Proposed for the academic years 2020-2024

COMPILER DESIGN

PC 601 CS

Instruction: 3L+1T periods per week Duration of SEE: 3 hours
CIE: 30 marks SEE: 70 marks
Credits: 3

Objectives:

To understand and list the different stages in the process of compilation.

Identify different methods of lexical analysis

Design top-down and bottom-up parsers

Identify synthesized and inherited attributes

Develop syntax directed translation schemes

V|V|VIV|V|V

Develop algorithms to generate code for a target machine

Outcomes:

Upon completion of the course, the students will be able to:

1. For a given grammar specification, develop the lexical analyzer.

2. For a given parser specification, design top-down and bottom-up parsers.
3. Develop syntax directed translation schemes.
4. Develop algorithms to generate code for target machine.

UNIT-I

Introduction: The Structure of a Compiler, Phases of Compilation, The Translation Process,
Major Data Structures in a Compiler, Bootstrapping and Porting.

Lexical Analysis (Scanner): The Role of the Lexical Analyzer, Input Buffering,
Specification of Tokens, Recognition of Tokens, The Lexical Analyzer Generator Lex.

UNIT-I1I

Syntax Analysis (Parser): The Role of the Parser, Syntax Error Handling and Recovery,
Top-Down Parsing, Bottom-Up Parsing, Simple LR Parsing, More Powerful LR Parsing,
Using Ambiguous Grammars, Parser Generator Yaac.

UNIT-II

Syntax-Directed Translation: Syntax-Directed Definitions, Evaluation Orders for SDD’s
Applications of Syntax-Directed Translation.
Symbol Table: Structure, Operations, Implementation and Management.

UNIT-IV

Intermediate Code Generation: Variants of Syntax Trees, Three-Address Code, Types and
Declarations, Translation of Expressions, Type Checking, Control Flow, Backpatching,
Switch-statements, Intermediate Code for Procedures.

Run-time environment: Storage Organization, Stack Allocation of Space, Access to
Nonlocal Data on the Stack, Parameter passing, Heap Management and Garbage Collection.

UNIT-V

Code Generation:lssues in the Design of a Code Generator, The Target Language,
Addresses in the Target Code, Basic Blocks and Flow graphs, Optimization of Basic Blocks,
Peephole Optimization, Register Allocation and Assignment.

Machine-Independent Optimizations: The Principal Sources of Optimizations, Introduction
to Data-Flow Analysis.

Suggested Readings:

BE (Computer Science and Engineering)

Page 118



Proposed for the academic years 2020-2024

1. Alfred V. Aho, Monica S. Lam, Ravi Sethi, & Jeffrey D. Ullman , Compilers
:Principles, Techniques and Tools, 2" Edition, Pearson Education, 2006.

2. Kenneth C. Louden, Compiler Construction: Principles and Practice, Thomson
Learning Inc., 1997.

3. P.Trembley and P.S.Sorenson, The Theory and Practice of Compiler Writing, TMH-
1985.

BE (Computer Science and Engineering) Page 119



Proposed for the academic years 2020-2024
COMPILER DESIGN LAB

PC 651 CS

Instruction: 2P periods per week Duration of SEE: 3 hours
CIE: 25 marks SEE: 50 marks
Credits: 1

Objectives:

1. To learn usage of tools LEX, YAAC

2. To develop a code generator

3. Toimplement different code optimization schemes
Outcomes:

1. Generate scanner and parser from formal specification.

2. Generate top down and bottom up parsing tables using Predictive parsing, SLR and LR
Parsing techniques.

3. Apply the knowledge of YACC to syntax directed translations for generating
intermediate code — 3 address code.

4. Build a code generator using different intermediate codes and optimize the target code.

List of Experiments to be performed:

. Sample programs using LEX.

Scanner Generation using LEX.

Elimination of Left Recursion in a grammar.

Left Factoring a grammar.

Bottom up parsers.

Parser Generation using YACC.

. Intermediate Code Generation.

. Target Code Generation.

1
2
3
4,
5. Top down parsers.
6
7
8
9
1

0.Code optimization.

BE (Computer Science and Engineering) Page 124



