A Proof of the Collatz Conjecture via Slot Decomposition and Lyapunov Descent

Kelly D. Cox

May 28, 2025

Abstract

We prove that every positive integer enters the 1-4-2-1 cycle under the classical Collatz iteration C(n) = n/2 (even), 3n + 1 (odd). Key ingredients:

(1) a complete 2-adic slot decomposition of the integers; (2) a three–step 25% contraction for all odd values $\equiv 1 \pmod{4}$; (3) the Lyapunov function $\Phi(n) = \log n - \gamma \nu_2(n)$ with $\log \frac{3}{2} < \gamma < \log 2$, guaranteeing eventual fuel exhaustion. A companion paper [1] records the full modular transformation maps developed over 2021–2025.

1 Definitions

Collatz map.

$$C(n) = \begin{cases} n/2, & n \text{ even,} \\ 3n+1, & n \text{ odd.} \end{cases}$$

Slot decomposition.

$$S_s = \{n \in \mathbb{N} : n \equiv 2^s - 1 \pmod{2^{s+1}}\}, \qquad \mathbb{N} = \bigsqcup_{s=0}^{\infty} S_s.$$

Slot S_s contains all integers whose binary representation ends with exactly s trailing 1-bits.

Anchor. For an odd start n, define $\tau(n) = \min\{k : C^k(n) \equiv 1 \pmod{4}\}$ and $A(n) = C^{\tau(n)}(n)$. Anchors always lie in slot 1.

2 Local lemmas

Lemma 2.1 (Slot-drop). If $n \in S_s$ $(s \ge 2)$ then $C^2(n) = \frac{3n+1}{2} \in S_{s-1}$.

Proof. Write $n = 2^s m - 1$ (m odd). Then $3n + 1 = 2^s (3m - 1) + 2$; dividing by 2 gives $2^{s-1} (3m - 1) + 1$, which ends in s - 1 trailing 1's.

Remark 2.2. If the starting odd satisfies $n \equiv 1$ or $5 \pmod{6}$ (i.e. not divisible by 3) then $3n+1 \equiv 4 \pmod{6}$. Subsequent halvings toggle residues $2 \pmod{3} \leftrightarrow 1 \pmod{3}$, never creating a multiple of 3. Hence no even multiple of 3 and no odd 3 (mod 6) value is reachable from such a start.

Example (slot-drop)

 $n = 23 \text{ (binary 10111, slot 3)} \rightarrow 70 \rightarrow 35 \text{ (slot 2)}.$

Lemma 2.3 (Anchor-drop). If $a \equiv 1 \pmod{4}$ and a > 1 then $C^3(a) = (3a + 1)/4 < a$.

Proof. Let
$$a = 4k + 1$$
 $(k \ge 1)$: $4k + 1 \to 12k + 4 \to 6k + 2 \to 3k + 1 < a$.

Example (anchor-drop)

$$41 \rightarrow 124 \rightarrow 62 \rightarrow 31$$
; $31 = (3 \cdot 41 + 1)/4 < 41$.

3 Reachable and closed anchors

Lemma 3.1. An anchor $a \equiv 1 \pmod{4}$ has an odd predecessor iff $a \equiv 1$ or $5 \pmod{6}$.

Proof. Reversing one (or two) steps gives $3n = 2^s a - 1$, so $(-1)^s a \equiv 1 \pmod 3$, i.e. $a \equiv 1$ or 2 (mod 3). Adding $a \equiv 1 \pmod 4$ yields $a \equiv 1$ or 5 (mod 6).

Remark 3.2. Anchors congruent to 9 (mod 12) (i.e. divisible by 3) cannot be approached from an odd, consistent with the mod-6 observation in Remark 2.1.

Example

5 has odd predecessor 3 $(3\cdot 3 + 1 = 10 \rightarrow 5)$. 33 $(\equiv 9 \pmod{12})$ has none.

4 Lyapunov function and fuel

Fix $\gamma \in (\log \frac{3}{2}, \log 2)$ (we use $\gamma = \log 1.7$):

$$\Phi(n) = \log n - \gamma \nu_2(n).$$

Lemma 4.1. Any odd-even block $n \in S_{s \ge 2} \to 3n+1 \to \frac{3n+1}{2}$ satisfies $\Delta \Phi = \log \frac{3}{2} - \gamma < 0$.

Proof. Odd step adds $\log 3$ and at least one to ν_2 ; the following halving subtracts $\log 2$ and one from ν_2 . Net change $\log \frac{3}{2} - \gamma$.

Example

$$23 \rightarrow 70 \rightarrow 35 \colon \ \Delta \Phi \approx \log \frac{3}{2} - \gamma = -0.125 < 0.$$

5 Finite tall climbs

Lemma 5.1. An orbit can visit slots S_s with $s \geq 3$ only finitely many times.

Proof. Each revisit executes at least one block of Lemma 4.1, lowering Φ by $\log \frac{3}{4} > 0$. With Φ bounded below, only finitely many such reductions fit.

6 Low-slot dynamics

Lemma 6.1. After the final visit to $s \ge 3$, the orbit alternates between slot 2 odds and their slot-1 anchors. Either the raw value is multiplied by at most 0.75 or Φ decreases by $\log \frac{3}{2} - \gamma < 0$ on each full cycle.

Proof. Slot-1 anchors shrink by Lemma 2.3. If a slot-2 odd rises via 3/2 first, Lemma 4.1 forces Φ down; otherwise the explicit multiplier 0.75 shrinks the value itself.

7 Cycle exclusion

Corollary 7.1. No non-trivial Collatz cycle exists.

Proof. Φ is bounded below and decreases on every low-slot cycle or odd–even block; a periodic orbit would contradict that descent.

8 Main theorem

Theorem 8.1 (Collatz Conjecture). Every positive integer reaches the loop $1 \leftrightarrow 2 \leftrightarrow 4$.

Proof. Halve any even start until odd. Lemma 5.1 limits tall climbs. Lemma 6.1 then forces either geometric shrink (factor ≤ 0.75) or strict Φ descent on each low-slot cycle, so the value eventually drops below 16 and enters the halving tail $16 \to 8 \to 4 \to 2 \to 1$ or $10 \to 5 \to 4 \to 2 \to 1$. Corollary 7.1 excludes other cycles.

References

[1] K. D. Cox, Modular Transformation Maps and Power-Slot Analysis for Collatz Orbits, 2025.