

Dealing with Sleep and Jet Lag

Cindy J. Chang, MD, FACSM, FAMSSM

Professor Emeritus, UCSF Primary Care Sports Medicine Chief Medical Officer, National Women's Soccer League Past President, AMSSM (2011-2012) Past Member, Board of Trustees, ACSM (2016-2019)

Disclosures

- NWSL: Chief Medical Officer
- USRowing: Team Physician, Medical and Sports Science Committee
- NFL: Research and Innovations Committee
- AMSSM Foundation: Board Member
- Wu Tsai Human Performance Alliance: Sports Advisory Council
- Korey Stringer Institute: Medical and Science Advisory Board
- Baseline Global: Medical Advisory Board
- Agency for Student Health Research: Medical Advisory Board

The views presented are my own and not reflective of any of the organizations for whom I consult or provide services.

Objectives:

- Describe how sleep can affect mental and physical health
- Discuss the effects of sleep on injury risk and athletic performance
- Identify ways to minimize the adverse effects of jet lag

You're full of tryptophan."

Consensus statement

Mental health issues and psychological factors in athletes: detection, management, effect on performance and prevention: American Medical Society for Sports Medicine Position Statement—Executive Summary

Cindy Chang, ¹ Margot Putukian ^o, ^{2,3} Giselle Aerni, ⁴ Alex Diamond, ⁵ Gene Hong, ⁶ Yvette Ingram, ⁷ Claudia L Reardon, ⁸ Andrew Wolanin ⁹

BJSM 2020

Mental health issues and psychological factors in athletes: detection, management, effect on performance and prevention: American Medical Society for Sports Medicine Position Statement—Executive Summary

Cindy Chang, ¹ Margot Putukian ¹ Alex Diamond, ⁵ Gene Hong, ⁶ Yvette Ingram, ⁷ Claudia L Reardon, ⁸ Andrew Wolanin

BJSM 2020

- Background and Purpose
- How Teams Work
- Personality Issues and Athletic Culture
 - Personality Issues
 - Sexuality and Gender Issues
 - Hazing
 - Bullying
 - Sexual Misconduct
 - Transition from sport

- The Psychological Response to Injury and Illness
 - Self–medication in response to injury/illness
- Select Psychological Challenges/Issues
 - Eating Disorders/Disordered Eating
 - Depression and Suicide
 - Anxiety and Stress
 - Overtraining
 - Sleep disorders
 - Attention-Deficit/Hyperactivity Deficit (ADHD)
 - Summary

Cindy J.
Chang, M.D.

Mental Health in the Athlete pp 277–290

The Role of Sleep in **Psychological Well-Being** in Athletes

Chapter First Online: 31 May 2020

- Introduction
- Why Do We Sleep?
- Normal Sleep Architecture
 - Medication Effects on Sleep Architecture
- The Anatomy of Sleep

- Common Sleep Disorders and Their Association/ Effect on Psychological Well-Being in Athletes
 - Insomnia
 - Obstructive Sleep Apnea-Hypopnea (OSA)
- The Specifics of Optimal Sleep for Athletes
 - Sleep and Athletic Performance
 - How Can Athletes Improve Their Sleep?
 - Insomnia
 - Obstructive Sleep Apnea (OSA)
- Summary

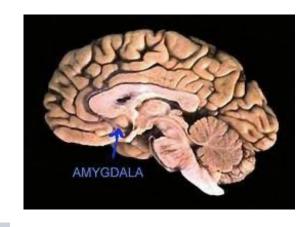
UCSF Medical Center

Why do we sleep?

- Inactivity theory
 - Protect from danger
- Energy conservation theory
 - Reduce energy demand and expenditure
- Restorative theory
 - Repair and rejuvenate
- Brain plasticity theory
 - · Brain organization and structure
- Synaptic pruning theory
 - Strengthen impt connections w/ other parts of brain; prune non-essential ones

Poor sleep results in:

