  

Road number TP Total positive Precision Road number TP Total positive Precision 

415 20 26 0.77 913,149 26 31 0.84 
534 13 19 0.68 913,354 25 25 1.00 
1256 14 15 0.93 913,864 7 7 1.00 
1293 10 12 0.83 913,980 27 27 1.00 
1732 15 15 1.00 1,137,655 2 2 1.00 
1865 13 13 1.00 1,137,725 7 21 0.33 
1971 22 26 0.85 1,140,684 0 0 1.00 
7777 10 30 0.33 1,140,767 14 15 0.93 
8834 6 6 1.00 1,145,316 10 18 0.56 
104,239 10 10 1.00 1,145,433 26 33 0.79 
105,548 2 2 1.00 2,216,243 16 16 1.00 
107,958 43 43 1.00 2,311,915 2 2 1.00 
108,256 0 0 1.00 2,945,648 5 5 1.00 
109,452 1 1 1.00 3,054,783 40 40 1.00 
109,505 4 8 0.50 3,719,873 37 37 1.00 
110,060 13 17 0.76 5,343,674 14 14 1.00 
110,882 13 13 1.00 6,027,119 22 26 0.85 
111,590 70 71 0.99 6,786,837 32 32 1.00 
111,718 3 6 0.50 7,195,813 22 25 0.88 
111,997 18 18 1.00 7,274,839 19 25 0.76 
436,793 6 8 0.75 7,792,433 13 15 0.87 
438,506 26 28 0.93 8,005,169 3 31 0.10 
439,018 6 6 1.00 8,457,327 4 29 0.14 
441,226 11 12 0.92 8,676,766 9 10 0.90 
442,124 8 8 1.00 9,066,085 7 8 0.88 
443,321 32 59 0.54 9,085,295 18 27 0.67 
443,573 43 46 0.93 9,134,281 29 29 1.00 
443,654 1 1 1.00 9,655,343 2 2 1.00 
443,702 12 12 1.00 9,722,504 15 15 1.00 
443,792 20 23 0.87 9,779,365 20 21 0.95 
444,113 1 1 1.00 9,879,826 26 27 0.96 
444,214 33 33 1.00 10,071,118 8 9 0.89 
445,576 10 11 0.91 10,080,008 2 2 1.00 
445,617 24 25 0.96 10,133,718 1 1 1.00 
445,699 6 15 0.40 10,223,904 16 34 0.47 
906,786 13 13 1.00 10,558,821 3 8 0.38 
908,032 19 20 0.95 10,635,840 25 35 0.71 
908,165 56 56 1.00 11,130,039 12 14 0.86 
908,485 21 21 1.00 13,501,859 16 18 0.89 
910,356 1 1 1.00 14,017,414 6 11 0.55 
912,310 10 10 1.00 14,025,568 15 25 0.60 
912,722 35 37 0.95 14,048,690 7 10 0.70 
912,906 8 19 0.42 14,229,843 0 0 1.00 
14,646,674 8 8 1 30,001,930 2 2 1 
14,646,827 2 9 0.22 30,005,230 76 76 1 
14,659,946 4 4 1 30,007,983 16 22 0.72 
14,660,984 30 30 1 30,008,322 4 7 0.57 
14,664,636 10 14 0.71 30,015,981 19 23 0.83 
20,043,234 62 62 1 30,029,635 66 68 0.97  

A. Ganji et al.                                                                                                                                                                                                          



Transportation Research Part C 141 (2022) 103739

21

the mAP for the vehicle detection module. The comparison was made against manual counting conducted by two separate research 
assistants. 
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