Hawk	Activity: ALL WORK	Doc No:	HAZ-ID	
Energy,	Stuck Pigs		Initial Issue Date	12/12/2024
LLC			Revision Date:	12/12/2024
HAZARD IDENTIFICATION AND ASSESSMENT			Revision No.	1
MAZAKU IDENTIFICA	DIDENTIFICATION AND ASSESSIVIENT			12/11/2025
Preparation: Kirk Duncan	Authority: David Slim	Issuing Dept: Safety	Page:	1 of 2

Purpose

Stuck Pigs

Key Responsibilities

- Stuck pigs often create dangerous situations.
- It is up to you or your supervisor to find out where the pig is and what dangers are involved.
- Every person should know how to find a pig and evaluate what should happen after the pig is found.
- If you don't know how to find a pig get with your Hawk Energy, LLC supervisor/lead and have he/she show you, every situation is different so there is no exact way to find every pig.

Hazard and Risk Identification

Pig that get lodged in the line can create many dangerous situations (including) but not limited to.

- **Trapped psi,** this is when the line is dead on both ends but there is still psi in the line that the pig has trapped that cannot get out.
- Hydro carbon freeze, this is when the pig is stuck but not blocking all psi and there is gas moving around
 the pig. When the gas is restricted its molecules are forced closer together, this makes the gas colder and
 can freeze liquid in front or behind the pig and create an ice blockage, even if the temperature outside is
 hot
- **Blocked psi**, is when the pig has lodged itself in a manner that stopped all gas movement and the psi behind of in front of the pig cannot move, it will just continue to build.
- Too much differential psi in the line. This is when the pig has blocked all gas movement in the line and the psi on either side of the pig exceeds the psi rating of the line on one side or other of the pig.

Risk Assessment

Hazards are classified and ranked based on severity. The program identifies hazards are classified/prioritized and addressed based on the risk associated with the task. (See the risk analysis matrix outlining severity and probability).

Stuck pigs are common to pipeline maintenance. Each stuck pig presents unique challenges and dangers. Even two pigs stuck in the same place can present different dangers based on the different pressures involved.

Hawk	Activity: ALL WORK Stuck Pigs		Doc No: Initial Issue Date	HAZ-ID 12/12/2024
Energy, LLC			Revision Date:	12/12/2024
LIAZADO IDENTIFICATIONI AND ACCECCAMENT			Revision No.	1
HAZAKU IDENTIFIC	HAZARD IDENTIFICATION AND ASSESSMENT			12/11/2025
Preparation: Kirk Duncan	Authority: David Slim	Issuing Dept: Safety	Page:	2 of 3

Hawk Energy, LLC. RISK ASSESSMENT MATRIX - NOISE

	CONSEQUENCE				PROBABILITY				
					Α	В	С	D	E
Severity	People	Assets	Environment	Reputation	Not Done	Rarely	Once a week	Several Times in a Week	Multiple Times in a Day
0	No health effect	No damage	No effect	No impact					Х
1	Slight health effect	Slight damage	Slight effect	Slight impact		х			
2	Minor health effect	Minor damage	Minor effect	Limited impact		х			
3	Major health effect	Localized damage	Localized effect	Considerable impact		х			
4	Single fatality	Major damage	Major effect	National impact	х				
5	Multiple fatalities	Extensive damage	Massive effect	Global impact	х				

Kev	Manage for continuous improvement	Incorporate risk reduction measures	Intolerable
Rey	(Low)	(Medium)	(High)

Risk Controls/Methods to Ensure Identified Hazards Are Addressed and Mitigated

The following describes how identified hazards are addressed and mitigated:

- Go from location to location and check the line pressure, this will determine wear your pig is based on the line psi.
- Determine if the pig has blocked all gas movement or is letting some psi past it.
- If the pig is stopped all psi then be extra careful when walking by the gas line, know the exact psi on both sides of the pig.
- If the psi on either side of the pig is too high then go to a blow down point in the gas and relieve the presser safely.
- If the pig has created a carbon freeze, you will be able to see ice forming on the outside of the line, this is usually whatever way the gas is flowing, in that situation the best thing is to try and get the pig moving and put methanol in front and behind the pig.
- Any time a pig is stuck and you are blowing the line dead to dislodge the pig. Never trust gauges that the line is dead. The pig could have created trapped pressure, this could give way and seriously injure you.

Hawk	Activity: ALL WORK Stuck Pigs		Doc No: Initial Issue Date	HAZ-ID 12/12/2024
Energy, LLC			Revision Date:	12/12/2024
HAZARD IDENTIFICATION AND ASSESSMENT			Revision No.	1
HAZAKU IDENTIFICA	ATION AND ASSESSIVENT		Next Revision Date:	12/11/2025
Preparation: Kirk Duncan	Authority: David Slim	Issuing Dept: Safety	Page:	3 of 3

JSA Sample

The following describes how identified hazards are addressed and mitigated:

Basic Job Step	Potential Injury or Hazards Mitigation / Tools	
Pig getting stuck	Trapped/blocked psi.	Always assume the pig has trapped psi, never trust gauges. Never step on line or over line with blocked psi in it.

Other Info

Case study:

A worker was killed operating on a natural gas pipeline. At a receiver station the man intended to pick up two so called cleaning pigs, each weighing about 303 lbs, diameter 20 inch. For this purpose the gas pressure in the pig trap was let off by a valve, manometer controlled. According to an eyewitness's statement, the receiver pressure was equal to outside air pressure before the accident. The victim stood right in front of the flap of the receiver when he began to unfix the screws of the flap. Whilst working, the flap snapped out driven by the two cleaning pigs. The man and the devices were flung through a wire-netting fence and dropped down on a nearby field at a distance of 88 feet, 95 feet and 124 feet, respectively, from the receiver. The man died on the scene of the accident. The forensic autopsy ordered by the prosecution revealed signs of massive blunt trauma on the head, thorax and abdomen. In the criminological and forensic reconstruction of the accident the external injuries of the victim were found to be consistent with the front surface of the cleaning pig flung out first. It was determined that the second pig had got stuck in the receiver and that gas pressure had built up behind the pigs due to a leaky valve. As a consequence the pigs were expelled at a velocity of approximately 136 miles per hour causing a pattern of injury comparable to that of a fall from a great height.