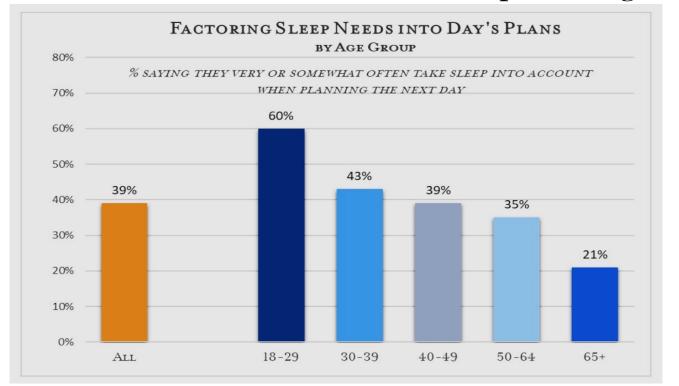
- Inflammation within brain
- Poor metabolite clearance linked to serotonergic dysfunction, betaamyloid accumulation


Frank MG, Rev Neurosci 2006; Xie L et al, Science 2013; Wilson H et al Neuroimage Clin 2018

UCSF Medical Center

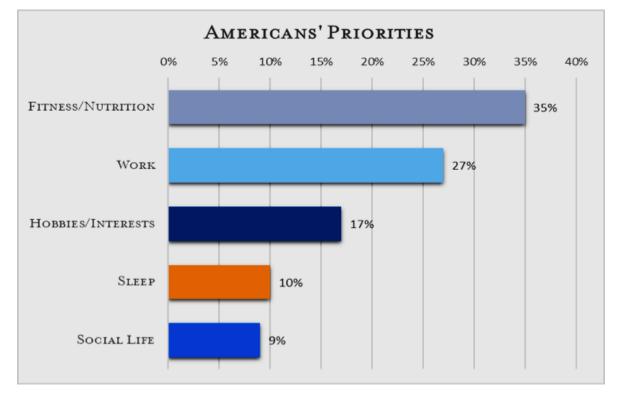
How does sleep affect your patients' mental health?

- Amygdala is main link between sleep and mental health conditions
 - Involved in processing emotions; integrative center for emotions, emotional behavior, motivation and fear
- Sleep deprivation amplifies emotional reactivity of the amygdala by up to 60%
 - enhances brain's response to negative emotional stimuli
- Decreased sleep of 5 hrs/night for 5 days causes same dysregulation of amygdala as total sleep deprivation


How are we sleeping as adults?

- 2015 American Academy of Sleep Medicine and Sleep Research Society consensus panel recommended 7 hrs/night minimum for adults to promote optimal health
- 35.2% of American adults report
 ≤ 7 hours of sleep/night
- 70 million Americans suffer from chronic sleep problems

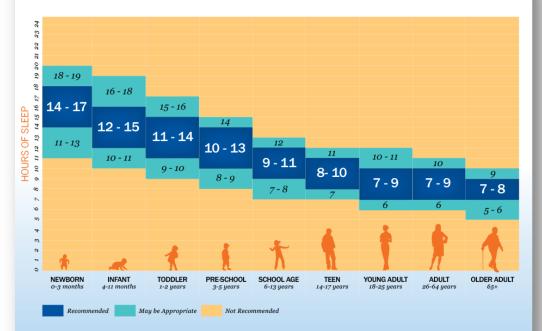
60% of Americans Don't Account for Sleep the Night Before



National Sleep Foundation, Sleep In America Poll 2018

UCSF Medical Center

35% Americans Chose Fitness/Nutrition vs. 10% Sleep



National Sleep Foundation, Sleep In America Poll 2018

UCSF Medical Center

SLEEP DURATION RECOMMENDATIONS

a few nights/week

Only 9% adolescents
obtain 9 hours/night

87% of parents of

9th-12th graders think

they get enough sleep

SLEEPFOUNDATION.ORG | SLEEP.ORG

Hirshkowitz M, The National Sleep Foundation's sleep time duration recommendations: methodology and results summary, Sleep Health (2015), http://dx.doi.org/10.1016/j.sleh.2014.12.010

UCSF Medical Center

Insufficient and Poor Sleep in College Athlete Population (n=628)

- 39.1% obtain <7 hours on weekdays
- 51% clinically high levels of daytime sleepiness (Epworth)
- 42.4% student-athletes have poor sleep quality (Pittsburgh Sleep Quality Index)

Mah et al. Sleep Health 2018

UCSF Medical Center

Self-Reported Sleep Behavior in College Athlete Population (n=14,134)

