Course Code	Course Title						Core/Elective
U21PCN05CS	Automata Languages and Computation						Core
	Contact Hours per week				CIE	SEE	Credits
Prerequisite	L	Т	D	P	CIE	SEE	Credits
Logic and Switching Theory, Data Structures	3	-	-	-	30	70	3

Course Objectives:

- Understand the relationships among machines, languages and computational problems.
- Design abstract models for formal languages.
- Determine the decidability of computational problems.

Course Outcomes:

After completing this course, the student will be able to:

- Design Finite Automata for Regular languages.
- Apply formal mathematical methods to prove properties of languages, grammars and automata.
- Analyze the language and Design pushdown automata.
- Design Turing machines for simple problems.
- Describe and determine the undecidablility of a problem.

UNIT – I

Automata: Introduction to Finite state automata, Central Concepts of Automata theory. Finite Automata: Deterministic finite Automata, Non-deterministic finite state automata, Finite Automata with Epsilon -Transitions, Applications of Finite Automata.

Regular Expressions and Languages: Regular expressions, Applications of Regular expressions, Algebraic Laws for Regular expressions,

UNIT-II

Properties of Regular Languages: Properties of regular sets, Pumping Lemma, Closure properties of Regular languages, Decision Properties of Regular languages, Myhill-Nerode Theorem, Minimization of Finite Automata.

Context Free Grammars and Languages: Context Free Grammars, Derivations, Parse-Trees, Applications of Context Free Grammars, Ambiguity in Grammars and Languages.

UNIT-III

Pushdown Automata: Definitions, The languages of aPDA, Equivalence of PDA's and CFG's, Deterministic Pushdown Automata.

Properties of Context Free Languages: Normal Forms for Context Free Grammars, Pumping Lemma for Context free languages, Closure Properties of CFL's, Deterministic Context free Languages, Decision properties of CFL's.

UNIT-IV

Turing Machines: Introduction, Computational Languages and Functions, Programming Techniques for construction of Turing machines, Modifications of Turing Machine, Turing machine as Enumerator, Restricted Turing machine.

UNIT-V

Undecidability: Recursive and Recursively Enumerable languages, Universal Turing machine and Undecidable problems, Rice Theorem, Post's Correspondence problem. Chomsky's Hierarchy-Regular grammars, Unrestricted grammar, CSL, Relationship between classes of languages.

Suggested Readings:

- 1. John. E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman, Introduction to Automata Theory, Languages and Computation, 3rd edition (2009), Pearson Education.
- 2. John C.Martin, Introduction to Languages and the Theory of Computation, 3rd Edition (2003) Tata McGraw Hill.
- 3. Michael Sipser, Introduction to Theory of Computation, 3rd Edition (2012), Course Technology