Table 1 National College Health Assessment: self-reported sleep behaviour among full-time undergraduate students who self-identify as varsity athletes at NCAA member Institutions (n=14134)^{12(p20)}

Sleep behaviours	Reported response option	Percent of varsity athletes
Sleep difficulties in the past 12 months.	Traumatic or very difficult to handle.	24
Falling asleep at night.	Extreme difficulty at least three nights in the last week.	24
Awaking too early and unable to go back to sleep.	Occurred at least three nights in the last week.	16
Getting enough sleep to feel rested.	Insufficient sleep more than 3 days out of past 7; Insufficient sleep 6–7 days out of past 7.	57 23
Daytime tiredness.	Felt tired, dragged out or sleepy at least 3 days during the last week; reported that daytime sleepiness has been a big problem in last 7 days.	61 17
Negative consequences of sleep difficulties.	Academic performance.	18

Kroshus et al. BJSM 2019

UCSF Medical Center

How does sleep affect your patients' mental health?

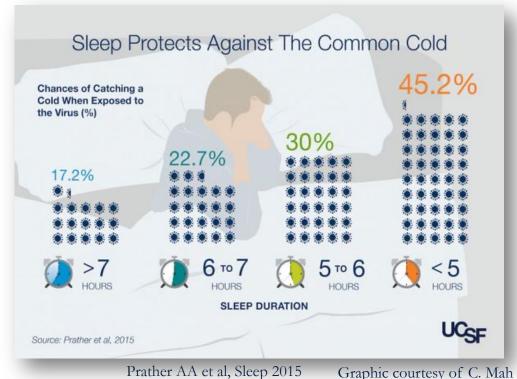
- In college students, high prevalence of common mental disorders comorbid with sleep disorder
 - Those who experienced poor sleep quality 2.4-fold higher odds of depression, anxiety, and somatoform disorder than those with good sleep quality
- Poor sleep can be sign of a mental health disorder or can exacerbate existing mental health conditions
 - Improved sleep quantity and quality can improve symptoms of depression, anxiety, and bipolar d/o

Byrd KL et al, Health Behav Policy Rev 2014; Harvey A et al, Clin Psychol Rev 2011

How does sleep affect your patients' mental health?

- Decreases in both quality and duration of sleep linked to:
 - Impaired cognitive functioning/judgment, mood problems, somatic symptoms
 - Increase in perceived physical exertion and decrease in pain tolerance
- Sleep loss increases both sympathetic activity and catecholamine levels
 - Lead to altered stress system responsiveness, similar to that seen in mood d/o
- Sleep's role in pain perception and mental and physical recovery after injury or surgery can mean that deprivation is a risk factor for:
 - Substance and alcohol misuse, violence-related behaviors, and MVC

Meerlo et al, Sleep Med Rev 2008; Paiva et al Sleep Sci 2016; Hildenbrand et al, J Sch Health 2013; Taylor and Bramoweth J Adol Health 2010



How does sleep affect your patients' physical health?

Shorter sleep duration associated with increased susceptibility to common cold

Catching a cold is 4x more likely with ≤ 6 hours of sleep vs. 7 hours

How does sleep affect your patients' physical health?

Sleep loss increases injury risk

NBA male athletes playing back-toback games:

- 3.5x ↑ risk of injuries in Away games
- 3.3x ↑ risk of injuries if played 3-4 games vs 1-2 games in the 5 days before an injury

In adolescent athletes:

- Fatigue-related injuries associated with sleeping ≤ 6 hrs
- 1.7x ↑ risk of injury with < 8 hrs of sleep

Teramoto M et al, J Sci Med in Sport 2017; Luke A et al, CJSM 2011 Milewski MD, et al, J Pediatr Orthop 2014

How does sleep affect your patients' health—and academic performance?

- Avg adolescent 6.8 hr sleep (optimal 9.25 hr)
 - ↑ risk MH disorders
 - risk-taking behaviors and accidental injury

A/B students ≥ 8.25 hr; D/F < 6.75 hr A students 15 min more sleep than B B students 11 min more sleep than C

Wahlstrom and Owens Curr Opin Psych 2017

How does sleep affect your patients' health—and academic performance?

 School start times shifted one hour later resulted in 66% of students obtaining 8 hrs of sleep (up from 33%)

Grades and national achievement scores improved

70% reduction in teen car crashes

Wahlstrom and Owens, Curr Opin Psych 2017

Cindy J. Chang, M.D. UCSF Medical Center

What about different *combinations* of sleep duration, physical activity and sedentary behavior on physical, psychological, and educational outcomes?

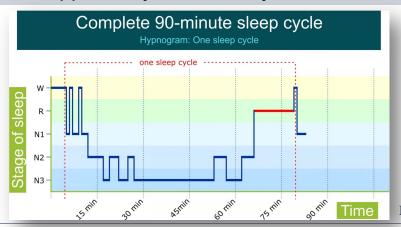
- Systematic review of 41 studies of children 5-17 yoa
 - Physical outcomes: adiposity, cardiometabolic risk factors, cardiorespiratory and muscular fitness
 - Psychological outcomes: well-being and socioemotional, health-related QOL, mental health
 - Education-related outcomes: academic performance, cognitive/executive function
- If more active, less sedentary, and slept longer than peers: most favorable outcomes
- Shorter sleep duration negatively affected all types of outcomes

Wilhite K et al, Am J Epidemiol 2023

Cindy J. Chang, M.D **UCSF** Medical Center

Does sleep mediate the association between school pressure, physical activity, screen time, and psychological symptoms?

- 49,403 adolescents (11-15 yoa) from 12 countries in WHO "Health Behaviour in School-aged Children" (2013/2014) study
 - More school pressure, fewer days engaging in sufficient physical activity, and higher levels of screen time associated with more psychological symptoms
 - Adolescents experiencing a lot of school pressure slept 15 min less on weekdays and 12 min less on weekend days
 - Better sleep quantity and quality related to a better mental health status



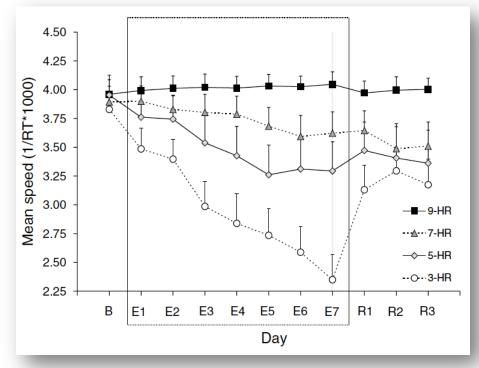
Vandendriessch A et al, Int. J. Environ. Res. Public Health 2019

Cindy J. Chang, M.D. **UCSF Medical Center**

- Sleep single most important factor for recovery from sport
 - Average sleep cycle 90 min; most need 5 sleep cycles/night
 - Natural increase in growth hormone occurs at 0100; to maximize, must be in deep sleep at time of secretion
 - 11:30 pm is latest bedtime for best opportunity for recovery, with 7:30 am alarm

With natural circadian rhythm disrupted, cortisol levels also increase inducing a catabolic state

Littlehale N, Sleep 2016


Cindy J. Chang, M.D. **UCSF Medical Center**

Psychomotor vigilance task speed

Slower reaction time

Even with recovery sleep, speed still impaired

In other studies, cognitive functions of judgement and decision-making also impaired

Vitale et al, Int J Sports Med 2019; Belenky G et al J Sleep Res 2003

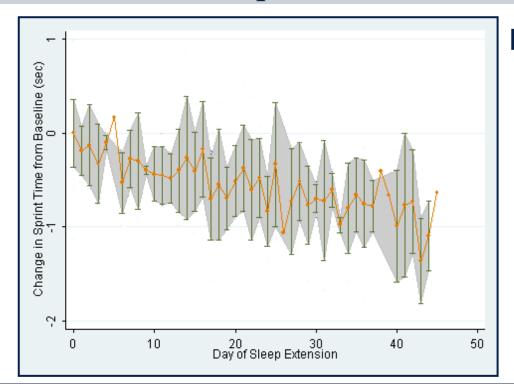
- 25% decrease in serving accuracy after 1 night of 5 hrs of sleep
 - Caffeine did not correct impairment

 Performance of both submaximal and maximal weight-lifting tasks altered after 2nd day of sleep loss (3 hr/night)

Reyner LA and Horne JA, Phys & Behav 2013; Reilly T and Piercy M, Ergonomics 1994

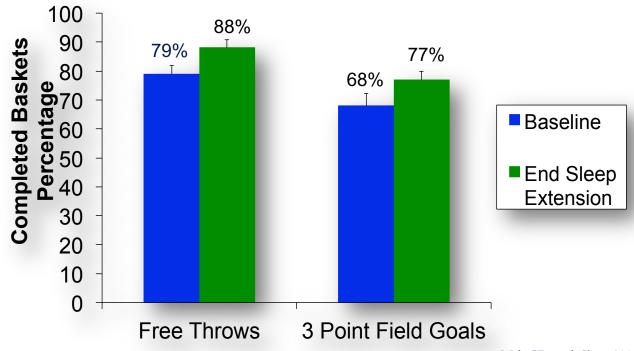
- 6 wks sleep extension in collegiate men's basketball program
 - Increased sleep extension compared to baseline by 110.9 ± 79.7 min
 - Minimum goal of 10 hrs in bed/night

Mah CD et al, Sleep 2011



0.7 Sec Faster Sprint Time (P < 0.001)

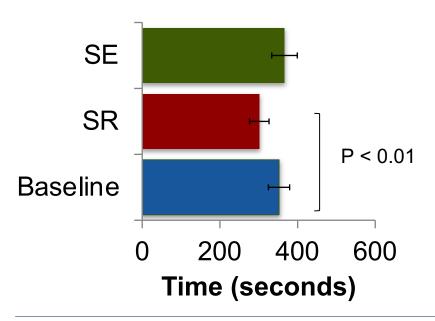
Baseline 16.2 Sec

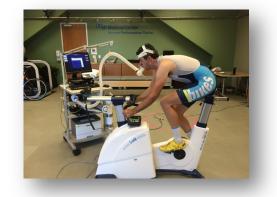

End Sleep Extension 15.5 Sec

Mah CD et al, Sleep 2011; Graphic courtesy of C. Mah

Cindy J. Chang, M.D. **UCSF Medical Center**

9% † in Free Throw % and 3 Pt Field Goal % (P < 0.001)


Mah CD et al, Sleep 2011; Graphic courtesy of C. Mah



Time to Exhaustion in Elite Cyclists

- ↓ 51 secs (14.4%) following sleep restriction
- † 14 secs following sleep extension

Mah CD unpublished data; Graphic courtesy of C. Mah

Cindy J. Chang, M.D. UCSF Medical Center

- Sleep Duration Correlates with Performance in Ultra-Endurance Triathlon
 - Stage 1 10 km swim, 146 km cycle
 - Stage 2 276 km cycle
 - Stage 3 84.4 km run
- Total sleep time (TST) and quality measured using actigraphy wristband
- Reduction in TST had significant negative correlation to exercise performance
 - Latency, wake episodes, and efficiency did not change

Kisiolek et al Int J Sports Phys Perf 2021

- Elite male cyclists restricted sleep to 4 hr/night x 3 nights
 - Maximal vertical jump height ↓
 - LE coordination variability ↑ and associated with ↑ slowing of psychomotor response time

Altered joint coordination variability may be linked to overuse injury and increased risk of ACL injury

Mah CD et al, J Sports Sci 2019

- Systemic review and meta-analysis (n=227)
 - Performance tasks were classified into different exercise categories: anaerobic power, speed/power endurance, high-intensity interval exercise (HIIE), strength, endurance, strength-endurance, and skill
 - Control (>6 hr) vs Intervention (<6 hr)

~0.4% decline in performance for every hour spent awake after acute sleep loss

Exercise tasks performed in PM consistently negatively affected by sleep loss; tasks performed in AM largely unaffected

Craven J et al, J Sports Medicine 2022

Project REST (Recovery Enhancement and Sleep Training)

- Baseline survey (n=289) with questionnaires on sleep, health, mental well-being, stress, social functioning, and other factors.
- Sleep problems are highly prevalent
 - 68% "poor sleep" on PSQI
 - 43% get < 7 hrs of sleep (87% ≤ 8 hrs)
 - 12% moderate-severe insomnia
 - 23% excessive fatigue
 - 17% drowsy driving in past month

https://www.ncaa.org/sites/default/files/2017RES_InnoGrant_Grandner_Slides_2017_20170206.pdf

Project REST (Recovery Enhancement and Sleep Training)

- 2 hr sleep education (n=40) with sleep strategies
- 10 wk intervention with objective sleep monitoring and online sleep logs
- Received daily text messages (tips, reminders, sleep facts)

83% reported better sleep, 89% reported athletic performance positively affected

https://www.ncaa.org/sites/default/files/2017RES_InnoGrant_Grandner_Slides_2017_20170206.pdf

UCSF Medical Center

How does cell phone use affect your patients' sleep?

- Young adults that checked social media within 30 min of sleeping were 1.5x more likely to have disturbed sleep
- Blue light emitted from devices 1 hr before bed can prevent sleep, ↓ melatonin release, ↓ REM

Levenson et al Sleep 2017; Chang et al PNAS 2015

Does exercise volume and timing affect your patients' sleep?

- High volumes of exercise related to improved sleep and psychological functioning
 - Adolescent athletes training 18hr vs. 4.5hr/wk had higher sleep quality, shorter sleep-onset latency, and fewer awakenings
 - Less tiredness and increased concentration during day; significantly lower anxiety and depressive symptoms
- Exercise (2-4h before bed) may not be associated with worse sleep
- Evening exercise 7-10 pm can induce phase delay; 7 am/1-4 PM exercise can induce phase advance

Myllymaki et al J Sleep Res 2011; Buman et al Am J Epid 2014, Brand et al J Adol Health 2010; Thomas JM et al JCI Insight 2020

Sleep Optimization

- 9 hours sleep per night should be daily goal for athletes
- If inadequate night's sleep, a nap the following day may be beneficial
 - Naps in mid-afternoon (13:00–16:00) have greater recuperative value
- If aware that sleep will be impaired (e.g. long travel day before competition), "banking sleep" to get more extended sleep prior to sleep deprivation may improve performance
- Physical performance benefits of napping greater in sleep-restricted athletes compared to well-rested athletes
- Napping improves cognitive performance (visual reaction time, attention and mental rotation tasks)
- Napping improves sleepiness and alertness; results in improved mood states

Vitale et al, Int J Sports Med 2019; Lastella M et al, Nat Sci Sleep 2021

Treatment for Insomnia

- Cognitive Behavioral Therapy (CBT) first-line treatment
- Diet Manipulation of precursor amino acid L-tryptophan can affect CNS by regulating production of serotonin and melatonin
 - Foods high in CHO shorter sleep latency
 - Foods high in protein improved sleep quality
 - Foods high in fat decrease total sleep time
- Non-BZD hypnotics improve sleep latency/maintenance of sleep (only eszopiclone)
- Melatonin inconclusive but safe for short-term use
 - ↓ sleep—onset latency but did not improve sleep quality; not regulated by FDA

Anderson KN J Thorac Dis 2018; Taylor DJ Int Rev Psych 2014; Halson SL Sports Med 2014

UCSF Medical Center

How does **travel** affect your patients' **health—and athletic performance?**

- NBA male athletes playing back-to-back games:
 - 3.5x ↑ risk of injuries in Away games
 - 3.3x ↑ risk of injuries if played 3-4 games vs 1-2 games in the 5 days before injury
- NFL football players playing close to circadian peak in performance demonstrate significant athletic advantage over those playing at other times.

Teramoto M et al, J Sci Med in Sport 2017; Smith RS et al, Sleep 2013

How does travel affect your patients' athletic performance?

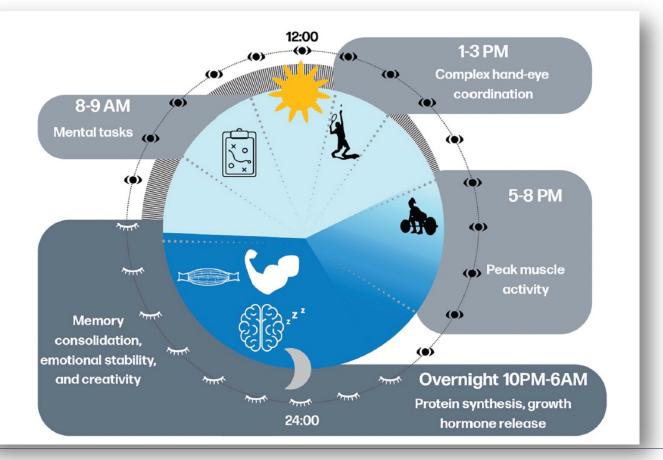
- West Coast vs East Coast night games x 25 NFL seasons:
 - West Coast teams win 63.5% of games
 - West Coast team beats Las Vegas point spread 67.9%
- Circadian advantage for West Coast teams regardless of location of game (peak performance late afternoon)
- Follow up study
 - 40 NFL seasons (1970-2011) demonstrated West coast teams beat point spread 2x more than East Coast teams

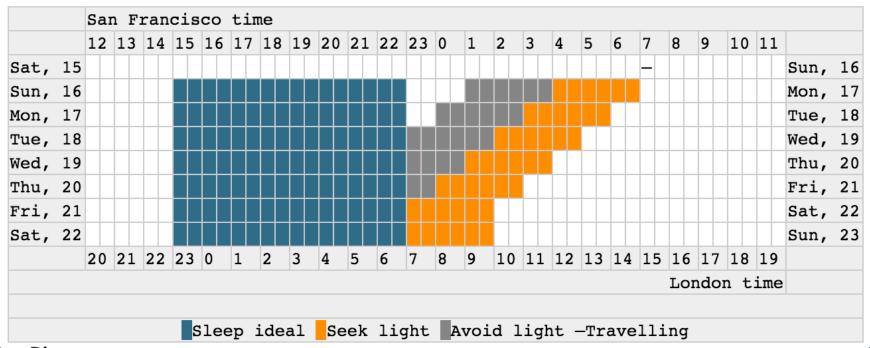
Smith RS et al, Sleep 1997, 2013

Jet Lag

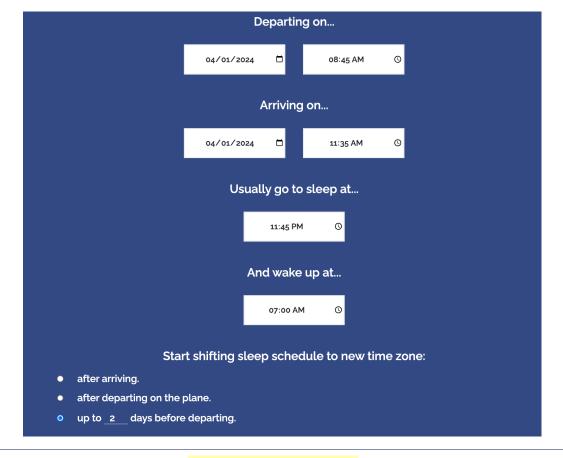
- Jet lag is consequence of circadian desynchronization
 - Resolves with resynchronization at rate of 1 day per time zone (1h/d) when traveling East, and ½ day per time zone (2h/d) when traveling West
 - Episodic and characterized by GI disturbance (heartburn, indigestion, diarrhea), sleep disturbance, intermittent fatigue, impaired concentration
- Incidence and severity of jet lag increase with # of time zones crossed

Herxheimer A BMJ Clin Evid 2014; Forbes-Robertson et al, Sports Med 2012; Samuels CH, CJSM 2012




Cindy J. Chang, M.D. **UCSF** Medical Center

Jet Lag Calculator


Shift sleep schedules pre- and post- flight; when to seek and avoid sunlight

www.jetlagrooster.com

Cindy J. Chang, M.D. UCSF Medical Center

www.jetlagrooster.com

Cindy J. Chang, M.D. **UCSF Medical Center**

timeshifter.com

Cindy J. Chang, M.D. UCSF Medical Center

Pre-Flight Strategies to Minimize Jet Lag

- Obtain adequate sleep to reduce sleep debt prior to flight (sleep banking)
- Shift body clock gradually by 1 hr/day before flight
 - e.g., for 3 d before West to East coast flight bedtime and wake time shifts 1h earlier each day
- Select best flight times that allow proper sleep prior to flight; consider layovers for crossing 10+ time zones
 - Choose flight with arrival time to coincide w/ optimal light exposure/avoidance
- Well-planned nutrition and hydration program may have impact on jet lag

There is insufficient high-quality evidence about effectiveness of lifestyle and environmental adaptations

Herxheimer A BMJ Clin Evid 2014; Forbes-Robertson et al, Sports Med 2012; Samuels CH, CJSM 2012

In-Flight Strategies to Minimize Jet Lag

- Prioritize good hydration on flight. Avoid alcohol; no caffeine 6hr before sleep
- Eat smaller lighter meals before and during flight timed with destination location
- Wear layered, loose fitting clothing
- Plan to sleep according with destination location (reset watch to destination time)
- Don't stay awake to watch movies
- Ensure that ambient temperature on plane not too warm (67° F)
 - Core body temp (CBT) also has 24hr circadian rhythm of 0.8-1.0° C
 - minimum b/w 0300-0700 during lowest level of alertness
- Utilize Travel Recovery Bag to optimize sleep environment

Obradovich N et al, Sci Adv 2017; Forbes-Robertson S et al, Sports Med 2012; Samuels CH, CJSM 2012

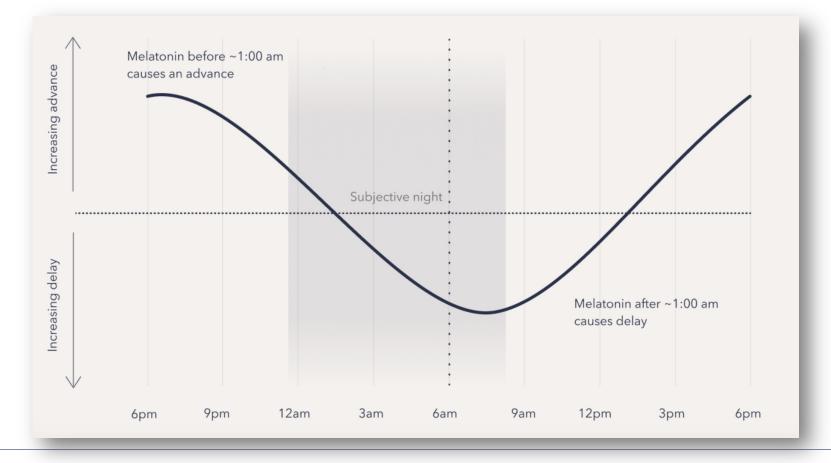
Essential Items for Travel Recovery Bag

- Eyemask (contoured)
- Earplugs (silicone)
- Noise-canceling headphones
- Travel pillow (memory-foam)
- Sunglasses or blue-blocking glasses
- Pre-sleep snack/pack enough food
- Electrolytes for hydration
- Familiar sleep item from home
- Other recovery modalities...

Post-Flight Strategies to Minimize Jet Lag

- Leverage sunlight exposure/avoidance to resynchronize body clock
 - After Westward flight: Stay awake while daylight and sleep once dark
 - Phase Delay = body has to delay or move backward to earlier time to be in synch
 - After Eastward flight: Stay awake (unless you arrive in early AM, then nap) and be outdoors as much as possible in afternoon and evening
 - Phase Advance = body has to advance or move forward to later time to be in synch
 - If > 8h East, Phase Delay as easier for body clock to adjust to extensive delays easier than extensive advances

Janse van Rensburg et al Sports Med 2021; Herxheimer A BMJ Clin Evid 2014; Forbes-Robertson et al, Sports Med 2012; Samuels CH, CJSM 2012


Post-Flight Strategies to Minimize Jet Lag

- Melatonin (start low at 1-3 mg) can help shift body clock
- Non-BZD hypnotics (zolpidem, zopiclone) on first few nights may improve sleep duration to reduce some effects of jet lag
- Use strategic short 20-30 min power naps and caffeine (1 mg/kg) to mitigate sleep inertia during circadian nadir to ↓ cumulative sleep debt and fatigue
- Adjust timing of meals to speed adaptation

Janse van Rensburg et al Sports Med 2021; Herxheimer A BMJ Clin Evid 2014; Forbes-Robertson et al, Sports Med 2012; Samuels CH, CJSM 2012

https://www.timeshifter.com/jet-lag/melatonin-for-jet-lag-type-dose-timing

Cindy J. Chang, M.D. **UCSF Medical Center**

Questions?

(and thank you for not falling asleep during my presentation!)

